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Abstract: While all languages differentiate speech sounds by manner
of articulation, none of the acoustic correlates proposed to date seem to
account for how these contrasts are encoded in the speech signal. The
present study describes power spectral entropy (PSE), which quantifies
the amount of potential information conveyed in the power spectrum of
a given sound. Results of acoustic analyses of speech samples extracted
from the Texas Instruments—Massachusetts Institute of Technology
database reveal a statistically significant correspondence between PSE
and American English major classes of manner of articulation. Thus,
PSE accurately captures an acoustic correlate of manner of articulation
in American English.
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1. Introduction

In speech science, manner of articulation typically refers to the type of aerodynamic
obstruction imposed in the vocal tract to the airstream initiated at the trachea during
the act of speaking (Catford, 1977; Ladefoged and Johnson, 2014; Hewlett and Beck,
2013). The ability to produce and distinguish speech sounds by their manner of articu-
lation plays an active role in everyday speech communication, and all known lan-
guages in the world contain speech contrasts based on this feature (Ladefoged and
Maddieson, 1998). Although all speech sounds can be grouped in several major classes
with respect to their manner of articulation (e.g., in American English: vowels, approx-
imants, nasals, fricatives, affricates, and stops), a definitive acoustic correlate of this
feature has been very elusive. As a consequence, manner of articulation is typically
described as a combination of multiple acoustic attributes, such as segmental duration,
signal amplitude, or the frequency of specific acoustic resonances (i.e., formants). In
isolation, none of these acoustic attributes seems to capture the difference between
major classes of manner of articulation. For instance, although intensity tends to
increase for sonorant sounds, nasals (which are sonorant) are not always produced
with higher intensity than fricatives (which are not sonorant) (e.g., Fletcher, 1953).
Despite this, listeners seem to be able to rely on qualitatively different acoustic proper-
ties to decode manner of articulation depending on the phonetic quality of the speech
contrast.
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In the present study we introduce an information-theoretic characterization of
manner that does not focus on the identification of local acoustic properties in the
spectrum but on the overall distribution of spectral power. Specifically, it is hypothe-
sized that speech production leaves a manner-specific trace in the distribution of spec-
tral power along the decibel range that can be appropriately quantified by the
Shannon entropy formula (Shannon, 1949).

The formula for Shannon entropy [Eq. (1)] estimates the average number of
bits of information required to efficiently code the outcome of a source of potential
events S={s;,...,s,,;} based on their probability of occurrence P = {p(s)),..., (s}
Typically, the higher the entropy, the more bits are required on average to code the
event. Also, when entropy is high, the outcome of the source is more uncertain because
is not biased toward any particular event. Thus, Shannon entropy maximizes when the
outcome is uniformly distributed, or dispersed, across all the potential events (i.e., all
events are equally likely and thus equally informative)

H(P) = — > pls) log, {pls)}. M
i=1

We quantified the entropy of the distribution of power along the decibel range,
as it was provided by the discrete Fourier transform (DFT) of different English
sounds. Average entropy across sounds sharing the same manner of articulation was
then used to index the amount of information, in bits, of the corresponding class. This
approach was motivated by the way in which spectral power seems to be distributed
along the decibel range as a function of manner of articulation.

This distributional pattern is illustrated in Fig. 1, which contrasts the distribu-
tion of spectral power of English sounds produced with a different manner: stop [b],
fricative [[], approximant [1], and vowel [ae]. In Fig. 1, the distribution of spectral
power along the decibel range becomes more uniform (higher entropy) as the overall
degree of spectral prominence gradually increases from stop [b] to vowel [ae]. Here,
spectral prominence refers to degree of resistance, or loss, of the acoustic system
defined by the vocal tract configuration characteristic of the sound class (Clements,
2009). Sounds with a low degree of resistance (e.g., vowels) are characterized by a slow
decay of formant oscillation, which is manifested in the spectrum as a reduction in for-
mant bandwidth and an increment in spectral kurtosis (i.e., more sharply peaked for-
mants). On the contrary, sounds with a high degree of resistance (e.g., stop conso-
nants) are characterized by a faster decay of formant oscillation that increases formant
bandwidth and leads to a flatter spectrum and a lower spectral kurtosis. This relation-
ship between manner of articulation, spectral prominence, and the distribution of
power along the decibel range motivated the usage of the Shannon entropy formula
that is described in Sec. 2.
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Fig. 1. (Color online) Relationship between spectral power distribution and manner of articulation. DFT spec-
trums of four 25-ms windows centered at the mid-time point of four corresponding English sounds gradually
increasing in spectral prominence, from the leftmost to the rightmost panel: [b] (stop), [[] (fricative), [1] (approx-
imant), and [ae] (vowel). A re-scaled 60-bin histogram of spectral power computed in decibels is projected along
the y axis of each panel. Histograms are used to visualize the distribution of power in the DFT spectrum, which
becomes gradually more uniform (or less peaky) from the leftmost to the rightmost panel, thus increasing the
entropy of the corresponding distribution.
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2. Methods
2.1 Power spectral entropy ( PSE)

