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The perception of any given sound is influenced by surrounding sounds. When successive sounds

differ in their spectral compositions, these differences may be perceptually magnified, resulting in

spectral contrast effects (SCEs). For example, listeners are more likely to perceive /I/ (low F1) fol-

lowing sentences with higher F1 frequencies; listeners are also more likely to perceive /E/ (high F1)

following sentences with lower F1 frequencies. Previous research showed that SCEs for vowel cate-

gorization were attenuated when sentence contexts were spoken by different talkers [Assgari and

Stilp. (2015). J. Acoust. Soc. Am. 138(5), 3023–3032], but the locus of this diminished contextual

influence was not specified. Here, three experiments examined implications of variable talker

acoustics for SCEs in the categorization of /I/ and /E/. The results showed that SCEs were smaller

when the mean fundamental frequency (f0) of context sentences was highly variable across talkers

compared to when mean f0 was more consistent, even when talker gender was held constant. In

contrast, SCE magnitudes were not influenced by variability in mean F1. These findings suggest

that talker variability attenuates SCEs due to diminished consistency of f0 as a contextual influence.

Connections between these results and talker normalization are considered.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5093638

[SHF] Pages: 1443–1454

I. INTRODUCTION

It has been established that when a listener hears differ-

ent talkers, speech perception is slower and/or less accurate

than when hearing speech from a single talker (e.g.,

Creelman, 1957; Fourcin, 1968; Assmann et al., 1982;

Geiselman and Bellezza, 1976; Mullenix et al., 1989;

Mullenix and Pisoni, 1990; Choi et al., 2018). This general

finding has been demonstrated in a variety of tasks includ-

ing: recall of word lists (e.g., Goldinger et al., 1991), word

identification (e.g., Ryalls and Pisoni, 1997), vowel monitor-

ing (e.g., Magnuson and Nusbaum, 2007), word monitoring

(e.g., Magnuson and Nusbaum, 2007), consonant perception

(e.g., Rand, 1971), and vowel perception (e.g., Assmann

et al., 1982). The decrease in accuracy and/or slower

response times in different-talker compared to same-talker

conditions have been attributed to the listener having to

adjust to hearing a new talker on subsequent trials (e.g.,

Mullennix et al., 1989). This effect has been referred to as

talker normalization (e.g., Choi et al., 2018), and we adopt

the same terminology here.

Hearing different talkers influences speech perception,

but precisely what it is about hearing different talkers that

gives rise to slower and/or less accurate perception is not

entirely clear. Several key differences exist between talkers

including acoustic differences that are related to speech

production. Speech production occurs through two related

yet separate components: the source (related to fundamental

frequency, or f0) and the filter (related to formants; Fant,

1973). Individuals’ different vocal folds and vocal tracts

lead to different combinations of f0 and formants across talk-

ers, even when they are producing the same phonological

content. While this combination varies for each individual,

some general differences exist between men and women

related to f0 (e.g., Peterson and Barney, 1952). In general,

men have larger vocal folds that vibrate more slowly (lead-

ing to lower f0) and longer vocal tracts with lower resonan-

ces (leading to lower formant frequencies). Women

generally have smaller vocal folds that vibrate more rapidly

(higher f0) and shorter vocal tracts with higher resonances.

While other differences exist between talkers, it is likely that

the differences in f0 and formants could be driving the listen-

er’s need to adjust when hearing a new talker.

Goldinger (1996) offered some insight into listeners’

sensitivity to low-level acoustic parameters that might distin-

guish talkers and thus guide talker normalization. In his first

experiment, participants labeled pairs of words as the same

or different. Every word pair was spoken by two different

talkers (representing all possible combinations of five male

and five female talkers), but listeners were instructed to

ignore talker identity when responding. A multidimensional

scaling analysis on response latencies to same-word trials

revealed that the perceptual dimensions of gender and rela-

tive pitch influenced these judgments. In his second experi-

ment, memory for spoken words was investigated as

functions of (same/different) voice, number of talkers, and
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study/test delay using stimuli from the scaling experiment.

Different-voice trials tested both same-gender and different-

gender talkers. Recognition and identification performance

were each negatively correlated with intervoice distances in

the scaling study. Put another way, when listeners heard

words spoken by different talkers with similar voices

(defined in large part by f0), recall was more accurate than

when the words were spoken by different talkers with more

dissimilar voices (Goldinger, 1996).

These results illustrate two important findings. First,

fine-grained acoustic differences between talkers influence

talker normalization. In many studies of talker normaliza-

tion, the specific acoustic characteristics of the talkers are

not explicitly reported (e.g., Creelman, 1957; Assmann

et al., 1982; Mullenix et al., 1989; Mullenix and Pisoni,

1990; Choi et al., 2018), though it is common for both male

and female talkers to be used to create the different-talker

conditions, likely resulting in large acoustic differences

between talkers. Goldinger (1996) related the acoustic differ-

ences between talkers to the size of the talker normalization

effect: as acoustic differences across talkers increased, reac-

tion time increased and recall accuracy decreased. Second,

they suggest that talker normalization may not occur every

time a talker changes, but rather only when the acoustic dif-

ferences across talkers are sufficiently large. Given that

many talker normalization studies have not included detailed

acoustic measurements of the talkers’ voices, or analyses

that link the magnitude of talker normalization to acoustic

measurements of talkers’ voices, a prevailing view is that

talker normalization occurs with every change in talker.

Recently, Choi and colleagues (2018) suggested that talker

normalization is an obligatory aspect of speech processing.

However, this study used male and female talkers (without

reporting any measures of talker acoustics), so acoustic dif-

ferences between the selected talkers are likely to be large.

In contrast, Goldinger’s (1996) findings suggest that talker

normalization may be highly influenced by the acoustic dif-

ferences between talkers, particularly with regard to differ-

ences in f0. In other words, talker normalization might only

be obligatory to the degree that the acoustic input (particu-

larly in terms of f0) is sufficient to cue a change in talker (or

to which contextual knowledge influences listeners’ expecta-

tions for multiple talkers; see Magnuson and Nusbaum,

2007).

In addition to talker information, spectral characteristics

of earlier sounds also create a context for speech perception.

Speech may possess spectral properties that are relatively

stable or recurring over time. When these spectral properties

change from a preceding context to a target sound, the

change is perceptually magnified, which biases the percep-

tion of the target sound. The resulting perceptual bias is

referred to as a spectral contrast effect (SCE). In speech per-

ception, SCEs are often measured as a shift in categorization

of a target phoneme following contexts with different spec-

tral properties. In their seminal paper, Ladefoged and

Broadbent (1957) observed that perception of a vowel sound

could be changed based on the spectra of preceding senten-

ces. When the first formant (F1) of the preceding sentence

was shifted down toward lower frequencies, the target vowel

was perceived as the higher-F1 /e/ more often. When the F1

of the preceding sentence was shifted up, the target vowel

was perceived as the lower-F1 /I/ more often.

