Earlier music biases subsequent musical instrument categorization

toutiviliz

INTRODUCTION
Perception of a sound is heavily influenced by surrounding sounds. When Perception of a sound is heavily infuenced by surrounding sounds. When
spectral properties differ between earlier (context) and later (target) sounds, his can produce Spectral Contrast Effects (SCEs) that bias categorization
flater sounds. later sounds.

Context	More likely to perceive
	Musical segment (unmodified)
	French horn" or "tenor saxophone"
Musical segment with French horn frequencies emphasized	"tenor saxophone"
Musical segment with tenor saxophone frequencies emphasized	"French horn"

Earlier studies have found that SCEs influence perception of speech (Stilp et al., 2015) as well as music (Stilp et al., 2010). The magnitudes of SCEs are not all-or-none, but vary continuously for speech (Stilp et al., 2015; Stilp \& Assgari, 2017) and music (Frazier et all, under review). Recently, SCEs in speech perception were produced by unfiltered sentence context hat already had the desired spectral pros
filtering (Stilp \& Assgari, under review)

The present study tested whether unfiltered contexts (i.e., musical segments that already have the desired spectral properties) produce SCEs in
perception of music in the same manner as was reported for speech.

STIMULI

Targets
Target stimuli were drawn from the McGill University Musical Samples database (Opolko \& Wapnick, 1989)

Same stimuli as tested in Stilp et al. (2010) and Frazier et al. (under review)
in instuments were 196 Hz (G3) and 140 ms in duration Stimuli were proportionately mixed so that the amplitude of one Stiment was $(+30,+18,+6,-6,-18,-30) \mathrm{dB}$ relative to the oth Stimuli with $30-\mathrm{dB}$ differences served as the series endpoints ontexts
Unfiltered
Tenor Saxophone (https://tinyurl.com/Lanningsaxophone) From YouTube video of Ivan Renta playing for Profiles in
French Horn (https://tinyurl.com/Lanninghorn)
From YouTube video of Sarah Willis of the Berlin Philharmonic, 3032 ms Excerpt of the seldom used unstopped playing style to match the unstopped French horn target stimulu
Filtered
One second excerpt from Franz Schubert's string quintet in C Major, Allegretto (taken from compact disc) (created by taking the spectra of the two instrument endpoints and
subtracting them from each other; Watkins, 1991)
Spectra calculated using 512 -point Fourier transforms, smoothed
with with 256 -point Hamming windows with 50% overlap Frazier et al., under review)

METHODS

Participants

- 22 undergr
Procedure
Procedure
- 1. Exposure: Each musical instrument endpoint stimulus (French horn or tenor saxophone) was played twice along with its verbal label

1. Exposure: Each musical instrument endpoint stimulus (French horn or tenor saxophone) was played
2. Main Experiment: 120 trials (in random order) in each of two blocks (in counterbalanced orders)

- One block presented trials with unfiltered musical contexts; the other block presented trials with filtered musical contexts
- Trial structure: musical context immediately followed by target instrument sound, which listeners identified as "French horn" or "tenor saxophone"
- Performance criterion: must maintain $\geq 80 \%$ accuracy on endpoint stimuli across blocks ($9 / 22$ failed to meet this criterion; their data excluded from analyses)

4. Post-Test Survey (same survey as administered in Stilp et al., 2010 and Frazier et al., under review)

Question 1: Please rate your musical performing ability: 1 (none), 2, 3, 4, 5 (virtuoso)
ning/instruction) have you had?
Question 4: Do you have any other relevant musical experience to share? (formal training/instruction) have you had?
Question 5: Did you recognize the musical selection in the final testing block? Can you name it?

RESULTS

SCE was defined as the change in \% "saxophone" responses to target stimuli across conditions (higher \%s following horn / horn-minus-saxophone contexts)
Unfiltered Contexts: mean SCE $=6.15 \%$ shift

- One-tailed t-test against $0: t_{12}=2.88, p<.01$

Filtered Contexts: mean SCE $=17.31 \%$ shift
SCEs were significantly larger following 0 期 $=7.88, p<.001$
significantly larger following Filtered Contexts
Musical experience was not correlated with SCE magnitudes
Question 1 (Spearman's correlations)

- Unfiltered SCEs: $\rho=-0.46, p=0.11$

Question 2
Filtered SCEs: $\rho=-0.18, p=0.56$

- Unfiltered SCEs: $r=-0.45, p=0.13$

Question 3 Filtered SCES: $r=-0.27, p=0.37$

- Unfiltered SCEs: $r=-0.42, p=0.16$

Unfiltered SCEs: $r=-0.42, p=0.16$
Filtered SCEs: $r=-0.41, p=0.16$

Mean response probabilities are shown.

DISCUSSION

Unfiltered music significantly affected categorization of the subsequent musical instrument target

Extends the findings of Stilp \& Assgari (under review) in speech to perception of musical instrument sounds CEs listed in the Intrallels between speech SCEs and musi SCEs listed in the Introduction

SCEs produced by the Unfiltered context were significantly smaller than SCEs produced by the Filtered context

Consistent with speech results in Stilp \& Assgari (under review)
Specific re
pecific reason for this difference is unclear, but Unfiltered block presented two different pieces of music playing different
notes on each trial, creating a lot of variability; Filtered block presented the same piece of music on every trial, resulting in substantially less variability

Surprisingly low percentage of participants met the mode
performance criterion of $\geq 80 \%$ correct on endpoint stimuli ($13 / 22$ or
Possible explanations include:
Confusion resulting from responding to some
saxophones (targets) but not others (contexts)
saxophones (targets) but not others (contexts)
Identifying endpoint stimuli by themselves in practice blo is easier than identifying them following a musical contex
The post-test survey showed no relationship between musical experience and SCEs in musical instrument categorization

This participant sample did not have much musical experience
Question 1: mean $=1.77$, median $=1$
Question 2: mean $=1.08$, median $=0$
Question 3: mean $=0.85$, median $=0$
Musical experience was not used in recruitment of participan Thus, these results do not demonstrate a lack of influence of musical experience on context effects, just that it did not correlate with responses for this sample Future studies sher recruit experienced musicians and repeat this experiment

Filtered results replicate Stilp et al. (2010) and Frazier et al. (under review); Unfiltered results extend these context effects to listening conditions that more closely resemble everyday perception

REFERENCES

Frazier J, Assgari AA, \& Stilp CE (under review) Attention, Perception, \&
Psyon
 Stilp CE, Alexander JM, Kiefte M, \& Kluender KR (2010) Attention, Perception $\&$ Psychophysics, $72(2(2), 470-480$
Stilp CE, Anderson PW, \& Winn MB (2015) Journal of the Acoustical Society of
America, $137(6), 346-34776$
America, 137(6), 3466-3476
Suip CE \& Assgari AA (2017) Journal of the Acoustical Society of America,
141(2), EL 153 -EL 158
Stilp CE \& Assgari AA (under review) Attention, Perception, \& Psychophysic
Watkins AJ (1991) Journal of the Acoustical Society of America, 90(6), 2942-
2955

