William Guido, PhD

Professor and Chair

Department of Anatomical Sciences & Neurobiology

Phone: 502-852-5165 E-mail

Research Focus

Dr. Guido's research focuses on the form and function of developing sensory systems. Of particular interest is understanding the cellular and molecular mechanisms responsible for the activity dependent refinement of sensory connections. The laboratory's model system has been the mouse lateral geniculate nucleus, the thalamic relay between retina and visual cortex. This pathway develops from a crudely wired, relatively undifferentiated network of cells into a highly ordered sensory system comprised of precise retinotopic patterns of connectivity, separate eye-specific domains, distinct cell types, and elaborate intrinsic circuitry.


A variety of in vitro electrophysiological recording techniques are utilized, including visualized whole cell patch recordings. Anatomical experiments involve the use of anterograde tracers, molecular and immunocytochemical markers, and biocytin labeled material to delineate the functional and structural organization of the developing visual system. Biochemical experiments make use of western blots and PCR to examine the molecular composition of neural elements underlying visual system development. More recently, confocal microscopy and optogenetics have been utilized to capture the dynamics of developing thalamic circuitry.


Present research activities include defining the anatomical and functional state of the developing retinogeniculate synapse, understanding the mechanisms that regulate the development of nonretinal circuitry in dLGN, using optogenetics to activate retinal and nonretinal circuits in dLGN, understanding how parallel visual channels from retina are organized in central visual targets.

Key Publications

Govindaiah G, Campbell PW, Guido W. Differential distribution of Ca2+ channel subtypes at retinofugal synapses. eNeuro. 2020 Oct 23:ENEURO.0293-20.2020. doi: 10.1523/ENEURO.0293-20.2020. 

Campbell PW, Govindaiah G, Masterson SP, Bickford ME, Guido W (2020). Synaptic properties of the feedback connections from the thalamic reticular nucleus to the dorsal lateral geniculate nucleus. Journal of Neurophysiology,1;124(2):404-417. 

Su J, Charalambakis NE, Sabbagh U, Somaiya RD, Monavarfeshani A, Guido W, MA Fox (2020). Retinal inputs signal astrocytes to recruit interneurons into visual thalamus. Proceedings of the National Academy of Sciences of the U.S.A., 2020;117(5):2671–2682

Charalambakis NE, Govindaiah G, Campbell PW, Guido W (2019). Developmental remodeling of thalamic interneurons requires retinal signaling. Journal of Neuroscience, 2224-18.

Sokhadze, G, Seabrook TA, Guido W (2018). The absence of retinal input disrupts the development of cholinergic brainstem projections in the mouse dorsal lateral geniculate nucleus. Neural Development, 13(1): 27.

Guido W (2018). Development, form, and function of mouse visual thalamus. Journal of Neurophysiology,120(1) :211-225.

Tschetter WW, Govindaiah G, Etherington IM, Guido W, Niell CM (2018). Refinement of spatial receptive fields in the developing mouse LGN is coordinated with excitatory and inhibitory remodeling. Journal of Neuroscience, 38(19):4531-4542.

Sokhadze, G, Campbell, P, Guido, W (2018) Postnatal development of cholinergic input to the thalamic reticular nucleus of the mouse. European Journal of Neuroscience

Zhou N, Masterson SP, Damron JK, Guido W, Bickford ME (2017). The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. Journal of Neuroscience 8(2):347-362.

Kerschensteiner D, Guido W (2017). Visual thalamus, “it’s complicated”. Visual Neuroscience 34:E018.

Kerschensteiner D., Guido W. (2017) Organization of the dorsal lateral geniculate nucleus in the mouse. Visual Neuroscience. 34:E008.

Bickford M.E., Zhou N., Krahe T.E., Govindaiah G., Guido W. (2015) Convergence of "driver-like" inputs in the direction-selective zone of the mouse visual thalamus. Journal of Neuroscience, 35(29):0523-34.

El-Danaf, R., Krahe, T. E., Dilger E.K., Fox, M.A., Guido, W. (2015) Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input. Neural Development, 10:19.

Dilger, E. K., Morhardt, D., Krahe, T. E., Shin, H-S, Guido, W. (2015) Absence of synaptically evoked plateau potentials leads to a breakdown in retinogeniculate refinement. Journal of Neuroscience, 25, 35(8):3652-62.