Ladefoged and Broadbent (1957) originally interpreted

these results as a means for adjusting to differences between

talkers. They suggested that if a listener learned the overall

quality of a talker’s speech, then that information could

facilitate recognition of subsequent speech sounds from that

talker. This interpretation was broadly consistent with later

research on talker normalization. However, subsequent

research with SCEs suggested that these effects might not be

about talkers per se but rather stable spectral characteristics

of the context (Huang and Holt, 2012). This suggestion

gained support due to the pervasiveness of SCEs in speech

and non-speech perception. Speech (e.g., Watkins, 1991;

Watkins and Makin, 1994; Sjerps et al., 2011, 2018; Stilp

et al., 2015; Assgari and Stilp, 2015; Stilp and Assgari,

2017, 2018, 2019) and non-speech contexts (e.g., Watkins,

1991; Holt, 2005, 2006) have been shown to bias categoriza-

tion of speech targets; moreover, speech and non-speech

contexts can also bias categorization of non-speech targets

(Stilp et al., 2010; Frazier et al., 2019).

The original interpretation that SCEs were a means to

adjust for talker differences was not directly tested for quite

some time. To address this question, Laing et al. (2012) took

a single sentence and amplified different regions of F1 or F3

to induce the perception of different talkers. This manipula-

tion created pairs of talkers that differed in specific fre-

quency regions. Listeners were able to discriminate the pairs

of talkers when asked if they were different “voices.” Laing

et al. (2012) predicted that if SCEs are due to the long-term

average spectrum of speech in the frequency region that dif-

ferentiated the targets, then only the pairs of stimuli that dif-

fer in that region would produce SCEs. However, if SCEs

are a general means for compensating for different talkers,

then both pairs of stimuli should produce contrast effects.

Following the context sentence, participants identified con-

sonant sounds varying from /da/ to /ga/, which are primarily

differentiated by F3 transitions. SCEs were observed follow-

ing F3-manipulated contexts but not F1-manipulated con-

texts. These results were replicated using sine tone contexts,

leading the authors to suggest that talker information does

not play a role in SCEs. However, adding a spectral peak to

different frequency regions of a single sentence from a single

talker fails to reflect the considerable acoustic differences

that can exist between talkers. Notably, this method did not

manipulate f0. It is known that f0 is a primary cue to talker

identity (e.g., Hillenbrand and Clark, 2009), and perceptual

consequences of talker variability are diminished between

talkers who have similar f0s, even when their voices are dis-

criminable on other acoustic parameters (e.g., Goldinger,

1996). Thus, the lack of a talker effect in Laing et al. (2012)

may reflect the lack of f0 cuing changes in talker identity.

To model the acoustic differences of different talkers

more explicitly, Assgari and Stilp (2015) measured contrast

effects after speech from 200 different talkers, each speaking

a different context sentence, with f0 freely varying across

talkers. This method provided rich sources of acoustic infor-

mation to cue talker variability. Two other conditions were
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also tested: a single talker producing one sentence (presented

200 times) and a single talker producing 200 different sen-

tences. Sentences were manipulated by amplifying either

low-F1 (100–400 Hz) or high-F1 (550–850 Hz) frequency

regions by 5 dB. Listeners were asked to report whether they

heard the following target vowel as /I/ (low F1) or /e/ (high

F1). The 200-talker condition produced smaller SCEs than

both of the single-talker conditions, which produced equiva-

lent SCEs. Thus, SCEs were sensitive to differences between

talkers. This finding was later supported by Assgari (2018),

who utilized one set of acoustically variable talkers but

manipulated the order of stimulus presentation. When trials

were organized so that sentence mean f0 increased monoton-

ically throughout the block, SCEs were observed (with

equivalent results when mean f0 decreased monotonically in

a separate block). When the same sentences were presented

in random orders across trials, creating high trial-by-trial

variation in sentence mean f0, no SCE was observed.

Together, these results suggest that talker variability, partic-

ularly in terms of f0 information, influences SCEs in speech

categorization.

While talker variability appeared to restrict the magni-

tudes of context effects in Assgari and Stilp (2015), the

exact cause of this effect was unclear because the context

sentences were chosen independently of f0 characteristics

and talker gender, both of which freely varied. Post hoc
analyses offered some evidence that vowel targets were

categorized similarly (i.e., not influenced by context) when

context sentences exhibited large f0 variability, and that

vowels were categorized differently (i.e., biased by con-

text) when context sentences had more consistent f0s.

While f0 variability may be restricting the influence of

context on perception, f0 was not controlled during stimu-

lus selection or presentation. Further, effects of f0 variabil-

ity could not be separated from variability in talker gender

between the context sentence and target vowel (which was

always spoken by the same male talker). The results of

Assgari (2018) suggest that predictability might play a role

in the effects of talker variability, but hearing all male talk-

ers followed by all female talkers (when mean f0 was

arranged to increase throughout the block, or vice versa in

the descending-f0 block) was far more orderly than talker

gender being randomized in Assgari and Stilp (2015)’s

paradigm. In the previous literature, there are conflicting

reports as to how talker gender might influence SCEs.

Watkins (1991) found that talker gender had no influence

on SCEs, observing similar effects when the gender of the

talker producing the context and the target matched (i.e.,

male context and male target) or differed (i.e., female con-

text and male target). Lotto and Kluender (1998) also

observed SCEs for female contexts preceding male targets,

but these shifts were smaller than when talker gender

matched across context and target. Thus, while the gender

of the talker producing the context does not need to match

that of the target to observe a contrast effect, it might

affect the size of observed shift.1 It is important to note

that these studies all presented multiple renditions of a sin-

gle context stimulus throughout the experiment. This more

closely resembles the single talker, one sentence condition

of Assgari and Stilp (2015) than their 200 talker, 200 sen-

tences condition, so interpretations of the influence of

talker gender on SCEs should be made with caution.

