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ABSTRACT:
Spectral properties of earlier sounds (context) influence recognition of later sounds (target). Acoustic variability in

context stimuli can disrupt this process. When mean fundamental frequencies (f0’s) of preceding context sentences

were highly variable across trials, shifts in target vowel categorization [due to spectral contrast effects (SCEs)] were

smaller than when sentence mean f0’s were less variable; when sentences were rearranged to exhibit high or low

variability in mean first formant frequencies (F1) in a given block, SCE magnitudes were equivalent [Assgari,

Theodore, and Stilp (2019) J. Acoust. Soc. Am. 145(3), 1443–1454]. However, since sentences were originally

chosen based on variability in mean f0, stimuli underrepresented the extent to which mean F1 could vary. Here,

target vowels (/I/-/E/) were categorized following context sentences that varied substantially in mean F1 (experiment 1)

or mean F3 (experiment 2) with variability in mean f0 held constant. In experiment 1, SCE magnitudes were

equivalent whether context sentences had high or low variability in mean F1; the same pattern was observed in

experiment 2 for new sentences with high or low variability in mean F3. Variability in some acoustic properties

(mean f0) can be more perceptually consequential than others (mean F1, mean F3), but these results may be

task-dependent. VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0011920
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I. INTRODUCTION

All perception takes place in context. Perception of a

sound depends on its acoustic properties and also on the

acoustic properties of sounds that precede or follow it in

time (i.e., the context). When successive sounds differ in

their acoustic properties, this difference can be perceptually

magnified via a contrast effect. For example, the vowels /I/
(as in “bit”) and /E/ (as in “bet”) differ primarily in the fre-

quency of their first formant (F1). When the vowel is pre-

ceded by a context sentence with F1 frequencies occurring

in a lower frequency range (which is typical of /I/), listeners

perceive /E/ more often; when the vowel is preceded by a

context sentence with F1 frequencies occurring in a higher

frequency range (which is typical of /E/), listeners perceive

/I/ more often (Ladefoged and Broadbent, 1957). This is

known as a spectral contrast effect (SCE). SCEs are perva-

sive in speech perception (Stilp, 2020).

Historically, SCEs have been measured with every trial

presenting renditions of the same context stimulus that dif-

fered only in spectral composition (e.g., F1 frequencies in a

sentence occurring in either lower or higher frequency

ranges). Assgari and Stilp (2015) examined whether SCEs

were sensitive to different degrees of acoustic variability

across the context sentences. All context sentences were fil-

tered to amplify either low-F1 frequencies (100–400 Hz) or

high-F1 frequencies (550–850 Hz) by þ5 dB to produce an

SCE in categorization of the test vowels (/I/-/E/). In one con-

dition, filtered renditions of the same context sentence were

presented on each trial (consistent with past approaches). In

a second condition, 200 different context sentences were

presented in the testing block, all spoken by a single talker.

In a third condition, 200 different context sentences spoken

by 200 unique talkers were presented in the testing block.

The magnitudes of SCEs affecting vowel categorization

were comparable when context sentences (whether 1 or 200)

were spoken by a single talker, but SCEs were diminished

when context sentences were spoken by 200 different talk-

ers. Thus, talker variability in the context sentences

decreased the magnitudes of SCEs. Diminished SCEs chal-

lenge speech perception because a mechanism by which per-

ceptually ambiguous sounds are disambiguated by

surrounding context is limited.

A litany of studies have documented processing costs

associated with perceiving speech from multiple talkers

compared to perceiving speech from a single talker

(Creelman, 1957; Assmann et al., 1982; Mullennix et al.,
1989; Mullennix and Pisoni, 1990; Goldinger, 1996;

Magnuson and Nusbaum, 2007; Zhang and Chen, 2016;

Choi et al., 2018; Stilp and Theodore, 2020). While this lit-

erature had not previously included examinations of acous-

tic context effects, the results of Assgari and Stilp (2015)

were consistent with this overall pattern. Importantly, some

talker adaptation studies suggested that these processing

costs are due in part to variability in the talkers’ fundamen-

tal frequency (f0) characteristics. Magnuson and Nusbauma)Electronic mail: christian.stilp@louisville.edu
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(2007) had participants listen to words spoken by one talker

or two talkers. Participants either heard two male voices dif-

fering greatly in f0, a male and female differing greatly in

f0, or two men differing slightly in f0. When f0 differed

greatly across talkers, participants responded faster to words

spoken by one talker than words spoken by multiple talkers.

When f0 was similar across talkers, reaction times were sim-

ilar when hearing one or two talkers. Goldinger (1996) mea-

sured participants’ word recognition when words were

spoken by different talkers. When the difference in f0

between talkers was larger, listeners had worse recall accu-

racy and slower reaction time compared to voices with a

smaller difference in f0. Stilp and Theodore (2020) exam-

ined performance in a speeded word recognition task for

words spoken by either the same talker or by different

talkers. Crucially, mean f0 characteristics of talkers in

mixed-talker blocks exhibited either low variability or high

variability. Listeners’ response times in the mixed-talker

blocks increased as f0 variability increased.

Regarding acoustic context effects, in a post hoc analy-

sis of their stimuli, Assgari and Stilp (2015) suggested that

variability in talkers’ f0’s might have contributed to the

reduction of SCE magnitudes, but this was not explicitly

controlled in the experiment. To directly test the perceptual

influence of f0 variability on context effects, Assgari et al.
(2019) constructed two sets of 40 context sentences. Each

set was comprised of 20 talkers who were men and 20 talk-

ers who were women, but one set exhibited high variability

across the mean f0’s of context sentences, while the other

set exhibited low variability across mean f0’s (Fig. 1, top

row, left column). When the mean f0’s of context sentences

were highly variable from trial to trial, SCEs in vowel cate-

gorization were smaller than when the mean f0’s of context

sentences were less variable (Assgari et al., 2019). This was

consistent with other reports of variability in talkers’ f0

characteristics challenging speech perception (Goldinger,

1996; Magnuson and Nusbaum, 2007; Stilp and Theodore,

2020).