PSE [Eq. (2)] was estimated as follows. Let S= {dB;, dB,,} be a partition of the range
of decibels of a DFT spectrum with N points of frequency resolution, where dB; is the
number of frequencies with a decibel value falling within the interval I;=(dB; — e,
dB;+¢), for an arbitrary ¢. Next, S was converted into a probability distribution func-
tion of power P= {p(dB,),..., p(dB,,)}, in which p(dB,)=dB,/N denotes the probability
of having a frequency with a decibel value falling within the interval /;, PSE was then
computed by submitting P to the Shannon information formula [Eq. (1)]. Following
this method, PSE maximizes when power is uniformly distributed across all the inter-
vals I={1,..., I,,}

H(P) =~ 3" p(dB) log, (p(dB)}. @

i=1

Equation (2) was inspired by previous applications of information theory to the
analysis of speech production and processing (Lufti, 1992; Rallapalli and Alexander,
2015; Stilp and Kluender, 2010). However, PSE was designed to quantify the entropy
of the distribution of spectral power in the decibel—not the frequency—domain. From
this perspective, speech sounds in which spectral power tends to concentrate around the
same decibel values in the spectrum (i.e., sounds that are spectrally less prominent, such
as stop and fricative consonants) are expected to have a lower degree of PSE. This
means that the encoding of power in these sounds requires a lower number of bits of
information because its outcome in decibels is more predictable and thus less informa-
tive. For example, white noise has a relatively flat spectrum, but a concentration of
spectral power over a narrow range, resulting in very low entropy.

PSE increases in proportion to the number of intervals needed to cover the
range of spectral decibels characteristic of the sound. Since the width of this range
may vary according to factors (e.g., signal amplitude or the vocal tract physiology of
the talker) that are not directly related to the distribution of spectral power within that
range, the constant ¢ that determines the width of each interval I;=(dB; — ¢, dB;+¢)
was systematically modified for each DFT spectrum to achieve a total of 60 intervals
or bins. This adjustment allowed us to minimize changes in PSE due to factors extrin-
sic to the distribution of spectral power that is characteristic of each sound. This
number of bins approximated quite well the average range of decibels covered by the
spectrum of all sounds included in the Texas Instruments—Massachusetts Institute of
Technology (TIMIT) database, which was approximately 60 dB. Preliminary analyses
using a different number of intervals (e.g., 30 and 15 intervals) revealed no substantial
differences in terms of relative PSE across sounds.

2.2 Speech samples

Speech sounds were extracted from the TIMIT database. It contains a total of 6300
sentences recorded from 630 speakers from eight major dialects of American English
(New England, Northern, North Midland, South Midland, Southern, New York City,
Western, and Army Brat). Recordings were digitalized at 16kHz. Text materials
prompted to speakers consisted of two dialect sentences, 450 phonetically compact sen-
tences, and 1890 phonetically diverse sentences. Each speaker read the two dialect sen-
tences, five phonetically compact sentences, and three phonetically diverse sentences
(Garofolo et al., 1993; Zue et al., 1990). The sets of sentences read by each talker was
designed to maximize the number of different sentences read across talkers. All senten-
ces were phonetically labeled by expert phoneticians.

Table 1 shows the 58 speech sounds that were included in the study, arranged
into the six major natural classes proposed in the documentation of the TIMIT data-
base. These classes were vowel, approximant, nasal, fricative, affricate, and stop. This
selection of classes provides a feasible ranking of manner for American English, with
natural classes gradually decreasing in terms of the average expected degree of spectral
prominence (cf. Clements, 2009). Also, these classes are common in broad classifica-
tions of manner proposed for American English (e.g., Ladefoged and Johnson, 2014;
Catford, 1977).

Following the phonetic criterion of the TIMIT database (cf. Garofolo et al.,
1993), English flaps were grouped with either stops ([r], as in dirty) or nasals ([r], as in
winner) depending on whether they presented or not a nasal closure. Similarly, glottal
fricatives [h] (as in /ey) and [fA] (as in ahead) were placed into the approximant class
because of their type of oral constriction, which is wide enough as to avoid the noise
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Table 1. Speech sounds included in the analysis.
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characteristic of fricatives and thus generate approximant-like spectral resonances. For
similar reasons, no major distinctions were made between lateral and central approx-
imants, which tend to exhibit a similar degree of spectral prominence (Clements,
2009). Analyses of PSE covered a total of 189,354 speech tokens.