The current experiments aimed to identify the locus of

the talker variability effect reported in Assgari and Stilp

(2015) by testing the relative influences of three sources of

talker variability. In experiment 1, the f0 variability of sen-

tence contexts was manipulated (low f0 variability vs high

f0 variability) and talker gender was blocked in each con-

dition. In experiment 2, f0 variability of sentence contexts

was again manipulated (low f0 variability vs high f0 vari-

ability) while intentionally mixing talker gender within

each variability condition. In experiment 3, another source

of low-level acoustic variability, F1, was manipulated to

form two variability conditions (low F1 variability vs high

F1 variability); gender was again mixed in each variability

condition. In all three experiments, SCEs were examined

for target vowels produced by a single male talker. If the

locus of the talker variability effect reported in Assgari

and Stilp (2015) reflects variability in f0, then diminished

SCEs will be observed in high-variability conditions com-

pared to the low-variability conditions in experiments 1

and 2. If the talker variability effect on SCEs also reflects

talker gender information, then SCEs should be attenuated

when the talker differs between context and target (female

talker conditions in experiment 1) and when talker gender

varies randomly within each block (experiments 2 and 3).

If the talker variability effect on SCEs reflects acoustic

variability in general, and not variability in f0 specifically,

then SCEs will also be diminished in the high-F1-variabil-

ity condition compared to the low-F1-variability condition

in experiment 3. Results from these studies strongly

imply that variability in the talkers’ fundamental frequen-

cies, not their gender nor their F1 frequencies, influences

the degree to which preceding spectral context biases speech

categorization.

II. EXPERIMENT 1

A. Methods

1. Participants

Twenty undergraduate students at the University of

Louisville participated in exchange for course credit. All

participants reported normal hearing and were native

English speakers.

2. Stimuli

a. Sentences. Context sentences were taken from the

Texas Instrument and Massachusetts Institute of Technology

speech corpus (TIMIT; Garofolo et al., 1990). Similar to

Assgari and Stilp (2015), only sentences with relatively

equal energy in the low F1 (100–400 Hz) and high F1

(550–850 Hz) regions (within 65 dB of each other) were

selected.

The mean f0 in each sentence was measured in Praat

(Boersma and Weenink, 2017). Unvoiced segments of sen-

tences were identified and removed prior to analyses. In rare

cases, f0 contours were hand edited to ensure continuity (i.e.,

J. Acoust. Soc. Am. 145 (3), March 2019 Assgari et al. 1445



removing spurious points that appeared highly unlikely to

reflect talker pitch, such as points 1þ octave away from

other pitch points). Mean f0 was calculated for each sen-

tence, then a distribution of mean f0 values was formed for

each talker gender. These distributions were used to create

two experimental conditions for each talker gender, one

with high f0 variability and one with low f0 variability

[Fig. 1(A)]. Forty sentences were selected from the tails of

each distribution for High Variability conditions (20 senten-

ces from each tail), and 40 sentences were selected from the

center of each distribution for Low Variability conditions.

Thus, for each gender condition, the overall average of sen-

tence mean f0 measures was well-matched across variability

conditions, but the standard deviations of sentence mean f0s

varied (see Table I). This method is distinct from that of

Holt (2006), who manipulated the spectral mean and vari-

ability of the context (sequences of sine tones). Here, means

and variability do not describe the spectral composition of

the context sentences but rather their mean f0 characteristics.

Talker gender and f0 variability were fully crossed to form

four groups (Table I). In each of these four conditions, sen-

tences were randomly assigned to have either the low F1 fre-

quency region (100–400 Hz) or the high F1 region

(550–850 Hz) amplified by 5 dB using a bandpass finite

impulse response filter with 1200 coefficients.

b. Vowels. Target vowels were a 10-step continuum of

vowels ranging from /I/ to /e/. These vowels were the same as

those used in previous SCE studies (Stilp et al., 2015; Assgari

and Stilp, 2015; Stilp and Alexander, 2016; Stilp and Assgari,

2018). Vowels were synthesized based on natural recordings

from a male talker. These speech samples were resynthesized

using Linear Predictive Coding in Praat (Boersma and

Weenink, 2017). The /I/ endpoint has an F1 that linearly

increased from 400 to 430 Hz while F2 linearly decreased

from 2000 to 1800 Hz. The /E/ endpoint has an F1 that linearly

decreased from 580 to 550 Hz while F2 linearly decreased

from 1800 to 1700 Hz. The vowel continuum was created by

FIG. 1. Histograms depicting sentence

stimuli in each condition in experiment

1 (A), experiment 2 (B), and experiment

3 (C). Stimuli were selected according to

measures of mean f0 [(A) and (B)] or

mean F1 (C). Plot titles denote talker

gender (Men, Women, Mixed) and vari-

ability condition (Low, High). As

described in the main text, Low and

High Variability histograms are comple-

mentary in that Low Variability stimuli

fall between the tails of the High

Variability stimuli for each gender in

experiment 1, and for the mixed gender

conditions in experiments 2 and 3.

TABLE I. Summary of experimental conditions (Assgari and Stilp represents experiment 2 in Assgari and Stilp, 2015). Measure indicates the acoustic measure

by which stimuli were sorted into high or low variability conditions. Gender indicates whether the gender of the talkers who spoke the context sentences was

blocked (Men, Women) or mixed. Means indicate the overall averages of sentence mean f0 or mean F1 measures in each experimental block, and SD conveys

the standard deviations of these measures. The magnitude of the SCE for each block is listed in the final column, calculated as the shift in 50% points (mea-

sured in number of stimulus steps) across low-F1-amplified and high-F1-amplified logistic functions (see Results sections for details of linear mixed-effects

models, and Sec. IV B for SCE calculation).

Mean f0 Mean F1

Experiment Measure Variability Gender Mean SD Mean SD SCE

1 f0 High Men 123.39 33.18 505.07 35.07 0.22

1 f0 High Women 199.84 33.27 563.11 48.28 0.18

1 f0 Low Men 121.29 9.16 504.10 28.32 0.54

1 f0 Low Women 203.89 9.17 545.30 44.62 0.36

2 f0 High Mixed 161.78 45.64 521.08 45.62 0.23

2 f0 Low Mixed 164.81 9.78 529.43 45.26 0.51

3 F1 High Mixed 168.27 31.12 527.13 62.42 0.44

3 F1 Low Mixed 158.33 34.12 523.37 16.16 0.38

Assgari and Stilp f0 High Mixed 148.31 42.94 538.42 54.63 0.28
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taking these endpoint vowels and linearly morphing their for-

mant tracks through a script in Praat (for more detail see

Winn and Litovsky, 2015). Final vowel stimuli were 246 ms

in duration with an f0 set to 100 Hz throughout the vowel.

All filtered sentences and target vowels were equated in

root-mean-square amplitude. Experimental trials consisted

of a filtered sentence followed by a 50-ms silent interstimu-

lus interval and then a target vowel. All stimuli were up-

sampled to 44 100 Hz.