Different talkers’ voices vary in myriad acoustic prop-

erties. While sentences in Assgari et al. (2019) were pre-

sented based on low or high variability in mean f0, talkers’

voices were concurrently varying in many other acoustic

properties beyond f0. For example, the second and third col-

umns in the top row of Fig. 1 illustrate variability in mean

F1 and mean F3 that was not controlled in the experiment of

Assgari et al. (2019). While they attributed their results to

variability in mean f0, contributions of other sources of

acoustic variability to the results were unclear. Assgari et al.
(2019) examined the perceptual influence of variability in

the mean F1 frequencies of context sentences, as this was

predicted to be highly relevant to the categorization of target

vowels that differed principally in F1. In a follow-up experi-

ment, context sentences that were selected to have low vari-

ability or high variability across their mean f0’s (their

experiment 2) were regrouped to form conditions that exhib-

ited low variability or high variability in mean F1 frequen-

cies (their experiment 3; second row of Fig. 1). Variability

in mean f0 was equated across the two blocks, so it would

not differentially affect SCE magnitudes in the presence of

low/high variability in mean F1. SCE magnitudes did not

vary as a function of variability in mean F1, leading Assgari

et al. (2019) to conclude that variability in the mean F1 fre-

quencies of context sentences did not have the same detri-

mental effect on SCEs as did variability in mean f0’s.

However, the stimuli in this follow-up experiment were

originally selected based on their measures of (and variabil-

ity in) f0, not F1. This was not representative of how much

F1 can vary across talkers (cf. the central panel of the second

row of Fig. 1). As such, this finding might not be the best

gauge of whether and how variability in sentences’ mean F1

frequencies can influence SCEs. Experiment 1 of the present

report provides a more sensitive test of this question.

Context sentences were selected and presented based on

their measures of mean F1, again testing whether variability

in this acoustic property modulates SCE magnitudes in cate-

gorization of the same /I/-/E/ target vowels.

F1 frequencies may differ across talkers as a function of

vocal tract length, but it can be argued that its principal role

in speech is indicating phonetic identity (e.g., vowel height).

While variability in mean F1 might be detrimental for cate-

gorizing target vowels that are cued primarily by F1, this

variability might be inconsequential to perception owing to

its habitual variability via signaling different phonemes.

Alternatively, higher formants have been proposed to play a

role in cueing a talker’s vocal tract length (Johnson and

Sjerps, 2021). For example, F3 frequency has been used to

estimate the talker’s vocal tract length (Nordstr€om and

Lindblom, 1975) and may serve as a perceptual anchor

whose relation to lower vowel formants resolves some of

the high acoustic variability across different talkers’ produc-

tions (Peterson, 1951). Higher formants are less sensitive to

speech articulation than lower formants (Wakita, 1977;

Lammert and Narayanan, 2015), so variability in this prop-

erty of talkers’ speech may prove more consequential to

talker perception than variability in lower formants. To the

extent that F3 more closely reflects talker-specific character-

istics than F1 does, variability in this acoustic feature would

be expected to diminish context effects in vowel categoriza-

tion in the same way that f0 variability does (Assgari et al.,
2019). Experiment 2 selected and presented context senten-

ces based on their measures of mean F3, otherwise utilizing

the same paradigm as experiment 1 (Fig. 1, bottom row).

According to the efficient coding hypothesis (Attneave,

1954; Barlow, 1961), sensory and perceptual systems capital-

ize on structure in the sensory environment, as that makes

neural and/or perceptual processing efficient. The efficient

coding hypothesis has a long and rich history in its applica-

tions to neural processing and perception in the visual system.

A wide range of studies have documented the statistical struc-

ture of natural images (Field, 1987; Olshausen and Field,

1996). This stimulus structure has been linked to neural

response properties in the visual system (Field, 1987;

Ruderman et al., 1998; Schwartz and Simoncelli, 2001) and

performance in visual perception tasks (Geisler et al., 2001;
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Tkačik et al., 2010). While applications of the efficient coding

hypothesis to auditory perception (and more specifically to

speech perception) are comparatively nascent, they show sim-

ilar promise and productivity (Kluender et al., 2013; Kluender

et al., 2019; Gervain and Geffen, 2019). For instance, consid-

erable covariance is shared among talkers’ fundamental and

formant frequencies in vowel production (Kluender et al.,
2013), and vowel identification suffers when these natural

FIG. 1. (Color online) (A) Histograms of mean f0 (left column), mean F1 (middle column), and mean F3 (right column) measurements in sentences from the

TIMIT database. Each row depicts stimuli tested in a single experiment: experiment 2 of Assgari et al. (2019) (first row); experiment 3 of Assgari et al.
(2019) (second row); and in the present report, experiment 1 (third row); and experiment 2 (fourth row). In each histogram, the low variability condition is

depicted in red, and the high variability condition is depicted in black. For comparison, each panel also shows the mean frequencies for 2019 TIMIT senten-

ces plotted in gray using a thinner bin width. Panels with boxes around them indicate experiments that were designed to test perceptual sensitivity to low or

high variability in that particular metric.

J. Acoust. Soc. Am. 152 (1), July 2022 Mills et al. 57

https://doi.org/10.1121/10.0011920

https://doi.org/10.1121/10.0011920


correlations are violated (Assmann and Nearey, 2008).

Additionally, speeded word identification was fastest when

stimuli were spoken by a single talker (i.e., highly struc-

tured), slower when words were spoken by acoustically simi-

lar (in terms of mean f0) talkers (i.e., intermediate level of

structure), and significantly slowed again when words were

spoken by acoustically dissimilar talkers (i.e., low structure;

Stilp and Theodore, 2020). In studies examining the influ-

ence of talker variability on SCEs (Assgari and Stilp, 2015;

Assgari et al., 2019), conditions featuring low acoustic (f0)

variability indicated a degree of structure in the acoustic

environment, and SCEs were facilitated by maintaining their

magnitudes (particularly in comparison to hearing the same

talker on every trial; Assgari and Stilp, 2015). Conditions

featuring high acoustic (f0) variability indicated less struc-

ture in the environment, which challenged perception and

diminished SCE magnitudes. In the present study, vowel cat-

egorization is predicted to be facilitated by the presence of

structure (low acoustic variability across talkers’ voices) and

challenged by the relative lack of structure (high variability).

