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Abstract
Speech perception is challenged by indexical variability. A litany of studies on talker normalization have demonstrated that
hearing multiple talkers incurs processing costs (e.g., lower accuracy, increased response time) compared to hearing a single
talker. However, when reframing these studies in terms of stimulus structure, it is evident that past tests of multiple-talker (i.e.,
low structure) and single-talker (i.e., high structure) conditions are not representative of the graded nature of indexical variation in
the environment. Here we tested the hypothesis that processing costs incurred by multiple-talker conditions would abate given
increased stimulus structure. We tested this hypothesis by manipulating the degree to which talkers’ voices differed acoustically
(Experiment 1) and also the frequency with which talkers’ voices changed (Experiment 2) in multiple-talker conditions. Listeners
performed a speeded classification task for words containing vowels that varied in acoustic-phonemic ambiguity. In Experiment
1, response times progressively decreased as acoustic variability among talkers’ voices decreased. In Experiment 2, blocking
talkers within mixed-talker conditions led to more similar response times among single-talker and multiple-talker conditions.
Neither result interacted with acoustic-phonemic ambiguity of the target vowels. Thus, the results showed that indexical structure
mediated the processing costs incurred by hearing different talkers. This is consistent with the Efficient Coding Hypothesis,
which proposes that sensory and perceptual processing are facilitated by stimulus structure. Defining the roles and limits of
stimulus structure on speech perception is an important direction for future research.
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Introduction

The world is far from random; instead, objects and events in
the environment are highly structured. According to the
Efficient Coding Hypothesis (Attneave, 1954; Barlow,
1961), sensory systems detect and exploit this structure in
order to facilitate processing. Efficient coding has been ex-
tremely productive for understanding visual processing and

perception (Field, 1987; Geisler, 2008; Olshausen & Field,
1996; Simoncelli, 2003), and recent applications to speech
perception have been equally promising (Gervain & Geffen,
2019; Kluender, Stilp, & Kiefte, 2013; Kluender, Stilp, &
Llanos, 2019; Stilp & Kluender, 2010). For example, the sta-
tistical structure of sentence contexts influences subsequent
vowel categorization (Stilp & Assgari, 2019), as predicted
by efficient coding.

While not originally conceived as such, studies of talker
normalization (e.g., Bradlow, Nygaard, & Pisoni, 1999;
Nygaard, Sommers, & Pisoni, 1995; Pisoni, 1997; Sommers,
Nygaard, & Pisoni, 1994) reflect perceptual sensitivity to
stimulus structure. In these studies, listeners perform a task
(e.g., phoneme categorization, word identification, recogni-
tion memory) with stimuli spoken by a single talker or by
multiple talkers. Listeners generally show higher accuracy
and/or faster response time in single-talker compared to
multiple-talker conditions. Hearing one talker (i.e., highly
structured stimuli) facilitates speech perception, whereas hear-
ing multiple talkers (i.e., minimally structured stimuli) incurs
processing costs.
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Throughout this literature, talker normalization studies
have provided fairly uniform tests of sensitivity to stimulus
structure. Multiple-talker stimuli often consist of speech from
a small number of men and women, with minimal acoustic
details provided regarding the specific degree of indexical
variation among talkers. This approach is sufficient to induce
processing costs for multiple-talker compared to single-talker
stimulus sets, but does not represent the graded nature of in-
dexical structure present in the environment. Efficient coding
makes a novel prediction for talker normalization: as stimulus
structure increases, processing costs associated with multiple
talkers should abate. Stimulus structure is a broad term that
has been used in the psycholinguistic literature to refer to, for
example, hierarchical variability within a phonetic category
(Kleinschmidt & Jaeger, 2015) or within-talker acoustic pre-
dictability across phonetic categories (Chodroff & Wilson,
2017). Here we use this term, as it is used in the efficient
coding literature, to encapsulate any type of predictability that
may be encoded and subsequently used by listeners to facili-
tate perception. We tested this prediction by manipulating the
degree to which talkers’ voices differed acoustically
(Experiment 1) and also how often talkers' voices changed
(Experiment 2) in multiple-talker environments. Listeners’ re-
sponse times for word identification were used to quantify
processing cost.

Methods

Participants

The participants were 72 monolingual speakers of American
English (53 women, 19 men; mean age = 20 ± 2 years1; n = 36
in each experiment, no one completed both experiments).
None had a history of speech, language, or hearing disorders
according to self-report; all passed a hearing screen on the day
of testing. Two additional participants were tested but exclud-
ed from the study due to failure to meet the accuracy criterion
described below.