3. Procedure

After obtaining informed consent, the listener was

seated in a sound-attenuating booth (Acoustic Systems, Inc.,

Austin, TX). Stimuli were D/A converted by RME HDSPe

AIO sound cards (Audio AG, Haimhausen, Germany) on

personal computers and passed through a programmable

attenuator (TDT PA4, Tucker-Davis Technologies, Alachua,

FL) and a headphone buffer (TDT HB6). Stimuli were pre-

sented over circumaural headphones (Beyerdynamic DT-

150, Beyerdynamic Inc. USA, Farmingdale, NY) at a mean

presentation level of 70 dB sound pressure level. A custom

script in MATLAB led the listener through the experiment,

which was self-paced. The listener clicked the mouse to

label the target vowel as “ih” as in “bit” or “eh” as in “bet.”

Listeners first completed a set of practice trials. These

trials consisted of 20 sentences from the AzBio corpus

(Spahr et al., 2012) paired with the endpoint vowels, as cate-

gorizing endpoints of the vowel continuum is objectively

correct or incorrect. If the listener failed to reach 80% accu-

racy on endpoint vowels after one block, s/he repeated the

practice trials up to two more times to reach 80% accuracy.

If after three blocks of practice trials s/he did not achieve

80% accuracy, s/he did not continue to test.

The experiment was comprised of four blocks. Each

block consisted of 160 trials (four repetitions of each unique

sentence) and took about 12 min to complete. Block orders

were counterbalanced across participants. Participants were

allowed to take breaks in between blocks. The entire session

lasted approximately 1 h.

B. Results

Participants were required to maintain 80% accuracy on

vowel endpoints in each block in order for their data to be

included in statistical analyses. One listener failed to achieve

80% accuracy in any of the four blocks, so his/her data were

removed from subsequent analyses.

Trial-level data were analyzed in a generalized linear

mixed-effects model in R (R Development Core Team,

2018) using the lme4 package (Bates et al., 2014) with the

binomial logit linking function. The dependent measure was

vowel identification (/I/¼ 0, /e/¼ 1). The model included

fixed effects of Target, Filter, Gender, Variability, and all

interactions between these factors. Target was entered into

the model as a continuous variable (step 0–step 9), centered

around the mean. Contrast-coding was used for the fixed

effects of Filter (high F1 amplification¼�0.5, low F1

amplification¼ 0.5), Gender (male¼�0.5, female¼ 0.5),

and Variability (low f0 variability¼�0.5, high f0

variability¼ 0.5). The model also included random inter-

cepts by subject and random slopes by subject for Target,

Filter, Gender, and Variability. All models were run using

bobyqa optimization with a maximum of 800 000 iterations.2

The model results are listed in Table II. The model is

visualized in Fig. 2(A), in terms of /e/ responses as predicted

by the fixed effects of Target, Filter, and Variability (collaps-

ing across Gender), which was created using the jtools pack-

age in R (Long, 2018). As expected, the model reports a

significant effect of Target, such that each rightward step

along the vowel continuum (toward higher F1 values and the

/e/ endpoint) increased the log odds of participants respond-

ing /e/. There was also a main effect of context Filter, indi-

cating that changing the filtering condition from high F1 to

low F1 increased the probability of /e/ responses, confirming

the presence of SCEs. Consistent with our predictions, there

was a significant interaction between Filter and Variability

(p¼ 0.007). The negative sign on this coefficient indicates

that SCE magnitudes were larger in the Low Variability con-

dition than the High Variability condition.

There was a significant effect of Gender (p¼ 0.041;

more /e/ responses following female talkers) and a signifi-

cant interaction between Target, Gender, and Variability

(p¼ 0.004). Figure 3 shows the results of separate mixed-

effects models for each talker gender, following the struc-

ture of the primary model save for removing the fixed

effect of Gender. The three-way interaction observed in the

primary model reflects more /e/ responses to female talkers

on the lower-F1 half of the vowel continuum in the Low

Variability condition and the higher-F1 half of the contin-

uum in the High Variability condition. These patterns,

while intriguing, do not bear on the research questions of

interest, which was the degree(s) to which SCEs varied as

functions of talker gender and acoustic variability, rather

than the effect(s) of gender and/or variability on the

TABLE II. Beta estimate (b), SE, z, and p for the fixed effects of the mixed-

effects model for experiment 1. As described in the main text, Target was

entered in the model as a continuous factor, centered around the mean.

Filter, Gender, and Variability were contrast-coded; the level associated

with the �0.5 contrast for each factor is shown in parentheses.

Effect b SE z p

Intercept 0.340 0.152 2.242 0.025

Target 1.270 0.070 18.067 <0.001

Filter (High F1) 0.426 0.075 5.687 <0.001

Gender (Male) 0.251 0.123 2.040 0.041

Variability (Low) �0.065 0.070 �0.916 0.360

Target�Filter 0.048 0.041 1.156 0.248

Target�Gender 0.016 0.042 0.374 0.708

Filter�Gender �0.123 0.129 �0.953 0.341

Target�Variability �0.010 0.041 �0.231 0.817

Filter�Variability �0.350 0.129 �2.711 0.007

Gender�Variability �0.007 0.129 �0.057 0.954

Target�Filter�Gender 0.057 0.079 0.728 0.467

Target�Filter�Variability �0.023 0.078 �0.290 0.772

Target�Gender�Variability �0.224 0.079 �2.850 0.004

Filter�Gender�Variability 0.069 0.258 0.269 0.788

Target�Filter�Gender

�Variability

0.107 0.156 0.682 0.495
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probability of eliciting a particular vowel response. There

was no evidence that SCE magnitudes varied as a function

of talker gender, given the null interactions between Filter

and Gender (p¼ 0.341) and Target, Filter, and Gender

(p¼ 0.467) in the primary model.

C. Discussion

Consistent with predictions, context effect magnitudes

interacted with f0 variability: SCEs were larger in the Low

f0 Variability condition than in the High f0 Variability condi-

tion. These results parallel those of Goldinger (1996), who

demonstrated that the degree to which talker normalization

occurred was influenced by f0 similarity among talkers. In

his study, when talkers were more acoustically different

from each other (and thus more variable), word recall accu-

racy suffered to a greater degree than when talkers were

more acoustically similar. Despite the fact that these tasks

had very different dependent variables (i.e., recall accuracy

vs categorization shifts), they were both influenced by vari-

ability in talker f0. This parallel is revisited in Sec. V.

Context effect magnitudes did not vary depending on

whether talker gender(s) matched between the context sen-

tence and the vowel target: SCE magnitudes were similar

when context sentences were spoken by men and women.