Thus, SCE magnitudes are predicted to be smaller when con-

text sentences exhibit high variability in mean F1 as com-

pared to low variability in mean F1 (experiment 1); similarly,

sentences with high variability in mean F3 are predicted to

produce smaller SCEs than sentences with low variability in

mean F3 (experiment 2). Should results contradict these pre-

dictions, it may indicate that perception does not leverage

any and all structure in the input, but that structure in some

acoustic properties (mean f0) influences perception more

than structure in other properties (mean F1 and/or mean F3).

Such results would necessitate refinement to efficient coding

approaches to speech perception.

II. EXPERIMENT 1

A. Methods

1. Participants

Forty-eight undergraduate students at the University of

Louisville participated in exchange for course credit. All

participants reported normal hearing and were native

English speakers. From this sample, 40 listeners completed

the experiment, and responses from 20 of these listeners

were included in data analyses. As detailed below, reasons

for exclusion from analyses included failing a headphone

screener (n¼ 6), inability to reliably distinguish endpoints

of the vowel continuum during a practice session (n¼ 6), or

inability to maintain that level of accuracy on vowel end-

points throughout the main experiment (n¼ 8).

2. Stimuli

a. Context sentences. Sentence selection followed a sim-

ilar process as that reported in Assgari et al. (2019). All senten-

ces in TIMIT (Garofolo et al., 1990) dialect regions DR3 (North

Midland) and DR4 (South Midland) were analyzed by a custom

Praat (Boersma and Weenink, 2019) script that used linear pre-

dictive coding to estimate f0 contours and formant contours. f0,

F1, and F3 contours were visually inspected, and any aberrant

estimates in pitch/formant tracking were manually removed.

Then mean f0, mean F1, and mean F3 values were calcu-

lated for each sentence (cf. Fig. 1). From these analyses, 40

sentences were selected for presentation in the low variabil-

ity in mean F1 condition, and a separate set of 40 sentences

were selected for presentation in the high variability in

mean F1 condition (for more details, see supplementary

Table I).1 Each condition contained 20 talkers who were

men and 20 talkers who were women, and no talker was

presented in both conditions. Stimulus sets were carefully

constructed to differ markedly in terms of F1 variability

[standard deviation (SD) of mean F1 in low variability

sentences¼ 8.25; SD of mean F1 for high variability

sentences¼ 124.42] but be well-matched in terms of the

grand means of mean F1 (low variability: grand mean-

¼ 559.63; high variability: grand mean¼ 559.08) and mean

f0 (low variability: grand mean¼ 162.62 Hz, SD¼ 47.62;

high variability: grand mean¼ 160.17 Hz, SD¼ 48.74). F3

measures were not considered for this experiment, resulting

in a slightly lower grand mean of mean F3 with slightly

higher variability in the low variability block (mean

¼ 2670.46 Hz, SD¼ 185.55) compared to high variability

block (mean¼ 2746.19 Hz, SD¼ 135.30).

b. Vowel targets. Target vowels were the same ten-step

continuum ranging from /I/ to /E/ as tested in previous inves-

tigations of SCEs (Assgari and Stilp, 2015; Assgari et al.,
2019). Briefly, vowels were synthesized based on natural

recordings from a talker who was a man. These speech sam-

ples were resynthesized using linear predictive coding in

Praat. The /I/ endpoint had an F1 that linearly increased

from 400 to 430 Hz, while F2 linearly decreased from 2000

to 1800 Hz. The /E/ endpoint had an F1 that linearly

decreased from 580 to 550 Hz, while F2 linearly decreased

from 1800 to 1700 Hz. The vowel continuum was created by

taking these endpoint vowels and linearly morphing their

formant tracks through a script in Praat (Winn and Litovsky,

2015). Final vowel stimuli were 246 ms in duration with an

f0 set to 100 Hz throughout the vowel.

All filtered sentences and target vowels were equated in

root mean square amplitude. Experimental trials consisted

of a filtered sentence followed by a 50-ms silent interstimu-

lus interval and then a target vowel. All TIMIT sentences

were upsampled from their native sampling rate of

16 000 Hz to 44 100 Hz, matching the sampling rate of the

vowel targets.

3. Procedure

The experiment was administered online using the

Gorilla testing platform (Anwyl-Irvine et al., 2020).

Participants were sent a link to the experiment and com-

pleted it on a personal computer outside of the laboratory.

To standardize sound presentation, participants first com-

pleted a screener to confirm they were wearing headphones

(Woods et al., 2017). On each of six trials, listeners heard
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three tones and were asked to report which was the quietest.

The correct answer was the tone that was �6 dB relative to

the two other tones, but the foil answer was the tone that

was presented 180� out of phase across the stereo channels.

Listening over headphones promotes selection of the correct

answer (�6 dB tone); listening over speakers promotes

selection of the foil answer (180� out of phase tone, which is

quieter over speakers due to destructive interference).

Participants were required to identify the correct answer on

five out of six trials. If they did not meet this criterion, then

they were allowed to repeat the headphone screen one addi-

tional time. Six participants did not meet this criterion on

either headphone screen; their responses were removed

from statistical analyses.

Second, listeners completed a set of 20 practice trials.

Each trial presented a sentence from the AzBio corpus

(Spahr et al., 2012) followed by one of the two continuum

endpoint vowels (as categorizing endpoints of the vowel

continuum is objectively correct or incorrect). The listener

pressed the “i” key to label the target vowel as “ih” as in

“bit” or pressed the “e” key to label the target vowel as “eh”

as in “bet.” If the listener failed to reach 80% accuracy on

endpoint vowels after one block, practice trials were

repeated up to two more times to reach 80% accuracy. If

after three blocks of practice trials the listener did not

achieve 80% accuracy, their results were removed from sub-

sequent statistical analyses. Six participants did not achieve

80% accuracy during practice.