2.3 Acoustic measurements

Every speech token was split into a series of 20-ms consecutive time frames, with 50%
overlap at the 16-kHz sampling rate. This particular selection of frame length and
overlap was chosen so that spectral changes over time could be adequately defined for
most speech sounds. For example, vowel formants may systematically vary over the
course of time (Hillenbrand and Nearey, 1999). Similarly, both stop and affricate con-
sonants tend to exhibit rapid spectral changes before and after the consonant release
that may not be captured by the standard long-term Fourier analysis. Therefore, the
use of a short-term DFT analysis allowed us to incorporate part of the variation of
PSE across frames into the analysis.

PSE was estimated from the DFT spectrum of each time frame as specified by
Eq. (2). The frequency resolution of the DFT was set to the next power of 2 (512
points) after the frame length (320 points). Power spectral entropy for each token was
computed as the average entropy across all time frames within the token.

3. Analysis and results

Values of PSE (bits of information) for each token were submitted to a mixed-effects
linear regression model with manner class as the predictor variable (coded categorically
with six levels for the six phonetic manner classes) and entropy measures as the depen-
dent variable. The model included a random effect of talker, with random intercepts
for different talkers in the TIMIT database. Degrees of freedom and p-values were esti-
mated using the Satterthwaite approximation (ImerTest package in R). However, this
model structure only tests for differences between each manner class and one class des-
ignated as the default level (here, stops). While large differences in entropy were
expected to be statistically significant, differences between manner classes with neigh-
boring values of entropy were of primary interest. These pairwise contrasts were con-
ducted using the multcomp package in R. Mean entropy measures significantly differed
between stops and affricates (Wald test: Z=1391.37), affricates and fricatives
(Z=17.91), fricatives and nasals (Z=22.47), nasals and approximants (Z =28.95), and
approximants and vowels (Z=70.88; all p <2 x 10~ !¢, Bonferroni-corrected for multi-
ple comparisons). Therefore, manner classes were ranked as follows, from higher to
lower mean PSE: vowel > approximant > nasal > fricative > affricate > stop. Table 2
provides the mean number of bits, standard deviation, and number of tokens for each
major class.

In addition to the analysis of PSE for each major class, PSE was also esti-
mated for each individual speech sound included in the analysis (Table 1). This com-
plementary analysis allowed a more detailed exploration of PSE within each major
class. For instance, some finer classifications of manner in English distinguish between
lateral approximants (e.g., [] in lateral) and central approximants (e.g., [1] in raw, and
[j] in yes) (Ladefoged and Johnson, 2014). Table 3 shows all the speech sounds
included in Table 1 ranked by PSE.
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Table 2. Descriptive statistics of power spectral entropy (in bits of information) for each class of speech sounds.
Number of tokens refers to how many speech sounds from each class were included in the analyses.

Natural Class Mean Standard Deviation Number of Tokens
Vowel 5.32 0.11 78070
Approximant 5.23 0.14 27742
Nasal 5.22 0.15 18748
Fricative 5.19 0.14 2840
Affricate 5.13 0.11 2662
Stop 5.08 0.17 33731

4. Discussion

This study revealed the existence of a significant statistical correspondence between
power spectral entropy (PSE) and the six major classes of manner of articulation in
American English. This correspondence suggests that PSE could be a suitable correlate
of manner of articulation. In particular, PSE gradually decreased from vowels to stop
consonants according to the following ranking: vowel > approximant > nasal
> fricative > affricate > stop. This ranking can be interpreted as follows. As the degree
of spectral prominence gradually increased from stop consonants to vowels the distri-
bution of power in the spectrum became more uniformly distributed across the decibel
range, thus raising the overall level of PSE of the corresponding class. From an
information-theoretic perspective, vowels (highest entropy) could be considered more
informative than consonants, in that the efficient encoding of their power spectral den-
sity would require more bits of information than for consonants.

The ranking of major classes predicted reasonably well the pattern of phono-
tactic variation of speech sounds within the syllable. According to this pattern, the
position of nucleus is typically occupied by vowels, followed by approximants and
nasals. On the contrary, the margins of the syllable tend to be occupied by stops, affri-
cates and fricatives (for a detailed review of this topic see Blevins, 2003; Kawasaki-
Fukumory and Ohala, 1997; Parker, 2008). Our results suggest that the structure of
the syllable in English could be broadly outlined as a fluctuation of information from
the nucleus (higher entropy) to the syllable boundaries (lower entropy). This is illus-
trated in Fig. 2, which shows the fluctuation of PSE across different syllables within
the same English sentence.