This indicates that genders of the talker producing the con-

text (male or female) and the target vowels (male) did not

have to match to observe SCEs. These results are consistent

with the findings of Watkins (1991) and Lotto and Kluender

(1998), where talker gender differed across (female) context

FIG. 2. (Color online) Results of the

generalized linear mixed-effects mod-

els performed for experiment 1 [(A),

collapsing across Gender], experiment

2 (B), and experiment 3 (C). In each

panel, the plots at left show predicted

/e/ responses as a function of the fixed

effects of Target Vowel, Variability,

and Filter. Shaded regions indicate the

90% confidence interval. As described

in the main text, Vowel Target was

entered into the model centered around

the mean continuum step, which is

shown as 0 in the plots at left. The

plots at right in each panel show pre-

dicted /e/ responses as a function of the

fixed effects of Variability and Filter

(thus collapsing over Target Vowel) to

illustrate the relationship between the

SCE (i.e., filter manipulation) and vari-

ability condition. Error bars denote the

90% confidence interval.

FIG. 3. (Color online) Results of the

mixed-effects models performed for

experiment 1 separately for the Men

blocks (A) and the Women blocks (B).

In each panel, the plots at left shows

predicted /e/ responses as a function of

Target Vowel, Variability, and Filter.

Shaded regions indicate the 90% confi-

dence interval. Vowel Target was

entered into the model centered around

the mean continuum step, which is

shown as 0 in the plots at left. The

plots at right in each panel shows pre-

dicted /e/ responses as a function of

Variability and Filter (thus collapsing

over Target Vowel) to illustrate the

relationship between the SCE (i.e., fil-

ter manipulation) and Variability con-

dition. Error bars denote the 80%

confidence interval.
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and (male) target but SCEs were still observed. Further,

experiment 1 extends previous findings by demonstrating

this pattern across 40 different female talkers, as opposed to

two different renditions of a single token spoken by a woman

(as tested in Watkins, 1991; Lotto and Kluender, 1998).

In Assgari and Stilp (2015), SCEs in vowel categoriza-

tion were smaller when talker gender and sentence mean f0
freely varied within a block compared to hearing a single

talker throughout the block. The results of experiment 1 sug-

gest that this result was due at least in part to variability in

mean f0 of the context sentences. However, talker gender

varied unpredictably during that block of their experiment,

whereas gender was blocked in the current experiment 1.

Therefore, it is unclear whether talker gender variability has

a similar influence as f0 variability on these context effects

in vowel categorization. Experiment 2 investigated whether

variability in talker gender restricts SCE magnitudes beyond

the observed influence of f0 variability. If talker gender vari-

ability does affect SCEs, then the context effects observed in

the single-gender conditions of experiment 1 are predicted to

be attenuated owing to the additional source of variability

among the context sentences. If talker gender variability has

no additional influence on SCEs, the Low Variability condi-

tion will again show larger SCEs than the High Variability

condition.

III. EXPERIMENT 2

A. Methods

1. Participants

Twenty undergraduate students at the University of

Louisville participated in exchange for course credit. None

participated in experiment 1. All participants reported nor-

mal hearing and were native English speakers.

2. Sentences

As in experiment 1, TIMIT sentences with relatively

equal energy in low-F1 and high-F1 frequency regions

(within 65 dB of each other) were selected as stimuli. There

was no requirement that sentences from experiment 1 were

not included in experiment 2, so 41 sentences were repeated

across experiments. Again, f0 measures of candidate senten-

ces were obtained through Praat (Boersma and Weenink,

2017). A single distribution of sentence mean f0 was created

with talker gender intentionally mixed. Forty Low

Variability sentences were pulled from the center of this dis-

tribution, and 40 High Variability sentences were pulled

from the tails of the same distribution [20 sentences from

each tail; see Table I and Fig. 1(B)]. In general, male talkers

were pulled from the lower tail (lower f0) of the distribution

while female talkers were pulled from the upper tail (higher

f0). Gender was balanced within each condition (20 male

sentences and 20 female sentences), making gender variabil-

ity equal across conditions.

3. Procedure

The procedure was the same as in experiment 1 except

that there were only two blocks: Low Variability and High

Variability. Each block lasted approximately 12 min, and the

entire experiment lasted about 40 min.

B. Results

All participants met the performance criterion of 80%

accuracy on vowel endpoints in every block, so all data were

included in analyses. Results were again analyzed in a gener-

alized linear mixed-effects model in R (R Development

Core Team, 2018) using the lme4 package (Bates et al.,
2014). The model had similar architecture to that detailed in

experiment 1, but reflected the smaller experimental design.

Responses were coded as 0 (responding /I/) and 1 (respond-

ing /e/), and the model tested the fixed effects of Target,

Filter, Variability, and their interactions, as detailed above.

Random effects included random intercepts by subject and

random slopes by subject for Target, Filter, and Variability.

Model results are listed in Table III. The model is visu-

alized in Fig. 2(B) in terms of the fixed effects of Target,

Filter, and Variability as predictors of /e/ responses. The

intercept of the model was significant, indicating that partici-

pants responded /e/ more than they responded /I/ in experi-

ment 2. As expected, there was a significant effect of Target,

such that each rightward step along the vowel continuum

increased the log odds of participants responding /e/. There

was an interaction between Target and Variability, indicating

that /e/ responses differed between the two variability condi-

tions across the vowel continuum, but this result does not

bear on the principal question of interest for the current

study. As in experiment 1, the significant effect of Filter

reflected the increased probability of /e/ responses following

low-F1-amplified context sentences as compared to high-F1-

amplified sentences, confirming the presence of SCEs.

Critically, there was a significant interaction between Filter

and Variability, with the coefficient direction indicating that

SCEs were significantly smaller in the High Variability con-

dition than in the Low Variability condition. No other main

effects or interactions were statistically significant.

In both experiments, greater variability in mean f0 pro-

duced smaller SCEs than blocks containing less variability

TABLE III. Beta estimate (b), SE, z, and p for the fixed effects of the

mixed-effects model for experiment 2. As described in the main text, Target

was entered in the model as a continuous factor, centered around the mean.

Filter and Variability were contrast-coded; the level associated with the

�0.5 contrast for each factor is shown in parentheses.