Next, the main experiment consisted of two blocks (low

variability in mean F1, high variability in mean F1). Each

block consisted of 160 trials (four repetitions of each unique

sentence) and took about 12 min to complete. Block order

was counterbalanced across participants. Participants were

allowed to take breaks in between blocks. The entire session

lasted approximately 40 min.

B. Results

As noted above, of the 40 participants who completed

the experiment, 12 failed at least one of the two screeners

(headphones screen, practice block). An additional perfor-

mance criterion was implemented of maintaining at least

80% accuracy on vowel continuum endpoints throughout

the main experiment. Eight participants failed to meet this

performance criterion, so their responses were not included

in data analyses. This resulted in the final sample size of 20

listeners, matching Assgari et al. (2019).

Trial-level data were analyzed in a generalized linear

mixed-effects model in R (R Development Core Team,

2021) using the lme4 package (Bates et al., 2014) with the

binomial logit linking function. The dependent measure was

vowel identification (/I/¼ 0, /E/¼ 1). The aim was to use the

same fixed and random effects structure as that tested in

experiments 2 and 3 of Assgari et al. (2019): fixed effects of

target, filter, variability, and all interactions between these

factors; random intercepts by subject; and random slopes by

subject for target, filter, and variability. However, the model

with this architecture analyzing the present data did not con-

verge. Stepwise modeling revealed that the maximal

random effects structure that facilitated model convergence

was random intercepts for subjects and random slopes for

target; all fixed effects were retained as described above.

Target was entered into the model as a continuous variable

(steps 1–10, centered around the mean). Sum coding was

used for the fixed effects of filter (high F1 amplification

¼�0.5, low F1 amplification¼þ0.5) and variability (low

variability¼�0.5, high variability¼þ0.5).

Model results are listed in Table I and visualized in

Fig. 2 in terms of /E/ responses as functions of the fixed

effects, as created using the interactions package in R

(Long, 2019). As expected, the model reports a significant

effect of target, such that each rightward step along the

vowel continuum (toward higher F1 values and the /E/ end-

point) increased the log odds of participants responding /E/.

There was a main effect of context filter, indicating that

changing the filtering condition from a high-F1-amplified

context to a low-F1-amplified context increased the proba-

bility of /E/ responses, confirming the presence of SCEs.

There was a significant main effect of variability, such that

listeners responded /E/ more often when hearing high vari-

ability in mean F1 sentences than when hearing low variabil-

ity in mean F1 sentences. The interaction between target and

filter was also significant, indicating that the slope of the

psychometric function was steeper in the low-F1-amplified

condition. The key analysis of interest, the interaction

between filter and variability, was not statistically signifi-

cant. Put another way, the magnitudes of SCEs were compa-

rable following low variability in mean F1 sentences and

high variability in mean F1 sentences.

Next, a mixed-effects model analysis was conducted to

quantitatively compare patterns of results across the present

experiment and experiment 3 of Assgari et al. (2019).

Responses were coded as before (/I/¼ 0, /E/¼ 1), and all main

effects and interactions between target, filter, variability, and

experiment were included. Filter (high-F1-amplified¼�0.5,

low-F1-amplified¼þ0.5) and variability (low¼�0.5, high

¼þ0.5) were sum-coded as above, and experiment was

sum-coded as well (the present experiment¼�0.5, 2019

TABLE I. Beta estimate (b̂), standard error (SE), Z-statistic, and p-value

for the fixed effects of the mixed-effects model. As described in the main

text, target was entered in the model as a continuous factor, centered around

the mean. Filter and variability were sum-coded; the level associated with

the �0.5 contrast for each factor is shown in parentheses.

b̂ SE Z p

Intercept 0.213 0.140 1.525 0.127

Target 0.905 0.072 12.628 <0.001

Filter (high F1) 0.301 0.074 4.048 <0.001

Variability (low) 0.351 0.074 4.716 <0.001

Target � filter 0.103 0.036 2.893 0.004

Target � variability 0.016 0.036 0.436 0.663

Filter � variability 0.026 0.149 0.174 0.862

Target � filter � variability �0.021 0.071 �0.300 0.764
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experiment¼þ0.5). A model with random slopes for each

fixed main effect and random intercepts for subjects did not

converge, so random slopes were added iteratively and

retained if the model converged and fit significantly

improved. The final model had random slopes for target and

variability as well as random intercepts for subjects. The

interaction between filter and experiment was significant

(Z¼ 2.043, p¼ 0.041), indicating that SCE magnitudes were

smaller in the present experiment compared to the previous

experiment. Critically, the three-way interaction between

filter, variability, and experiment was not significant

(Z¼ 0.018, p¼ 0.985), indicating that the null difference in

SCE magnitudes observed across low variability in mean F1

and high variability in mean F1 conditions in Assgari et al.
(2019) was replicated here. The full model results are avail-

able in supplementary Table II.1

The present results were also tested against those from

experiment 2 of Assgari et al. (2019) to establish whether

SCE magnitudes patterned differently across wide ranges of

variability in mean f0 and mean F1. The model had the same

fixed effects structure as detailed above, but the maximal ran-

dom effects structure that converged included random slopes

for target and variability as well as random intercepts for sub-

jects. The three-way interaction between filter, variability, and

experiment was significant (Z¼�2.138, p¼ 0.033), indicat-

ing that the relationship between SCEs and acoustic variability

differed across experiments. In Assgari et al. (2019), SCEs

were significantly larger in low variability in mean f0 condi-

tion than the high variability in mean f0 condition; here, SCEs

were of similar magnitudes across low variability in mean F1

and high variability in mean F1 conditions (see Table I). This

finding is further supported by the filter � variability interac-

tion being only marginally significant when averaging across

these experiments (Z¼�1.927, p¼ 0.054). The full model

results are available in supplementary Table III.1

C. Discussion

Variability in the mean F1 frequency of context senten-

ces did not alter SCE magnitudes in vowel categorization.