Stimuli and procedure

Tokens of the words he’d, hoed, and who’d, each produced
by ten talkers, were drawn from the Hillenbrand corpus
(Hillenbrand, Getty, Clark, & Wheeler, 1995). Words were
selected to achieve low (/i/ - /o/) and high (/o/ - /u/)
acoustic-phonemic ambiguity in the vowel contrasts, as in
Choi, Hu, and Perrachione (2018). The talkers formed
three levels of talker variability: single talker (one man or
one woman; each heard by half of the participants), mixed

talker with low fundamental frequency (F0) variability
(two men, two women), and mixed talker with high F0
variability (two men, two women). The selected talkers
showed consistent F0 across tokens (i.e., within 30 Hz).
In multiple-talker conditions, four talkers were selected
so that F0 was either minimally (low variability) or maxi-
mally (high variability) different across talkers, as shown
in Table 1. Mean word duration (625 ± 81 ms) did not vary
across talker variability conditions (F(2, 27) = 0.271, p =
0.765) or target vowels (F(2, 27) = 0.016, p = 0.985).
Intensity of the tokens was equated using Praat.

Talker variability (single, mixed low, mixed high) and
acoustic-phonemic ambiguity (low, high) were both manipu-
lated within-subjects, forming six blocks. Block order was
counterbalanced across participants in each experiment.
Each block consisted of 20 trials for each vowel (i.e., /i/ and
/o/ for low ambiguity blocks, /o/ and /u/ for high ambiguity
blocks). Following Choi et al. (2018), single-talker blocks
tested 20 repetitions of each vowel; mixed-talker blocks tested
five repetitions of each vowel from each of the four talkers. In
Experiment 1, stimulus presentation within each block was
randomized separately for each participant. In Experiment 2,
mixed-talker trials were blocked to present ten consecutive
trials from each of the four talkers. Talker order, held constant
across ambiguity conditions and participants, was determined
by maximizing the change in F0 each time the talker (and,
concomitantly, talker gender) changed. Within each talker
blocking, order of the ten trials remained randomized. To il-
lustrate this manipulation, Fig. 1 shows trial-by-trial F0 in each
block for one participant in each experiment; F0 is highly
structured for the mixed-talker conditions in Experiment 2
compared to Experiment 1.

1 Here and throughout, variability values reported in the main text indicate
standard deviation.

Table 1 Mean fundamental frequency (Hz) of the tokens for the three
talker variability conditions and the two acoustic-phonemic ambiguity
conditions; talker identifiers correspond to those used in the
Hillenbrand corpus (Hillenbrand et al., 1995)

Talker variability Acoustic-phonemic ambiguity

Low High

Condition Talker /i/ /o/ /o/ /u/

Single w16 237 228 228 238

m18 133 135 135 139

Mixed Low m01 173 175 175 181

m45 215 202 202 212

w26 194 191 191 189

w49 206 189 189 201

Mixed High m03 94 98 98 102

m11 160 158 158 159

w11 216 206 206 237

w33 287 264 264 291
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On each trial, participants were instructed to identify
the word as quickly and accurately as possible.
Participants responded by pressing a labeled button on
a response box (Cedrus RB-740). A visual stimulus
assigning a number to each word was displayed
throughout each block. Trials were separated by 2,000
ms, timed from the participant’s response. All testing
was completed in a sound-attenuated booth. Auditory
stimuli were presented via headphones (Sony MDR-
7506) at a comfortable listening level that was held
constant across participants. Stimulus presentation and
response collection were controlled using SuperLab
(version 4.5) running on a Mac OS X operating system.

Results: Experiment 1

High accuracy for word identification (≥ 0.95 proportion
correct) was an inclusion criterion for this study; accord-
ingly, accuracy across participants was near ceiling (mean
= 0.99 ± 0.01). Incorrect trials were excluded from anal-
ysis. Response times (RTs, in milliseconds) were log-
transformed, and trials exceeding three standard devia-
tions from each participant’s mean log RT were excluded
(< 1% of trials). Figure 2 shows the mean RT in each
condition for each participant, in addition to boxplots ag-
gregating across participants. Trial-level log RTs were
submitted to a linear mixed effects model using lme4
(Bates, Maechler, Bolker, & Walker, 2015) in R (R
Development Core Team, 2016). The Satterthwaite ap-
proximation of degrees of freedom was used to evaluate

statistical significance using the t distribution as imple-
mented in lmerTest (Kuznetsova, Brockhoff , &
Christensen, 2017). The model included fixed effects of
talker variability, acoustic-phonemic ambiguity, and their
interaction. Talker variability was treatment-coded with
mixed-low variability as the reference level. Ambiguity
was sum-coded (low = -0.5, high = 0.5). The random
effects structure consisted of random intercepts by subject
and random slopes by subject for talker variability, ambi-
guity, and their interaction. Estimated marginal means
from the model are shown in Table 2.