Effect b SE z p

Intercept 0.509 0.174 2.929 0.003

Target 1.285 0.097 13.252 <0.001

Filter (High F1) 0.462 0.114 4.056 <0.001

Variability (Low) �0.099 0.116 �0.854 0.393

Target�Filter �0.034 0.053 �0.645 0.519

Target�Variability �0.237 0.054 �4.434 <0.001

Filter�Variability �0.485 0.176 �2.765 0.006

Target�Filter�Variability �0.012 0.100 �0.119 0.905

J. Acoust. Soc. Am. 145 (3), March 2019 Assgari et al. 1449



in mean f0 (Filter�Variability interactions). However, the

question remains as to whether within-block gender variabil-

ity (experiment 2) played any role in restraining SCE magni-

tudes compared to gender being constant throughout each

block (experiment 1). To address this question, an additional

mixed-effects model analysis was conducted on the com-

bined results from both experiments [akin to testing for dif-

ferences across Figs. 2(A) and 2(B)]. Model architecture

included everything described in the analysis of experiment

2, along with a fixed effect of experiment and interactions

between experiment and all other fixed effects. As expected,

model terms that were significant for both experiments 1 and

2 (Tables II and III) were significant in the joint model:

Intercept (overall bias toward /e/ responses; p< 0.0001),

Target (more /e/ responses to higher-F1 vowel targets;

p< 0.0001), Filter (the presence of SCEs; p< 0.0001), and

Filter by Variability (modulation of SCE magnitudes by

Variability condition; p¼ 0.0001). Variability in talker gen-

der did not affect SCE magnitudes across experiments

[Filter� experiment: b¼ 0.019, standard error (SE)¼ 0.126,

z¼ 0.147, p¼ 0.883] nor the relationship between SCEs and

variability in mean f0 (Filter�Variability�Experiment:

b¼�0.105, SE¼ 0.216, z¼�0.484, p¼ 0.628). There was

no clear evidence that talker gender variability restrained

SCE magnitudes, which are instead attributable to greater

mean f0 variability in the context sentences.

C. Discussion

Together, the results of experiments 1 and 2 shed con-

siderable light on why talker variability diminishes SCE

magnitudes in vowel categorization. In Assgari and Stilp

(2015), SCEs were diminished when context sentences were

spoken by 200 different talkers, with talker gender and sen-

tence mean f0 freely varying. In experiment 1, SCEs were

diminished in High f0 Variability conditions compared to

Low f0 Variability conditions, and talker gender was

blocked. In experiment 2, talker gender freely varied but the

same pattern of results was observed. Variability in talker

gender appeared to have no additional influence on these

spectral context effects. Thus, preceding spectral context

influenced speech categorization more when hearing similar-

sounding talkers (i.e., Low f0 Variability) than when hearing

different-sounding talkers (i.e., High f0 Variability).

In experiment 2, the Low Variability condition tested

talkers with similar mean f0s, so even though trials were pre-

sented in random order, each successive trial presented a

moderately-to-very similar-sounding talker (at least in terms

of mean f0). Conversely, the High Variability condition

tested talkers with highly disparate mean f0s, and thus the

talker on each successive trial was often relatively unpredict-

able. These results parallel Assgari (2018), who manipulated

predictability on a trial-by-trial basis. When mean f0 incre-

mentally increased on each successive trial (and, in a sepa-

rate block, decreasing mean f0), SCEs were robust; when

presenting the same stimuli in random orders, SCEs were

not observed. Therefore, predictability [as implemented on a

block level here, or a trial-by-trial level in Assgari (2018)]

plays an important role in modulating context effects in

speech perception. This point is discussed further in Sec. V.

Thus far, it appears that variability in sentence mean f0
restricts context effects in speech categorization. Yet, across

sentences and across talkers, there are many concurrent sour-

ces of acoustic variability. As previously mentioned, talkers

vary on a wide variety of acoustic parameters, and f0 might

not be the most influential acoustic property for restricting

context effects in speech categorization. For example,

despite there being no physiological obligation for f0 and

formant frequencies to share a relationship, substantial

covariance exists between f0 and formants across talkers

(Kluender et al., 2013). Given their covariance, it is possible

that sorting stimuli into Low f0 Variability and High f0
Variability conditions in experiments 1 and 2 also sorted

their formant frequencies into Low and High Variability

groups. Of particular interest to the current report is variabil-

ity in the region of F1 because the target vowels /I/ and /e/
are primarily differentiated on F1. F1 information is expected

to be highly variable across sentences (depending on phone-

mic content) and across talkers (with different vocal tract

lengths), but it is an open question whether variability in

mean F1 characteristics of context sentences could similarly

influence SCEs as observed for variability in mean f0.

Experiment 3 investigated this possibility directly by manip-

ulating F1 variability across context sentences. If F1 variabil-

ity across context sentences has a similar influence on SCEs

as does f0 variability, then SCE magnitudes are predicted to

be smaller in a High Variability condition relative to a Low

Variability condition.

IV. EXPERIMENT 3

A. Methods

1. Participants

Twenty undergraduate students at the University of

Louisville participated in exchange for course credit. None

participated in experiments 1 or 2. All participants reported

normal hearing and were native English speakers.

2. Sentences

Sentences from experiment 2 were rearranged and pre-

sented based on measures of mean F1. The average F1 of

each sentence was measured in Praat (Boersma and

Weenink, 2017). Similar to experiment 2, unvoiced seg-

ments of sentences were removed before formant frequen-

cies were analyzed. Formant contours were hand edited to

ensure continuity (removing spurious points that did not

appear to reflect the talkers’ voices). A distribution was then

created based on these measurements of mean F1 [Fig.

1(C)]. Forty Low Variability sentences were selected from

the center of this distribution, and 40 High Variability sen-

tences were pulled from the tails of the same distribution (20

sentences from each tail; see Table I). While it was not pos-

sible to explicitly balance talker gender, it was almost bal-

anced across High Variability (21 females) and Low

Variability (19 females) conditions. Therefore, it does not
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present as a confound with respect to the key F1 variability

manipulation.

3. Procedure

The procedure was the same as outlined for experiment

2. The entire experiment lasted about 40 min.

B. Results

All participants met the performance criterion of 80%

accuracy on vowel endpoints in every block, so all data were

included in analyses. Results were analyzed in a mixed-

effects model with the same architecture as that detailed in

experiment 2. Model results are listed in Table IV and visu-

alized in Fig. 2(C). The intercept of the model was signifi-

cant, indicating more /e/ compared to /I/ responses. There

was a significant effect of Target (p< 0.001), indicating that

/e/ responses increased along the vowel continuum towards

the /e/ endpoint. The main effect of Filter was also signifi-

cant (p< 0.001), confirming the presence of SCEs. There

was no evidence to suggest that the magnitude of the SCE

was influenced by F1 variability, given the null interactions

between Filter and Variability (p¼ 0.842), and between

Target, Filter, and Variability (p¼ 0.665).