Seabrook T.A., Krahe T.E., Govindaiah G., Guido W. (2013) Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development. Neural Development, 8:24.

Brooks J.M., Su J., Levy C., Wang J.S., Seabrook T.A., Guido W., Fox M.A. (2013) A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Reports, 5(3):573-81.

Seabrook T. A., El-Danaf R. N., Krahe T. E., Fox M. A., Guido W. (2013) Retinal input regulates the timing of corticogeniculate innervation. Journal of Neuroscience, 24:10085-97.

Kuwajima T., Sitko A. A., Bhansali P., Jurgens C., Guido W., Mason C. (2013) ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development, (6):1364-8.

Krahe, T. E., Seabrook, T., Fox, M. A., Chen, C-K, Guido, W. (2012) Modulation of CREB in the dorsal lateral geniculate nucleus of normal and dark reared mice. Neural Plasticity, 426-437.

Krahe, T.E., El-Danaf, R.N., Dilger, E.K., Henderson, S.C. & Guido, W.  (2011) Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse. Journal of Neuroscience, 31(48) 17437-17448.

Krahe T.E. & Guido W*. (2011). Homeostatic plasticity in the visual thalamus by monocular deprivation.  Journal of Neuroscience, 31(18): 6842-6849. (View PDF)

McNeill D.S., Sheely C.J., Ecker J.L., Badea T.C., Morhardt D., Guido W. & Hattar S. (2011) Development of melanopsin-based irradiance detecting circuitry. Neural Development, 6(1): 8.

Dilger, E. K., Shin, H. S., & Guido, W*. (2011) Requirements for synaptically evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus of the mouse.  Journal of Physiology, 589 (5) 1103-1115.

Su, J., Haner, C. V., Imbery, T. E., Brooks, J. M., Morhardt, D. R., Gorse, K., Guido W. & Fox M.A. (2011). Reelin is required for class-specific retinogeniculate targeting. Journal of Neuroscience, 31(2), 575-586 9.

Bickford, M. E., Slusarczyk, A., Dilger, E. K., Krahe, T. E., Kucuk, C., & Guido, W. (2010) Synaptic development of the mouse dorsal lateral geniculate nucleus.  Journal of Comparative Neurology, 518(5), 622-635.

Ziburkus, J., Dilger, E. K., Lo, F. S., & Guido, W*. (2009). LTD and LTP at the developing retinogeniculate synapse. Journal of Neurophysiology, 102(6), 3082-3090.

Guido, W. (2008). Refinement of the retinogeniculate pathway. Journal of Physiology, 586, 4357-4362.

Jeon, D., Song, I., Guido, W., Kim, K., Kim, E., Oh, U., et al. (2008). Ablation of Ca2+ channel beta3 subunit leads to enhanced N-methyl-D-aspartate receptor-dependent long term potentiation and improved long term memory.  Journal of Biological Chemistry, 283(18), 12093-12101.

Demas, J., Sagdullaev, B. T., Green, E., Jaubert-Miazza, L., McCall, M. A., Gregg, R. G., Wong R.O. & Guido W. (2006). Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity. Neuron, 50(2), 247-259.

Ziburkus, J., & Guido, W. (2006). Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. Journal of Neurophysiology, 96(5), 2775-2784

Jaubert-Miazza, L., Green, E., Lo, F. S., Bui, K., Mills, J., & Guido, W. (2005). Structural and functional composition of the developing retinogeniculate pathway in the mouse. Visual Neuroscience, 22(5), 661-676.

Ziburkus, J., Lo, F. S., & Guido, W. (2003). Nature of inhibitory postsynaptic activity in developing relay cells of the lateral geniculate nucleus. Journal of Neurophysiology, 90(2), 1063-1070.

Li, J., Bickford, M. E., & Guido, W. (2003). Distinct firing properties of higher order thalamic relay neurons. Journal of Neurophysiology, 90(1), 291-299.

Lo, F. S., Ziburkus, J., & Guido, W. (2002). Synaptic mechanisms regulating the activation of a Ca2+ mediated plateau potential in developing relay cells of the LGN. Journal of Neurophysiology, 87(3), 1175-1185.

Weyand, T. G., Boudreaux, M., & Guido, W. (2001). Burst and tonic response modes in thalamic neurons during sleep and wakefulness. Journal of Neurophysiology, 85(3), 1107-1118.