Interestingly, the difference between the nasal and approximant class in terms
of PSE was considerably smaller than the one between any other two classes. This sug-
gests that the degree of spectral prominence in nasals and approximants might be quite
similar. In fact, in the ranking of speech sounds (Table 3), some nasals (nasal flap [f]
and syllabic nasals [J] and [m]) ranked higher than many approximants, although these
reversals in individual speech sounds did not have a strong impact on the ranking of
major classes.

Two other interesting reversals in our data were (1) back vowels ([u], [2], [0])
and labial consonants ([w], [v], [f]), which ranked lower than their phonetic peers in the

Table 3. Ranking of speech sounds by power spectral entropy.

Rank Sound Entropy Rank Sound Entropy Rank Sound Entropy Rank Sound Entropy

1 ® 5.376 14 0 5.308 27 n 5.236 40 tf 5.158
2 al 5.371 15 o1 5.307 28 m 5.233 41 & 5.125
3 av 5.361 16 o 5.301 29 1 5.228 42 w 5.123
4 e 5.358 17 j 5.300 30 m 5.226 43 k 5.110
5 e 5.353 18 fi 5.282 31 i} 5.225 44 0 5.100
6 A 5.350 19 3 5.281 32 n 5.219 45 v 5.089
7 1 5.336 20 h 5.279 33 r 5.217 46 g 5.082
8 a 5.333 21 Ea 5.263 34 n 5.216 47 f 5.081
9 i 5.329 22 u 5.261 35 3 5.214 48 0 5.080
10 i 5.323 23 s 5.259 36 9 5.210 49 t 5.080
11 u 5.318 24 1 5.259 37 1) 5.206 50 d 5.011
12 r 5.317 25 b 5.254 38 1 5.197 51 P 5.000
13 9 5.309 26 z 5.250 39 ? 5.193 52 b 4.887
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Fig. 2. (Color online) Information-theoretic encoding of syllable phonotactics. Spectrogram of the English
utterance: she had your dark suit in greasy wash water all year, extracted from the TIMIT database, with syllable
boundaries (dark circles) and fluctuations of power spectral entropy over time (black curve).

vowel and fricative class, and (2) grooved sibilants ([s], [z]), which ranked higher than
their phonetic peers in the fricative class. Again, none of these reversals seemed to
have a strong impact in the ranking of major classes. However, they may inform about
specific articulatory gestures that could contribute to amount of variation in PSE
within each natural class. For example, in the case of back vowels and labial conso-
nants, the decay of PSE could be related to the gesture of labialization involved in the
articulation of these sounds (back vowels tend to be labialized, or rounded, in English;
Diehl, 2008; Flemming, 2004). With respect to the grooved sibilants ([s], [z]), their
greater amount of PSE could be a consequence of how the back of the tongue is
curved in the production of these consonants (Fletcher and Newman, 1991), creating a
greater aerodynamic channel that could be responsible for the increment of entropy.
Similarly, the ranking of individual sounds suggests that voiceless sounds (e.g., [p], [t],
[k]) tend to rank higher in entropy than their voiced counterparts (e.g., [b], [d], [g]).
The real contribution of these articulatory gestures related to the degree of vocal stric-
ture is difficult to estimate from the results of the present study, which are informed by
acoustic analysis. Similarly, although each of the English central approximants [j] and
[1] ranked significantly higher in PSE than the English lateral approximant [I]
(» <0.05), it is difficult to estimate the exact contribution of the articulatory gestures
involved in the production of this contrast.

Another aspect that would be worthwhile to explore in future research is
whether the general ranking of manner classes reported for American English can be
extrapolated to other languages. Although manner of articulation is sometimes
described in terms of cross-linguistically invariant phonological features (e.g., [continu-
ant], [syllabic]; Clements, 1985), the acoustic relationship between phonetic and phono-
logical features is rarely one-to-one, and languages may rely on different phonetic
properties to encode the same phonological contrast. Furthermore, although the
American English speech-sound inventory is phonetically quite rich, it lacks several
speech sounds and manners of articulation that could not be examined in the present
study, such as trills (e.g., [r]) or retroflex consonants (e.g., [d]). Similarly, the number
and type of speech sounds included in each major class of manner may vary across
languages and authors, and these are factors that might give rise to several types of
cross-linguistic differences in terms of PSE.
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