Previous literature has established that SCE magnitudes

are linear in nature: when stable spectral properties in con-

text sentences are made more prominent (i.e., by using

higher filter gain), thus increasing the size of the spectral dif-

ference between context and target spectra, categorization

shifts increase linearly (Stilp et al., 2015; Stilp and

Alexander, 2016; Stilp and Assgari, 2017). This demon-

strates the importance of measuring the magnitudes of cate-

gorization shifts and not just noting their presence or

absence. Given this relationship, it is possible that SCE mag-

nitudes also scale linearly with the amount of variability in

mean f0 across context sentences. To test this possibility, a

mixed-effects linear regression was conducted to predict

SCE magnitude. This analysis was deemed appropriate given

that different listener groups produced different numbers of

SCEs; listeners completed four blocks (and thus four SCEs

were measured) in experiment 1, two blocks each in experi-

ments 2 and 3, and one block in the 200 Talkers/200

Sentences condition of Assgari and Stilp (2015). The stan-

dard deviation of f0 in each experimental block (listed in

Table I) was entered as the fixed effect, and a random inter-

cept was included for listener group (to match the fact that

SCEs are calculated at the group level). SCEs, the dependent

measure in this analysis, were calculated from mixed-effects

models following the methods used in previous studies (Stilp

et al., 2015; Stilp and Assgari, 2017, 2018). In a given exper-

imental block, the model fit a logistic regression to group-

level responses following low-F1-amplified-contexts, and fit

a separate regression to group-level responses following

high-F1-amplified-contexts. The 50% point was derived

from each regression function, then translated to the corre-

sponding stimulus number along the vowel continuum (from

0 to 9; this number was interpolated as needed). The SCE

was operationalized as the difference between the 50%

points for the low-F1 and high-F1 context conditions, mea-

sured in stimulus steps. The results from Assgari and Stilp

(2015) were reanalyzed using a mixed-effects model in order

to match analyses of the present results. All SCE magnitudes

are reported in the final column of Table I.

Variability in mean f0 was a significant predictor of SCE

magnitude [b¼�0.008, SE¼ 0.002, t(5.210)¼�4.646,

p¼ 0.005, with degrees of freedom produced using the

Satterthwaite approximation as implemented in the lmerTest

package (Kuznetsova et al., 2013)]. As variability in mean f0
increased, the size of the SCE decreased (Fig. 4). It is interest-

ing to note that SCEs observed in experiment 3 are well pre-

dicted by the regression line despite being arranged based on

their F1 variability. Thus, across different experiments with

different listeners and various context sentences, a strong rela-

tionship between mean f0 variability and SCE magnitude is

apparent. Future studies of SCEs using multiple talkers and/or

TABLE IV. Beta estimate (b), SE, z, and p for the fixed effects of the

mixed-effects model for experiment 3. As described in the main text, Target

was entered in the model as a continuous factor, centered around the mean.

Filter and Variability were contrast-coded; the level associated with the

�0.5 contrast for each factor is shown in parentheses.

Effect b SE z p

Intercept 0.318 0.153 2.081 0.037

Target 1.458 0.109 13.358 <0.001

Filter (High F1) 0.632 0.115 5.515 <0.001

Variability (Low) 0.093 0.111 0.837 0.402

Target�Filter 0.005 0.060 0.086 0.932

Target�Variability 0.028 0.060 0.463 0.643

Filter�Variability 0.037 0.183 0.200 0.842

Target�Filter�Variability 0.050 0.116 0.434 0.665

FIG. 4. (Color online) SCE magni-

tudes plotted as a function of standard

deviation of mean f0 (A) and mean F1

(B) in each corresponding experimen-

tal block. The solid line is the linear

regression fit to these data, with the

surrounding shaded region indicating

the 95% confidence interval. All mea-

sures and corresponding listener

groups are listed in Table I.
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contexts should provide measures of f0 variability, as they

may influence the magnitudes of the effects under study.

Context sentences rearranged based on F1 variability in

experiment 3 did not influence SCE magnitudes in vowel

categorization. However, it is possible that the measures of

F1 variability in experiment 3 alone did not constitute a large

enough sample to define a potential relationship between F1

variability and SCE magnitudes. A mixed-effects linear

regression analysis was conducted parallel to the one

reported for variability in mean f0 (Fig. 4). Variability in

mean F1 was entered as the fixed effect (listed in Table I),

and a random intercept was entered for each listener group.

Variability in mean F1 was a poor predictor of SCE magni-

tudes [b¼�0.002, SE¼ 0.004, t(7)¼�0.483, p¼ 0.643].

C. Discussion

The results suggest that variability in mean F1 does not

influence SCEs in vowel categorization. Thus, not all sources

of acoustic variability equally restrict the influence of context

on speech perception. Interestingly, despite SCE magnitudes

not varying as a function of F1 variability, these effect magni-

tudes were predictable based on the f0 variability of these

conditions arranged by their F1 variability (Fig. 4). It is

important to note, however, that the lack of a relationship F1

variability and the magnitude of SCEs may reflect the specific

range of variability examined in the current work. Recall that

the range of F1 variability used presently was constrained by

that present in the stimuli used for experiment 2. It may be

the case that if a large range of F1 variability were present,

then it may show an influence on SCEs.

V. GENERAL DISCUSSION

When spectral properties differ across earlier (context)

and later (target) sounds, speech categorization becomes

biased through SCEs. It has been demonstrated that SCEs

are smaller when sentence contexts are spoken by different

talkers (Assgari and Stilp, 2015). However, exactly why

hearing different talkers restricted these context effects was

not clear. The results from experiments 1 and 2 confirm the

influence of mean f0 variability across context sentences on

SCEs in vowel categorization. When the mean f0s of senten-

ces were highly variable in a given experimental block,

SCEs were significantly smaller than when mean f0s were

less variable. These experiments also demonstrated that vari-

ability in talker gender had no influence on SCEs, whether

between contexts and targets or between single- or mixed-

gender talkers within a block. The stimuli from experiment 2

were rearranged into blocks based on Low or High

Variability in mean F1 across sentences, but blocking by F1

variation did not differentially affect SCEs. Thus, not all

sources of acoustic variability have equal influences on con-

text effects; variability in mean f0 restricted the magnitudes

of SCEs in vowel categorization but variability in mean F1

(in the stimuli presented in experiments 2 and 3) did not.

While variability in talkers’ mean f0s differentially

affected spectral context effect magnitudes, the precise

mechanism underlying these effects is unclear. Many differ-

ent spectral properties of context sentences produce SCEs

(see Stilp et al., 2015 for review). Additionally, previous

research has clearly established that preceding contexts need

not be speech in order to produce SCEs in speech categoriza-

tion (e.g., Watkins, 1991; Holt, 2005). So, how does talker

variability change the magnitudes of these context effects?

