Quadriceps mitochondrial dysfunction following anterior cruciate ligament injury and reconstruction: TEM analysis of mitochondria

Christopher Fry, PhD
Dept. of Athletic Training and Clinical Nutrition

KY INBRE Pilot Awardee Presentation
August 4, 2022

christopher.fry@uky.edu
(859) 562-2522
Rm# 434, 441, 210A CTW
@ChrisFryPhD
Muscle recovery following knee injury

- ACL rupture → protracted quadriceps atrophy and weakness
 - ~50% of ACL-injured knees progress to osteoarthritis within 5–15 years
 - Despite surgical reconstruction and rehabilitation

- Localized quadriceps muscle fatigue after ACL injury → poor knee mechanics and contributes to the development of osteoarthritis

- Mitochondrial dysfunction contributes to muscle weakness and fatigability
 - Following ACL injury & reconstruction
 - ↓ Mitochondrial biogenesis (A)
 - ↓ Reduced oxidative capacity (B-C)

- Need: Ultrastructural analysis of quadriceps mitochondrial volume density and morphology

A

B

C

Outcomes:
TEM analysis of quadriceps mitochondria

- Biopsies from human participants collected in the OR or CCTS
- 1mm3 portions of biopsies, 4-5 pieces from each biopsy
- Samples immediately fixed & processed
- Workflow:
 1. Fry lab
 1. Fixed: 4% paraformaldehyde + 3.5% glutaraldehyde in 0.1 M Sorenson's phosphate buffer (2hr)
 2. Washed in 0.1 M Sorenson’s phosphate buffer + 5% sucrose
 2. UK Imaging Center (Jim Begley)
 1. Treated with 1% OsO$_4$
 2. Resin embedding
 3. Thick and thin sections (70nm)
 4. Stained with a solution of uranyl acetate and lead citrate
 3. UK Electron Microscopy Center (Jillian Cramer)
 1. Transmission Electron Microscope: FEI Talos F200X
 2. Captured 7 fibers from each biopsy in their entirety
 3. Comprised >100 mitochondria per sample
TEM images of quadriceps mitochondria

Subsarcolemmal mitochondria

Intermyofibrillar mitochondria

Analysis of TEM images of quadriceps mitochondria

- Assessed area of mitochondria (treated as circular πr^2 using perimeter)
- Assessed morphology
 - Destruction of cristae with expanded matrix space
 - Concentric ‘onion shaped’ cristae
 - Compartmentalization into vacuolar structures

Owen AM, et al. eLife. 2019
Issues encountered / Acknowledgements

• Bulk processing of specimens
 • Collection from the OR difficult to predict / plan
 • Length of time samples are preserved post-fix prior to embedding

• Fry lab
 • Christine Latham, PhD
 • Camille Brightwell, PhD
 • Alex Keeble, BS
 • Nick Thomas, MS
 • Haley Noehren
 • Peyton Balawender
 • Madi O’Daniel

• Brian Noehren PT, PhD

• Jim Begley
• Jillian Cramer

NIH NIAMS R01 AR078316
NIH NIAMS F32 AR080519