Compared to the mixed-talker low variability condition
(mean = 675 ± 144 ms)2, RTs were faster in the single-

talker condition (mean = 613 ± 131 ms; bβ = -0.096, SE =
0.014, t = -6.699, p < 0.001) and slower in the mixed-talker

high variability condition (mean = 703 ± 134 ms; bβ =
0.045, SE = 0.014, t = 3.152, p = 0.003). The pairwise
comparison between the mixed-talker high variability and
single-talker conditions was tested for this model using the
emmeans package (Lenth, 2019), which showed that RTs
were significantly slower in the former compared to the

latter (bβ = -0.141, SE = 0.016, t = -9.124, p < 0.001).

The model also showed a main effect of ambiguity (bβ =
0.141, SE = 0.024, t = 6.006, p < 0.001), with faster RTs for

2 In the main text, empirical means and their corresponding standard devia-
tions are reported to describe the raw data. To calculate the empirical means,
we first calculated by-subject means in the condition(s) of interest; thus, em-
pirical means reflect grand means. Estimated marginal means for each of the
six conditions of each experiment as derived from the linear mixed-effects
models are shown in Table 2.

Low: /i/ − /o/ High: /o/ − /u/
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Fig. 1 Trial-by-trial F0 in each condition for a representative participant
in Experiment 1 (top, subject E1.001) and Experiment 2 (bottom, subject
E2.001). Talker order was m45, w26, m01, w49 for mixed-low talker
variability and w33, m11, w11, m03 for mixed-high talker variability.

Trial-level F0 variability for mixed-talker conditions in Experiment 1,
where trials were completely randomized within conditions, is increased
relative to Experiment 2, where trials for mixed-talker conditions were
blocked by talker
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the low- (mean = 626 ± 142 ms) compared to the high-
ambiguity condition (mean = 702 ± 127 ms). There was
no interaction between ambiguity and talker variability for

either contrast (bβ = -0.025, SE = 0.029, t = -0.864, p =

0.393 and bβ = -0.028, SE = 0.027, t = -1.050, p = 0.301,
respectively).3

Following Choi et al. (2018), interference effects of talker
variability were calculated in each ambiguity condition (Fig.
2, right). Interference was calculated as the difference in mean
RT between each mixed-talker condition and the single-talker
condition, scaled to each participant’s mean RT in the single-
talker condition: [(mixed – single / single) × 100]. Consistent
with the main effect of talker variability in the model, inter-
ference values were higher for the mixed-high variability con-
dition compared to the mixed-low variability condition. The

null interaction between variability and ambiguity reflects
similar displacement of interference distributions across am-
biguity conditions.

3 The analysis deviated from the preregistration in one way. Specifically, the
mixed-talker low variability condition was used as the reference level instead
of the single-talker condition. This is because we were wrong in the preregis-
tration; in order to test for a monotonic change across talker variability, the
reference level needs to be set to the intermediate condition.

Fig. 2 Results from Experiment 1 (top) and Experiment 2 (bottom). At
left is empirical mean response time (RT, in milliseconds) for each par-
ticipant and boxplots aggregated across participants. At right are the em-
pirical interference distributions across participants; interference was

calculated as the difference between the mixed-talker conditions and the
single-talker conditions, scaled to each participant’s mean RT in the
single-talker condition as follows: [(mixed – single / single) × 100]

Table 2 For each experiment, estimated marginal means (in
milliseconds) and corresponding 95% confidence interval (in
parentheses) for the single, mixed low, and mixed high talker variability
conditions for each of the acoustic-phonemic ambiguity conditions.
Estimated marginal means were derived for the linear mixed effects
models described in the main text using the emmeans package in R

Experiment Talker variability Acoustic-phonemic ambiguity

Low High

1 Single 550 (506–598) 618 (579–660)

Mixed Low 598 (551–649) 689 (644–737)

Mixed High 634 (588–685) 710 (670–754)

2 Single 512 (471–557) 621 (576–669)

Mixed Low 535 (498–575) 637 (590–688)

Mixed High 556 (510–606) 613 (574–653)
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Results: Experiment 2

Mean accuracy across participants was near ceiling (mean =
0.99 ± 0.01). Incorrect trials were excluded, RTs were log-
transformed, and trials exceeding three standard deviations
from each participant’s mean log RT were excluded (1% of
trials). Figure 2 (bottom) shows mean RT in each condition for
each participant and boxplots aggregating across participants.
Trial-level log RTs were submitted to a linear mixed effects
model as described for Experiment 1; estimated marginal
means from the model are shown in Table 2.