The present experiments arranged stimuli into blocks to have

high or low variability in mean f0, but many other acoustic

parameters could have been high or low variability concur-

rently. SCE magnitudes did not differ as a function of mean

F1 variability in experiment 3, but the stimuli tested were the

same sentences as presented in experiment 2. While these

results introduced and extinguished differences in SCE mag-

nitudes depending on stimulus arrangement, it does not

completely rule out influences of variability in F1 (or other

acoustic parameters). The difference between low and high

F1 variability in experiment 3 was potentially limited given

the constraint of rearranging stimuli tested in experiment 2.

Future research will reveal the degree to which arrangement

of new stimuli into low/high f0 variability and even lower/

even higher F1 variability blocks mirrors the present results.

A second possible mechanism underlying the present

results is the overlap between talkers’ f0 characteristics and

the frequency region designated as low F1 (100–400 Hz).

Variability in talkers’ mean f0s might also have introduced

variability in how spectral peaks in the low-F1 region were

realized. The spectral manipulations that produced SCEs in

the present experiments (adding low-F1 or high-F1 spectral

peaks to context sentences) are low-order harmonics of f0,

so variability in talker f0 would result in variability in the

realization of these spectral peaks (such as harmonic spac-

ing). Research is currently underway to examine the influ-

ence of talker variability on categorization of different

speech targets whose distinguishing spectral features do not

overlap with talker f0 characteristics (e.g., /da/ - /ga/, which

differ principally in F3 onset frequencies above 2 kHz).

A third, non-exclusive possible mechanism is increased

cognitive load. Listeners adapt or calibrate to a talker’s

speech, but hearing different talkers in succession requires

repeated recalibration to new talkers. This recalibration

introduces perceptual costs (longer reaction times and/or

lower accuracy) frequently reported in studies comparing

perception of one versus multiple talkers as reviewed in Sec.

I. Diminished context effect magnitudes are another percep-

tual cost incurred by hearing different talkers (Assgari,

2018), and that could also underlie the present results (but

see Bosker et al., 2017).

In the current work, hearing talkers with highly variable

mean f0s diminished the influence of context on subsequent

vowel perception. This outcome is problematic for speech

perception because SCEs serve to disambiguate perceptually

ambiguous stimuli. When contrast effect magnitudes are

diminished, ambiguous speech sounds are not disambiguated

and speech categorization suffers and/or is slower (Stilp,

2017; Assgari, 2018). Thus, parallel to findings from talker

normalization literature, talker variability—when cued by

substantial variation in f0—leads to diminished use of sys-

tematic contextual information for optimizing speech per-

ception. Moreover, the degree to which SCEs are attenuated

is linked to the degree of f0 variability (Fig. 4). This
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converges with findings showing that the degree to which

perception is disrupted by hearing multiple talkers depends

on the degree to which they differ, particularly in terms of f0
(Goldinger, 1996).

The broad parallel between talker normalization and

SCEs deepens when considering the acoustic consequences

of hearing different talkers. The current investigation of f0
variability restricting context effects on speech categoriza-

tion closely resembles effects of f0 variability on talker nor-

malization. In the different-voice trials of Goldinger’s

(1996) experiment 2, listeners were less accurate recalling

words spoken by acoustically variable talkers than words

spoken by acoustically similar talkers. Here, when talkers

were more acoustically variable in terms of mean f0,

smaller categorization shifts were observed compared to

when more acoustically similar talkers were heard (Fig. 4).

Assgari (2018) showed that these diminished categorization

shifts for acoustically variable talkers were accompanied by

slower response times. In these cases, the influence of con-

text was mediated by the f0 variability in that context.

These results might not necessarily be surprising consider-

ing that when talkers are more acoustically similar, they are

harder to tell apart (Magnuson and Nusbaum, 2007).

We have approached talker normalization and SCEs as

separate phenomena in speech perception, consistent with

how they have been explicated in the literature. It is possible,

however, that they reflect similar consequences of tracking

systematic variability in the input. When the input is stable

across trials with respect to talker, listeners are receiving

processing benefits (higher accuracy and/or faster response

times) that presumably reflect the ability to track that sys-

tematic structure, which is indeed consistent with the litera-

ture on talker familiarization (e.g., Nygaard et al., 1994).

Within this framework, the current results provide additional

evidence that the ability to use contextual information to

optimize speech perception is increased when context

remains consistent. Namely, SCEs were larger when the con-

text was more consistent (in terms of mean f0) compared to

when it was more variable; consistency in terms of talker

gender between context and target or mean F1 of context did

not have comparable effects. It is possible that a strict disso-

ciation between talker normalization and SCEs is not war-

ranted to the degree that they both reflect perceptual

consequences of talker variability. Indeed, it may be prefera-

ble to consider diminished SCEs as new evidence of talker

normalization as, just like increased reaction time and

impaired recall accuracy, they reflect a decreased use of con-

text to facilitate perception. Future work is needed to test

this hypothesis directly.

While the parallel between talker normalization and

SCEs is alluring, there exists plenty of room for these

research programs to converge. As previously mentioned,

not all studies of talker normalization report f0 (or other

acoustic) measurements of the talkers, though it can be

inferred that f0 variability is relatively high in studies that

use both male and female talkers. When hearing talkers with

high f0 variability in SCE experiments, the magnitudes of

the resulting categorization shifts were diminished (i.e.,

smaller context effects). However, when talkers are more

acoustically similar in terms of their f0s, talker normalization

effects are diminished (Goldinger, 1996) and SCEs remained

intact. It is possible that these effects are more similar than

previously thought, but additional research using more com-

parable outcome variables than accuracy and category

boundary shifts would be needed to more clearly define this

relationship. Assgari (2018) observed slower response times

and smaller categorization shifts for acoustically variable (in

terms of mean f0) talkers compared to acoustically similar

talkers, giving this pursuit merit. Furthermore, though proc-

essing of multiple talkers’ speech initially leads to decreased

perceptual performance compared to single-talker condi-

tions, research shows that listeners are able to adapt to talker

variability when given increased exposure to talkers’ voices,

resulting in improved performance for familiar compared to

unfamiliar talkers (e.g., Nygaard et al., 1994). Such talker-

specific adaptation emerges even with minimal exposure to

talkers’ voices, and has been shown to promote benefits to

word intelligibility, processing time, recognition memory,

and mapping to individual speech sounds (Clarke and

Garrett, 2004; Nygaard et al., 1994; Bradlow and Pisoni,

1999; Theodore and Miller, 2010; Theodore et al., 2015). An

interesting avenue for future research is to examine whether

the detrimental effect of f0 variability on SCEs is maintained

when listeners have extensive exposure to the talkers. An

affirmative result would strengthen the suggestion that SCEs

may be linked to talker normalization more broadly.
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