Reverberation increases perceptual calibration to reliable spectral peaks in speech Christian E. Stilp Paul W. Anderson Ashley A. Assgari Gregory M. Ellis Pavel Zahorik • Sensory systems are highly sensitive to stable aspects of the environment. - Signal properties are less informative when they are reliable (stable or recurring across time) - Adaptation, habituation, attenuation, calibration, ... - Signal properties are more informative when they change - More useful for perception ### **Perceptual Calibration** "Please say what vowel this is" before /i/-/u/ target Common F_2 peak = decrease reliance on F_2 , increase reliance on tilt Kiefte & Kluender (2008), Alexander & Kluender (2010), Stilp & Anderson (2014) #### **Methods** - 20 native English speakers with normal hearing - Precursor: "Please say what vowel this is" - 100-Hz bandpass filter centered at vowel F_2 , gain = +20 dB - Vowels: synthesized 5-by-5 matrix varying from /i/ to /u/ - Varied in F₂ and tilt, all other stimulus parameters matched #### 1. Vowels in isolation - Calculate logistic regression on responses - Standardized regression coefficients = perceptual weights - 2. Vowels following precursors that share F_2 peak - Calculate logistic regression on these responses Perceptual calibration = changes in weights across sessions - Reliable cue $(F_2) \rightarrow$ decrease weight - Changing cue (tilt) → increase weight #### Reverberation - In speech, energy in a spectral peak waxes and wanes across time; here this peak is made reliable. - Reverberation smears spectral peaks across time, which would increase their presence throughout the precursor. - Perceptual calibration is predicted to increase in highly reverberant listening conditions ($T_{60} = 2.97$ seconds). 1. Vowels in isolation, reverberation 2. Vowels following precursors that share F_2 peak, reverberation Perceptual calibration = changes in weights across sessions - Reliable cue $(F_2) \rightarrow$ decrease weight - Changing cue (tilt) → increase weight - Greater perceptual calibration for reverberant speech (p's < .001) - But, different starting points for listener groups (F_2 : p < .02) #### **Methods** - 22 new listeners - n=11: Dry 1st, Reverberant 2nd - n=11: Reverberant 1st, Dry 2nd - Same stimuli as previous experiments #### **Conclusions** - Perceptual calibration increases in highly reverberant listening conditions. - Experience with reverberation extinguished calibration in non-reverberant listening conditions.