Compared to the mixed-talker low variability condition
(mean = 619 ± 135 ms), RT was numerically but not statisti-
cally faster in the single-talker condition (mean = 600 ± 140

ms; bβ = -0.034, SE = 0.018, t = -1.988, p = 0.055) and com-
parable to the mixed-talker high-variability condition (mean =

618 ± 143 ms; bβ = -0.001, SE = 0.015, t = -0.042, p = 0.9671).
Pairwise comparison of the estimated marginal means for the
model showed slower RTs in the mixed-talker high variability

condition compared to the single-talker condition (bβ = -0.034,
SE = 0.014, t = -2.503, p = 0.044). The model showed a main

effect of ambiguity (bβ = 0.175, SE = 0.021, t = 8.260, p <
0.0001), confirming faster RTs for the low- (mean = 566 ± 134
ms) compared to the high-ambiguity contrast (mean = 659 ±
144 ms). Ambiguity did not interact with talker variability for

the single versus mixed-low contrast (bβ = 0.018, SE = 0.032, t
= 0.547, p = 0.588), but did for the mixed-low versus mixed-

high contrast (bβ = -0.078, SE = 0.029, t = -2.682, p = 0.011).
To examine the nature of the interaction, the emmeans

package was used to test pairwise comparisons in the model
using the Tukey method to adjust for multiple comparisons.
RTs were slower in the high- compared to the low-ambiguity

condition for the single-talker (bβ = -0.193, SE = 0.025, t = -

7.807, p < 0.0001), mixed-low talker variability (bβ = -0.175,
SE = 0.021, t = -8.260, p < 0.0001), and mixed-high talker

variability conditions (bβ = -0.097, SE = 0.026, t = -3.734, p <
0.001). In the low acoustic-phonemic ambiguity condition,
there was no reliable difference in RT between the single-

talker and mixed-low talker variability conditions (bβ =
0.044, SE = 0.023, t = 1.890, p = 0.157), nor between the

mixed-low and mixed-high talker variability conditions (bβ =
-0.038, SE = 0.021, t = -1.858, p =0.166); however, RTs were
slower in the mixed-high talker variability condition com-

pared to the single-talker condition (bβ = -0.082, SE = 0.024,
t = -3.361, p = 0.005). In the high acoustic-phonemic ambi-
guity condition, there was no reliable difference between any
of the talker variability conditions (single-talker vs. mixed-

low talker variability: bβ = 0.026, SE = 0.024, t = 1.063, p =

0.543; single-talker vs. mixed-high talker variability: bβ =
0.014, SE = 0.021, t = 0.653, p = 0.792; mixed-low talker

variability vs. mixed-high talker variability: bβ = 0.040, SE =
0.022, t = 1.818, p = 0.179). Thus, the interaction observed in
the full model reflects slower RTs for the mixed-talker high
variability condition in the low but not the high acoustic-
phonemic ambiguity condition.

Compared to Experiment 1, adding trial-level indexical
structure in Experiment 2 attenuated the processing cost
associated with talker variability. As shown in Fig. 2 (right),
the interquartile range for three of the four interference dis-
tributions in Experiment 1 does not include zero (which
would indicate no interference compared to the single-
talker condition). In contrast, the interquartile range for
three of the four interference distributions in Experiment 2
does include zero. This interaction between talker variabil-
ity and experiment was directly tested in a linear mixed
effects model following the structure outlined previously
with the addition of experiment as a fixed effect (sum-cod-
ed, experiment 1 = -0.5, experiment 2 = 0.5). RTs were
numerically but not significantly slower in Experiment 1
(mean = 663 ± 132 ms) compared to Experiment 2 (mean

= 612 ± 136 ms; bβ = -0.095, SE = 0.050, t = -1.902, p =
0.061). There was no interaction between experiment and

acoustic-phonemic ambiguity (bβ = 0.034, SE = 0.032, t =
1.069, p = 0.289). However, the interaction between exper-
iment and talker variability was reliable for both the mixed-

talker low versus single-talker contrast (bβ = 0.061, SE =
0.023, t = 2.716, p = 0.008) and the mixed-talker low versus

mixed-talker high contrast (bβ = -0.046, SE = 0.021, t = -
2.166, p = 0.034). Simple slope analyses showed no change

in RTs across experiments for the single-talker condition (bβ
= -0.033, SE = 0.051, t = -0.656, p = 0.514), a numerical but

not significant decrease for mixed-talker low variability (bβ
= -0.095, SE = 0.050, t = -1.904, p = 0.061), and significant

decrease for mixed-talker high variability (bβ = -0.140, SE =
0.048, t = -2.909, p = 0.005).