This result echoes the findings of experiment 3 in Assgari

et al. (2019). While the present study better represented the

full range of values that sentence mean F1 can take (Fig. 1,

second and third row of the center column), it arrived at the

same conclusion. This coincides with the suggestion by

Assgari et al. (2019) that variability in mean f0 and variabil-

ity in mean F1 might have different consequences for per-

ception, at least in terms of context effect magnitudes in

vowel categorization.

Explicit comparisons between experiments 2 and 3 of

Assgari et al. (2019) and experiment 1 here elucidate how

acoustic variability influences the magnitude of SCEs. SCEs

occurred in all three studies, consistent with amplifying low-F1

frequencies versus high-F1 frequencies in context sentences.

One means of differentiating these studies is by how SCE mag-

nitudes varied as a function of low versus high acoustic vari-

ability in the context sentences. In Assgari et al. (2019)

experiment 2, the significant filter � variability interaction

indicated that SCEs were smaller in the high variability in

mean f0 condition than in the low variability in mean f0 condi-

tion. However, this filter � variability interaction was not sig-

nificant in their experiment 3 or in the present experiment.

Thus, SCEs differed due to variability in mean f0 in the former

case, but not variability in mean F1 as in the latter two cases.

The different perceptual consequences of variability in

mean f0 versus variability in mean F1 are also evident in the

target� variability interactions in mixed-effect model analyses.

In Assgari et al. (2019) experiment 2, the significant target �
variability interaction indicated that the task was more difficult

in the high variability in mean f0 condition (i.e., the shallower

slope of the psychometric function) than the low variability in

mean f0 condition (i.e., steeper slope). However, this

FIG. 2. (Color online) (Left) The mixed-effects model fit to listeners’ responses as a function of vowel target in experiment 1. Dark blue lines represent

responses following low-F1-amplified context sentences, light blue lines represent responses following high-F1-amplified context sentences. Circles depict

mean proportions of “eh” responses; error bars depict one standard error of the mean. (Right) SCE magnitudes (the number of stimulus steps separating 50%

points on the psychometric functions) calculated for each listener in each variability condition (red indicating low variability in mean F1, black indicating

high variability in mean F1, consistent with coloration of Fig. 1). Each gray line connects one listener’s SCEs in both variability conditions.
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interaction was not statistically significant in their experiment 3

nor the present experiment, indicating that variability in mean

F1 did not alter the slope of the psychometric function; both the

low variability in mean F1 and high variability in mean F1 con-

ditions were equally difficult. This was supported by the three-

way interaction among talker, variability, and experiment

between the present experiment and experiment 2 of Assgari

et al. (2019) being statistically significant (Z¼�3.719,

p¼ 0.0002; supplementary Table III),1 but this same interaction

was not statistically significant when comparing the present

experiment to experiment 3 of Assgari et al. (2019)

(Z¼�0.133, p ¼ 0.894; supplementary Table II).1 Thus, it is

not only SCEs that illustrate the differential effects that vari-

ability in mean f0 and mean F1 have on vowel categorization,

but the psychometric function slopes also provide evidence for

this difference.

The results of experiment 1 are contrary to predictions

made by the efficient coding hypothesis, that perception

would be facilitated in the presence of structure in the con-

text sentences and challenged by the comparative lack of

structure. Despite there being very different amounts of vari-

ability in mean F1 frequencies across the two testing blocks,

SCE magnitudes were unaffected. The implications of this

point are considered further in Sec. IV.

Mean f0 and mean F1 are far from the only acoustic

characteristics that vary across different talkers’ voices. As

detailed in the Introduction, F1 and F3 vary to different

degrees in speech (Lammert and Narayanan, 2015) and may

contribute differently to perception of speech sounds versus

perception of talker characteristics. To this end, experiment

2 used the same paradigm as experiment 1 but with new sen-

tences arranged into low variability in mean F3 and high var-

iability in mean F3 conditions.

III. EXPERIMENT 2

A. Methods

1. Participants

Fifty-eight undergraduate students at the University of

Louisville participated in exchange for course credit. All

participants reported normal hearing and were native

English speakers. None participated in experiment 1. From

this sample, 45 listeners completed the experiment, and

responses from 19 of these listeners were included in data

analyses. As detailed below, reasons for exclusion from

analyses included failing a headphone screener (n¼ 12),

inability to reliably distinguish endpoints of the vowel con-

tinuum during a practice session (n¼ 7), or inability to

maintain that level of accuracy on vowel endpoints through-

out the main experiment (n¼ 7).

2. Stimuli

a. Context sentences. Sentence selection followed a

similar process as experiment 1, but the primary metric of

interest was the mean frequency of F3. All TIMIT sentences

in the North Midland and South Midland dialect regions

were sorted by their mean F3 frequencies (Fig. 1, right col-

umn). All sentences that were tested in previous experiments

[experiment 1 here and experiments 2 and 3 in Assgari et al.
(2019)] were removed, ensuring that novel sentences were

presented in experiment 2. From these remaining sentences,

40 were selected as stimuli in the low variability in mean F3

condition, and 40 different sentences were selected as stim-

uli in the high variability in mean F3 condition (for more

details, see supplementary Table IV).1 Each set of 40 sen-

tences contained 20 men and 20 women talkers, and no

talker was presented in both conditions. Stimulus sets were

constructed to differ markedly in terms of variability of

mean F3 (SD of mean F3 across low variability

sentences¼ 14.02; SD of mean F3 across high variability

sentences¼ 429.16) but be matched in terms of the grand

mean of mean F3 measures (grand mean of mean F3 across

low variability sentences¼ 2621.91 Hz; grand mean of

mean F3 across high variability sentences¼ 2614.62 Hz).

Stimulus sets were well-matched in terms of mean F1 char-

acteristics (low variability: grand mean¼ 580.43 Hz,

SD¼ 50.95; high variability: grand mean¼ 586.01 Hz,

SD¼ 51.24) and mean f0 characteristics (low variability:

grand mean¼ 162.16 Hz, SD¼ 47.85; high variability:

grand mean¼ 162.72 Hz, SD¼ 50.97).

b. Vowel targets. Target vowels were the same as those

tested in experiment 1. All filtered sentences and target vow-

els were again equated in root mean square amplitude,

concatenated with a 50-ms silent interstimulus interval, and

upsampled to 44 100 Hz.

