INTRODUCTION

Information-bearing acoustic changes in the speech signal are highly important for speech perception. This has been demonstrated for:

- Informational changes measured in full-spectrum sentences using coarticulated speech (CSI, Stilp & Khendek, 2010, Stilp, 2014)
- CSI measures differences between short-time spectra weighted and scaled to broadly mimic cochlear processing
- Informational changes measured in noise-vocoded sentences using a modified version of CSI (CSI₂, Stilp, Goupell, & Khendek, 2013, Stilp, 2014)
- CSI₂ measures differences between short-time spectra calculated across all channels of noise-vocoded speech
- Poorer sentence intelligibility when high-CSE / high-CSE₂ intervals were replaced by noise compared to replacing an equal number of low-CSE / low-CSE₂ intervals across all channels (Stilp & Khendek, 2010, Stilp et al., 2013; Stilp, 2014)

Information-bearing acoustic changes have been suggested to be:

- More important for understanding speech in poorer listening conditions (Stilp, 2014)
- Utilized more heavily by CI users for understanding speech (Stilp, 2014)

However, acoustic simulations of CI processing have used only a single set of vocoder parameters (8 spectral channels, 150-Hz cutoff for amplitude envelopes), limiting generalizability of results.

Here, spectral and temporal resolutions of noise-vocoded sentences were manipulated independently and jointly to reveal contributions of information-bearing acoustic changes to speech understanding across broad ranges of signal quality.

METHODS

Participants

- All native English speakers with no known hearing impairments
 - n = 24 (Exp. 1), 30 (Exp. 2), or 24 (Exp. 3)

Stimuli

- TIMT sentences filtered into spectral channels (4th-order Butterworth filters) equally spaced from 50-5000 Hz (Greenwood, 1990)
- AMplitude envelopes extracted by half-wave rectification and low-pass filtering (2nd-order Butterworth filter) and assigned to white noise carriers
- Number of channels and low-pass filter cutoff varied by experiment
- Zero-phase filtering double-tapped signal with white preserving temporal characteristics

CSI₂

- CSI₂ = Euclidean distances between RMS-amplitude profiles of successive 16-ms sentence slices, summed across 80-ms intervals
- Four 80-ms intervals with high- or low-CSE₂ replaced with speech-shaped noise; control sentences had no noise replacement

Procedure

- Stimuli presented dichotically at 70 dB SPL via circumaural headphones
- One sentence presented per trial; no listener heard any sentence twice
- Scores analyzed using repeated-measures ANOVA and Bonferroni-corrected tests

EXPT. 1: SPECTRAL RESOLUTION

Spectral resolutions tested: 4, 6, 8, 10, 12, 16, 20, 24 channels
Temporal resolution tested: 150 Hz

- Control > low-CSE₂ replaced > high-CSE₂ replaced (p < .0001)
- Performance improved with more spectral channels (p < .0001)
- Significant interaction (p < .0001)
- Means recorded as decrements relative to control performance (larger decrement = greater perceptual importance of replaced segments)

EXPT. 2: TEMPORAL RESOLUTION

Spectral resolution tested: 8 channels
Temporal resolutions tested: 4, 8, 16, 32, 64 Hz

- Control > low-CSE₂ replaced > high-CSE₂ replaced (p < .0001)
- Performance improved with better temporal resolution (p < .0001)
- Significant interaction (p < .0001)
- Means recorded as decrements relative to control performance (larger decrement = greater perceptual importance of replaced segments)

EXPT. 3: SPECTROTEMPORAL TRADEOFFS

Spectral resolutions tested: 6, 8, 10, 12 channels
Temporal resolutions tested: 8, 16, 32 Hz
No control sentences

- Across low- and high-CSE₂ conditions, greatest divergences in performance for 32-Hz temporal resolution or 8-10 spectral channels
- Greater spectrotemporal tradeoffs for low-CSE₂ replaced sentences
- Larger tradeoffs observed at even lower spectral / temporal resolutions, but for phoneme recognition without noise replacements (Xu et al., 2002, 2005), complicating comparisons to the present results

CONCLUSIONS

Information-bearing acoustic changes were more important for speech intelligibility (i.e., produced larger decrements) when:

- Spectral resolution decreased, consistent with Stilp (2014)
- Greatest importance for understanding sentences with 6-10 channels
- Temporal resolution increased, inconsistent with Stilp (2014)
- Noise effects below 16 Hz, flat performance above 16 Hz

Results indicate some low level of signal quality is necessary in order to distinguish low-CSE₂ intervals from high-CSE₂ intervals:
- Exp. 1: 4 channels / 150 Hz
- Exp. 2: 8 channels / 4-8 Hz
- Exp. 3: 3-6-10 channels / 8 Hz

Modest evidence for greater spectrotemporal tradeoffs in low-CSE₂ replaced sentences, but three-way interaction was not statistically significant.

Results promote extending this approach to CI users. In both healthy and electrical hearing, the central auditory system similarly strives to be maximally sensitive to changes in the acoustic input. Results may lend new insights to CI processing strategies and improved speech perception.

REFERENCES

Stilp (2014)
Stilp, Goupell, & Khendek (2013)
Stilp & Khendek (2010)
Greenwood (1990)
Xu, Tsai, & Xu (2002)
Xu, Tsai, & Xu (2005)
Matthew J. Goupell, Department of Hearing and Speech Sciences, University of Maryland

Defining Spectral and Temporal Resolutions of Information-Bearing Acoustic Changes for Understanding Noise-Vocoded Sentences
Christian E. Stilp, Department of Psychological and Brain Sciences, University of Louisville
Matthew J. Goupell, Department of Hearing and Speech Sciences, University of Maryland