Discussion

Stimulus structure can mediate the processing costs incurred
when hearing multiple talkers. In Experiment 1, processing
time for mixed-talker blocks decreased as variability in F0
decreased, decreasing further still for single-talker blocks.
Past studies of talker normalization have generally focused
on the presence/absence of such processing costs; here we
reveal that these costs are graded. In Experiment 2, blocking
talkers within mixed-talker conditions further attenuated pro-
cessing costs, leading to performance that was more similar
among talker variability conditions. Across experiments, the
perceptual benefits of stimulus structure interacted with each
other. Blocking talkers within mixed-talker conditions only
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made responses faster for stimuli with the greatest indexical
variability. These results support an efficient coding approach
to talker normalization, as speech perception amidst indexical
variability was increasingly facilitated by trial-level stimulus
structure.

Talker normalization depends on acoustic characteristics of
talkers’ voices. This point was first raised by Goldinger
(1996), who reported a correlation between similarity ratings
and perception of words spoken by different talkers. As acous-
tic differences across talkers (defined in large part by F0) in-
creased, RT increased and word recall accuracy decreased.
Talker acoustics show graded influence for other aspects of
speech processing, including spectral context effects
(Ladefoged & Broadbent, 1957). Context effects are attenuat-
ed when talkers’ fundamental frequencies are highly variable,
and are in some cases equivalent to single-talker conditions
when F0 is minimally variable (Assgari & Stilp, 2015;
Assgari, Theodore, & Stilp, 2019). Acoustic similarity also
affects perception of both phonetic and indexical properties
of the speech signal, which are interdependent (Mullennix &
Pisoni, 1990). Choi et al. (2018) found that the processing
costs incurred by hearingmultiple talkers increased when pho-
netic properties were more similar. This pattern was not ob-
served in the current work, suggesting that structured indexi-
cal variation can diminish potentially additive influences of
phonetic and indexical variability.

Here, talker normalization is revealed to be a graded
process, but is it obligatory? Previous work has suggested
that this is in fact the case, given that talker variability
challenged categorization of even acoustically unambigu-
ous phonemes (Choi et al., 2018). In Experiment 1, pro-
cessing costs were observed for talkers who minimally dif-
fered in F0; however, the interference distributions ob-
served in Experiment 2 suggest that stimulus structure
may be sufficiently great to eliminate these costs entirely.
Indeed, the results of Experiment 2 showed no difference
in processing time among the three talker variability con-
ditions for the high ambiguity contrast, nor between the
single and mixed-talker low variability conditions for the
low-ambiguity contrast. These results provide an existence
proof that some types of trial-level stimulus structure can
sufficiently eliminate the processing cost associated with
mixed-talker input, at least when measured at the block
level as is standard in the talker normalization literature.
Importantly, the current manipulations of structured index-
ical variation reflect only two of the many ways that struc-
ture may be provided, and not all are expected to benefit
perception equally. For example, context phrases rich in
spectro-temporal information provided no more resilience
to talker variability than a single neutral vowel matched in
duration (Choi & Perrachione, 2019). Defining the limits
of perceptual facilitation resulting from stimulus structure
is an important direction for future research.

Bottom-up and top-down influences combine to shape
speech perception (Davis & Johnsrude, 2007; McClelland,
Mirman, & Holt, 2006; Sohoglu, Peelle, Carlyon, & Davis,
2012). Here, indexical structure was an important bottom-up
influence when hearing different talkers. Previous studies
have reported various higher-level influences on talker nor-
malization including instructions and/or expectations
(Johnson, Strand, & D’Imperio, 1999; Magnuson &
Nusbaum, 2007), previous experience (Nygaard, Sommers,
& Pisoni, 1994), and attention (Nusbaum & Morin, 1992).
Defining the relative contributions of lower-level stimulus
structure and higher-level factors for perception of different
talkers’ speech will be highly illuminating.
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