3. Procedure

The procedure was identical to that of experiment 1.

Twelve participants did not meet the performance criterion

on the headphone screen portion, and seven participants

did not achieve 80% accuracy during practice; their results

were removed from subsequent statistical analyses. The

main experiment consisted of two blocks (context senten-

ces with low variability in mean F3, context sentences with

high variability in mean F3). Each block consisted of 160

trials (four repetitions of each unique sentence) and took

about 12 min to complete. Block order was counterbal-

anced across participants. Participants were allowed to

take breaks in between blocks. The entire session lasted

approximately 40 min.

B. Results

As noted above, of the 45 participants who completed

experiment 2, 19 failed at least one of the two screeners

(headphones screen, practice blocks). An additional seven

participants failed to maintain at least 80% accuracy on

vowel continuum endpoints throughout the main experi-

ment. Their responses were not included in data analyses,

resulting in the final sample size of 19 listeners.

Trial-level data were analyzed in a generalized linear

mixed-effects model in R (R Development Core Team, 2021)

using the lme4 package (Bates et al., 2014) with the binomial
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logit linking function. The dependent measure was vowel

identification (/I/¼ 0, /E/¼ 1). The same fixed effects struc-

ture as experiment 1 was included: fixed effects of target,

filter, variability, and all interactions between these factors.

The maximal random effects structure that facilitated model

convergence included random intercepts by subject and

random slopes by subject for target. Fixed effects were coded

in the same manner as described for experiment 1.

Model results are listed in Table II and visualized in

Fig. 3 in terms of /E/ responses as predicted by the fixed

effects using the interactions package in R (Long, 2019).

The model reports expected significant effects of target and

of filter, the latter of which again confirmed the presence of

SCEs. No other main effects or interactions were significant,

suggesting that variability in mean F3 did not modulate the

magnitudes of SCEs (i.e., nonsignificant filter � variability

interaction).

Results were analyzed across experiments 1 and 2 in a

mixed-effects model analysis. The maximal model that con-

verged included fixed effects of target (mean-centered as

described above), filter (high F1 amplification¼�0.5, low F1

amplification¼þ0.5), variability (low variability¼�0.5,

high variability¼þ0.5), experiment (experiment 1¼�0.5,

experiment 2¼þ0.5), and all interactions; random slopes

for target, variability, and experiment; and random inter-

cepts by subject. The only fixed effect involving experiment

that reached statistical significance was its interaction with

variability, indicating that base rates of “eh” responses in

experiment 1 were higher in the high variability in mean F1

condition (54%) than in the low variability in mean F1 con-

dition (50%), but these were equal if not slightly higher in

the low variability in mean F3 condition of experiment 2

(54% versus 53%). The full model results are available in

supplementary Table V.1

Responses in experiment 2 were also tested against

those in experiment 2 of Assgari et al. (2019) to directly

compare the perceptual consequences of variability in mean

F3 or mean f0 of context sentences, respectively. Responses

were coded as before (/I/¼ 0, /E/¼ 1), and all main effects

and interactions between target, filter, variability, and exper-

iment were included. Filter and variability were sum-coded

as above, and experiment was sum-coded as well (the pre-

sent experiment¼�0.5, 2019 experiment¼þ0.5). A model

with random slopes for each fixed main effect and random

intercepts for subjects did not converge, so random slopes

were added iteratively and retained if the model converged

and fit significantly improved. The final model had random

slopes for target and random intercepts for subjects. The

experiments exhibited distinct relationships between SCEs

and variability (significant filter � variability � experiment

interaction: Z¼�2.254, p¼ 0.024), as variability in mean f0

modulated SCE magnitudes but variability in mean F3 did

not (cf. Table II). This finding is further supported by the

filter � variability interaction being only marginally signifi-

cant when averaging across these experiments (Z¼�1.719,

p¼ 0.086), as was observed in analyses following

TABLE II. b̂, SE, Z-statistic, and p-value for the fixed effects of the mixed-

effects model analyzing experiment 2. As described in the main text, target

was entered in the model as a continuous factor, centered around the mean.

Filter and variability were sum-coded; the level associated with the �0.5

contrast for each factor is shown in parentheses.

b̂ SE Z p

Intercept 0.336 0.122 2.750 0.006

Target 0.899 0.062 14.594 <0.001

Filter (high F1) 0.405 0.077 5.257 <0.001

Variability (low) �0.102 0.077 �1.330 0.184

Target � filter 0.014 0.038 0.360 0.719

Target � variability �0.044 0.038 �1.168 0.243

Filter � variability 0.062 0.154 0.402 0.688

Target � filter � variability 0.059 0.075 0.781 0.435

FIG. 3. (Color online) (Left) The mixed-effects model fit to listeners’ responses as a function of vowel target in experiment 2. Dark blue lines represent

responses following low-F1-amplified context sentences; light blue lines represent responses following high-F1-amplified context sentences. Circles depict

mean proportions of “eh” responses; error bars depict one standard error of the mean. (Right) SCE magnitudes (the number of stimulus steps separating 50%

points on the psychometric functions) calculated for each listener in each variability condition (red indicating low variability in mean F3, black indicating

high variability in mean F3, consistent with coloration of Fig. 1). Each gray line connects one listener’s SCEs in both variability conditions.
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experiment 1. The full model results are available in supple-

mentary Table VI.1

C. Discussion

Variability in the mean F3 frequency of context senten-

ces did not alter SCE magnitudes in vowel categorization.

This was the same pattern of results observed in experiment

1. Statistical analyses indicated that neither SCEs nor their

relationship with acoustic variability in the context senten-

ces differed across experiments. Thus, neither the variability

in mean F1 frequencies of context sentences (experiment 1)

nor in mean F3 frequencies of context sentences (experiment

2) systematically altered SCE magnitudes in categorization

of the target vowels /I/-/E/.

The magnitudes of SCEs were the primary metric to

assess different perceptual impacts of variability in mean f0

versus variability in mean F3 on vowel categorization.

These different perceptual impacts were also evident in the

slopes of the psychometric functions, as assessed by target

� variability interactions in the mixed-effects models. This

interaction was significant in Assgari et al. (2019), indicat-

ing psychometric function slopes were shallower in the high

variability in mean f0 condition than the low variability in

mean f0 condition. This interaction was not significant in

experiment 2, indicating that variability in mean F3 did not

alter the slopes of the psychometric functions (Table II). In

the mixed-effects analysis of these two experiments reported

above, the target � variability � experiment interaction was

statistically significant (Z¼�2.592, p¼ 0.010), reinforcing

the different patterns of psychometric slopes as functions of

acoustic variability across experiments. These comparisons

follow the same patterns as when experiment 1 was being

compared to experiment 2 of Assgari et al. (2019). This

offers yet further support to the notion that not all sources of

acoustic variability in context sentences influence SCEs in

vowel categorization equally.

The results of experiment 2 are also in contradiction

with predictions made by the efficient coding hypothesis.

Despite there being very different amounts of variability in

mean F3 frequencies across the two testing blocks, SCE

magnitudes were unaffected. The broader implications of

these findings are discussed in the Sec. IV.

IV. GENERAL DISCUSSION

When spectral properties differ across earlier (context)

and later (target) sounds, speech categorization can become

biased through SCEs. Previous studies have reported mixed

results as to whether talker variability disrupts SCEs in

vowel categorization. When the talkers who spoke context

sentences were highly variable in their mean f0’s, SCEs

were diminished; when talkers varied in their mean F1 fre-

quencies, SCE magnitudes were unaffected (Assgari et al.,
2019). However, when testing effects of variability in mean

F1, Assgari et al. (2019) presented sentences that were origi-

nally selected based on measures of mean f0, underrepre-

senting the full range of F1 variability across different

talkers. Additionally, higher formants (such as F3) may con-

tribute differently to perception of speech sounds versus per-

ception of talker characteristics as compared to lower

formants (like F1), so variability in these different spectral

properties may have different impacts on (context effects in)

speech perception. Here, context sentences were selected

specifically based on mean F1 measures (experiment 1) or

mean F3 measures (experiment 2) to more broadly explore

perceptual sensitivity to acoustic variability in contexts

when categorizing subsequent vowel sounds. Across experi-

ments, SCEs occurred, but their magnitudes were unaffected

by the amount of variability in mean F1 or in mean F3 in the

context sentences. In conjunction with the findings of

Assgari et al. (2019), context effects appear to be sensitive

to acoustic variability in some aspects of talkers’ voices

(mean f0) but not others (mean F1, mean F3).

Recently heard sounds form a context for subsequent

perception. In many studies of talker adaptation, the talker

on a given trial forms a perceptual context for the stimulus

heard on the next trial. When the talker repeats on the next

trial (as in single-talker conditions), perception is facilitated

(faster and/or more accurate response). When the talker

changes on the next trial (as in mixed-talker conditions),

perception is challenged (slower and/or less accurate

response). From this perspective, studies of talker adaptation

and acoustic context effects (such as SCEs) share certain

similarities. Both measure perceptual sensitivity to context

(within and/or across trials) and can be challenged by talker

variability (especially regarding f0 characteristics as out-

lined in the Introduction). Talker variability has been shown

to impair speech perception in a wide variety of tasks,

including word identification (Mullennix et al., 1989), word

list recall (Goldinger et al., 1991; Martin et al., 1989), vowel

monitoring (Barreda, 2012; Magnuson and Nusbaum, 2007),

voice classification (Mullennix and Pisoni, 1990), lexical

tone categorization (Zhang and Chen, 2016), and categoriza-

tion of isolated phonemes (Assmann et al., 1982). Results

demonstrating that variability in the mean f0 of context sen-

tences diminishes SCEs in vowel categorization (Assgari

et al., 2019) are consistent with this literature. However, one

sizable difference between these tasks merits further discus-

sion. In most studies measuring perceptual sensitivity to

talker variability, target stimuli comprise all of the sounds

listeners hear in the task. In this arrangement, talker vari-

ability directly impacts perception because the (target) stim-

uli are spoken by the same talker or different talkers. In

acoustic context effect studies such as the present experi-

ment [as well as Assgari and Stilp (2015) and Assgari et al.
(2019)], context stimuli might be spoken by different talk-

ers, but a single set of target stimuli spoken by one talker is

presented. Put another way, talker variability exists in the

context stimuli but not in the target stimuli. Categorization

of the target sounds does not require any attention or

response to the context stimuli, yet their acoustic character-

istics (spectral properties that elicit SCEs and variability in

mean f0 that diminishes the magnitudes of SCEs) are still

perceptually influential. Thus, the impact of talker variability

J. Acoust. Soc. Am. 152 (1), July 2022 Mills et al. 63

https://doi.org/10.1121/10.0011920

https://doi.org/10.1121/10.0011920


on speech perception is broad, as variability entirely within

the target stimuli (as in many talker adaptation paradigms) or

beyond the target stimuli (in the context stimuli, as in the

present experimental paradigm) can incur processing costs

that challenge performance.

Both f0 and formant frequencies vary considerably

from talker to talker (Hillenbrand et al., 1995; Peterson and

Barney, 1952) and play important roles in distinguishing

talkers’ voices and/or sexes, but their relative contributions

are still debated. In studies that manipulated both f0 and for-

mant frequencies, some have suggested that f0 is more influ-

ential for talker identification (Compton, 1963; Walden

et al., 1978; Hillenbrand and Clark, 2009; Baumann and

Belin, 2010). For example, Compton (1963) reported that

talker identification was substantially reduced when high-

pass filtering vowels at a cutoff frequency of 1020 Hz, but

low-pass filtering vowels at that same cutoff frequency had

no effect on performance. Hillenbrand and Clark (2009)

reported that shifting both f0 and formants up to higher fre-

quencies was effective for changing perceived talker sex

from male to female (and vice versa), but shifting only f0

was more effective than shifting only formants. However,

other studies have suggested that formant frequencies are

more influential than f0 for talker discrimination (Coleman,

1971; Childers and Wu, 1991; Bachorowski and Owren,

1999; Lavner et al., 2000). For example, Childers and Wu

(1991) reported slightly higher accuracies for distinguishing

talker gender using formant frequencies compared to using

f0. Bachorowski and Owren (1999) analyzed 2500 tokens of

/E/ from naturally produced speech by 125 talkers.

Classification of talkers by discriminant analyses depended

primarily on acoustic properties affiliated with vocal tract

filtering (i.e., formant frequencies). Still other studies con-

cluded that f0 and formant frequencies were roughly equally

influential (LaRiviere, 1975; Smith and Patterson, 2005;

Assmann et al., 2006). Finally, Van Lancker et al. (1985)

posited that no single signal property is expected to be criti-

cal for identifying all voices. Consensus about whether f0 or

formant frequencies are more important (or equally impor-

tant) in these tasks may be lacking. However, perception of

talker identity and perception of talker sex are very different

tasks; context effects in speech sound categorization are

different further still. It is quite possible that whether f0 or

formant frequencies are more perceptually influential is sen-

sitive to the type(s) of variability present, the degree(s) of

variability tested, the task, and perhaps also the stimuli;

these considerations merit focused attention for research

going forward.

Predictions drew on the efficient coding hypothesis

(Attneave, 1954; Barlow, 1961), where structure in the sen-

sory environment is predicted to facilitate perceptual perfor-

mance, whereas the lack of structure is predicted to

challenge performance. Specifically, SCE magnitudes were

predicted to be larger in conditions where acoustic variabil-

ity was low/where stimulus structure was higher (low vari-

ability in mean F1, low variability in mean F3) than in

conditions where acoustic variability was high/where

stimulus structure was lower (high variability in mean F1,

high variability in mean F3). These predictions were moti-

vated by previous findings that SCE magnitudes were larger

when context sentences exhibited low variability in mean f0

compared to when they exhibited higher variability in mean

f0 (Assgari and Stilp, 2015; Assgari et al., 2019) as well as

faster response times in speeded word identification as f0

variability decreased/stimulus structure increased (fastest

to single-talker stimuli, slower to mixed talkers with low f0

variability, slowest to mixed talkers with high f0 variability;

Stilp and Theodore, 2020). However, the present results do

not conform to the predictions of efficient coding: variability

in mean F1 (experiment 1) or mean F3 (experiment 2) dif-

fered across testing blocks, but variability in mean f0 (which

does modulate SCE magnitudes) was matched across blocks

in each experiment. If perceptually salient structure in the

acoustic environment (context talkers’ mean f0’s) is held

constant, perception can be expected to operate similarly in

those cases. If structure exists but it is not relevant for the

task at hand (context talkers’ mean F1s or mean F3s), per-

ception might not be expected to capitalize on it. Because

experiments are often designed to measure the effects of rel-

evant structure on perception and not irrelevant structure, it

is possible that the efficient coding literature generally por-

trays the case that perception readily exploits all available

stimulus structure. The present results question that notion,

as structure was clearly present in the context sentences, but

it did not affect subsequent vowel categorization. This pat-

tern is analogous to word recognition and memory studies

conducted by Pisoni and colleagues (Sommers et al., 1994;

Nygaard et al., 1995; Bradlow et al., 1999), in which varia-

tion in talkers’ speaking rates impaired listeners’ perfor-

mance, but variation in amplitude did not. While they

conclude that not all sources of variability in the speech sig-

nal reduce perceptual performance, Sommers et al. (1994)

expressly note that “comparing the perceptual consequences

of variations along different stimulus dimensions must be

interpreted with caution” (p. 1321) owing to potential differ-

ences in perceptual saliency, ranges of variability tested,

and other methodological concerns. Future research should

more carefully distinguish between perceptually relevant

structure (in a given task) from perceptually irrelevant struc-

ture to highlight when and how perception leverages this

information to make processing efficient. Such investiga-

tions will clarify the utility of the efficient coding perspec-

tives of speech perception going forward.

The question as to why this particular pattern of results

was observed is an open one. The f0 of a talker’s voice sets

the resolution (spacing) of harmonics. While this has long

been a consideration for the resolution with which formant

peaks are specified (Fant, 1970), it also impacts the resolu-

tion of þ5-dB spectral peaks added to the context sentences

to produce SCEs. When mean f0 is relatively consistent

from trial to trial, the harmonic resolution of the spectral

peak in the low-F1 (100–400 Hz) or high-F1 (550–850 Hz)

region is relatively consistent as well. When mean f0 is

highly variable from trial to trial, the resolution of these
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spectral peaks can vary considerably, from a more precise

definition (multiple harmonics, as produced by a talker with

a lower f0) to a much sparser definition (a single harmonic,

as produced by a talker with a high f0). This variability in

spectral peak resolution and/or the effectiveness of a

sparsely defined spectral peak in producing an SCE might

underlie the results of Assgari et al. (2019). Conversely, var-

iation in mean F1 or mean F3 frequencies of context senten-

ces would not affect the resolution of the spectral peaks

added to low-F1 or high-F1 regions by filtering. Resolution

in those regions is driven by f0, but in the present experi-

ments, variability in mean f0 was matched across these con-

ditions. Additionally, several reports indicate that variability

in talkers’ f0 characteristics challenges perception

(Goldinger, 1996; Magnuson and Nusbaum, 2007; Stilp and

Theodore, 2020), but comparable tests of the perceptual

impact of variability in mean F1 or mean F3 in other tasks

are lacking. Variability in the formant frequencies of target

words is sufficient to slow recognition (when variability in

f0 is matched across blocks), but these processing costs are

smaller than when f0 variability is also present (Drown and

Theodore, 2020). Targeted experimentation is needed to elu-

cidate the mechanisms underlying these effects of f0 vari-

ability and the generalizability of this pattern of results

(greater perceptual consequences for f0 variability than

formant variability) to other tasks.
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