Available online at www.sciencedirect.com

ScienceDirect COGNITION

ELSR Cognition 107 (2008) 284-294

www.elsevier.com/locate/COGNIT
Brief article

Individual differences in category learning:
Sometimes less working memory capacity
is better than more ™

Marci S. DeCaro #, Robin D. Thomas %, Sian L. Beilock °*

& Department of Psychology, Miami University, USA
® Department of Psychology, The University of Chicago, 5848 South University Avenue,
Chicago, IL 60637, USA

Received 26 April 2007; revised 26 June 2007; accepted 1 July 2007

Abstract

We examined whether individual differences in working memory influence the facility with
which individuals learn new categories. Participants learned two different types of category
structures: rule-based and information-integration. Successful learning of the former category
structure is thought to be based on explicit hypothesis testing that relies heavily on working
memory. Successful learning of the latter category structure is believed to be driven by proce-
dural learning processes that operate largely outside of conscious control. Consistent with a
widespread literature touting the positive benefits of working memory and attentional control,
the higher one’s working memory, the fewer trials one took to learn rule-based categories. The
opposite occurred for information-integration categories — the lower one’s working memory,
the fewer trials one took to learn this category structure. Thus, the positive relation commonly
seen between individual differences in working memory and performance can not only be
absent, but reversed. As such, a comprehensive understanding of skill learning — and category
learning in particular — requires considering the demands of the tasks being performed and the
cognitive abilities of the performer.
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1. Introduction

Categorization allows us to divide the world into meaningful parts — a key com-
ponent of skill learning and performance. Perhaps not surprisingly then, category
learning has garnered attention across diverse areas of cognitive science ranging
from the study of expert knowledge structures (Chi, Feltovich, & Glaser, 1981) to
research examining how individuals extract consistencies from diverse sets of stimuli
(Barsalou, 1983). Although a significant amount of work has been devoted to under-
standing the cognitive and neural mechanisms supporting category learning (Ashby
& Maddox, 2005; Thomas, 1998), little work has considered how individual differ-
ences in cognition may influence the facility with which one discovers category struc-
tures. Such work is important, as skill learning and performance does not solely
depend on the demands of the task being performed, but on the ability of the learner
as well (Beilock & Carr, 2005). Toward this end, in the current work we ask how
individual differences in the cognitive construct of working memory impact the learn-
ing of different types of category structures. Given the central role that working
memory plays in complex cognition (Engle, 2002) and the vital role that categoriza-
tion plays in the acquisition and representation of information in memory (Ashby &
O’Brien, 2004), the relation between individual differences in working memory and
category learning is important to explore and — as will be seen below — not as
straightforward as one might initially imagine.

1.1. Working memory

Working memory can be thought of as a short-term system involved in the con-
trol, regulation, and active maintenance of a limited amount of information with
immediate relevance to the task at hand (Miyake & Shah, 1999). It can also be
thought of as an individual difference variable — meaning that some people have
more of this construct and some have less. Although, investigations of the link
between working memory and behavior have spanned diverse areas of cognitive sci-
ence, most of this work has yielded surprisingly similar conclusions regarding its role
in high-level performance — the more working memory capacity individuals have at a
given time, the better performance will be on the types of reasoning, problem solv-
ing, and comprehension tasks encountered in both the confines of the laboratory and
the complexity of the real world (Conway et al., 2005).

Given a scientific literature that emphasizes the positive aspects of working mem-
ory and attentional control (Miyake & Shah, 1999), one might suppose that higher
working memory individuals should always outperform their lower working memory
counterparts. Nonetheless, there are situations in which individual differences in
working memory are not predictive of behavior. In syllogistic reasoning for example,
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when the goal is to decide whether a conclusion follows logically from given pre-
mises, performance does not differ as a function of working memory when the believ-
ability of the conclusion is consistent with logic (e.g., Premises: all mammals can
walk. Dogs are mammals. Conclusion: dogs can walk). In contrast, when logic is
in conflict with believability, higher working memory individuals outperform their
lower capacity counterparts (e.g., Premises: all mammals can walk. Dolphins are
mammals. Conclusion: dolphins can walk). In this second example, the conclusion
is valid, but not believable, and thus providing the correct response requires reliance
on demanding logical reasoning processes. The more working memory individuals
have to support such processes, the better their performance (De Neys, 2006; Evans,
2003; Stanovich & West, 2000). In the first case, the complex reasoning associated
with higher working memory capacity does not inform behavior over and above
more associatively driven processes thought to run largely outside working memory.

Although the above mentioned work is informative regarding individual differ-
ences in cognitive control and its relation to reasoning processes, it is important to
note that the pattern of data reported above — and in a large majority of work to date
— shows working memory differences on some problems (e.g., where complex
hypothesis testing or reasoning processes are needed for successful performance),
and a lack of working memory differences on others (e.g., where demanding compu-
tations are not necessary for accurate performance). In the current work we ask
whether, for certain tasks, the relation between individual differences in working
memory and performance may not just be absent, but reversed. To do this, we turn
to the category learning literature. Although the learning of certain category struc-
tures is thought to be based on complex hypothesis testing and thus likely relies
heavily on working memory, there are also category structures for which instantiat-
ing demanding reasoning processes may not only be useless, but detrimental.

1.2. Category learning

How do individuals learn to classify the stimuli they encounter? There is a grow-
ing body of evidence suggesting that individuals draw upon multiple processing
modes in learning different types of category structures (Zeithamova & Maddox,
2006). For instance, rule-based categorization tasks can be optimally solved using
a verbalizable, logical rule. Rule-based category learning is thought to be accom-
plished by explicit hypothesis testing that relies heavily on working memory. In sup-
port of this idea, several studies have shown that the addition of a secondary
demanding task impairs rule-based learning in comparison to control conditions
in which no dual-task is present (Waldron & Ashby, 2001; Zeithamova & Maddox,
2006). In contrast, information-integration categorization tasks require learners to
integrate stimulus values across multiple dimensions prior to making a categoriza-
tion decision. This is thought to involve procedural learning mechanisms that iden-
tify stimulus-response mappings between category members and a correct response
(for a review, see Ashby & Maddox, 2005; Ashby & O’Brien, 2004).

The processes used to learn rule-based and information-integration category
structures are thought to operate simultaneously, competing throughout learning,
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with that most suited for the task at hand eventually winning out (Ashby & Maddox,
2005; Zeithamova & Maddox, 2006). Specifically, when presented with a categoriza-
tion task, individuals attempt to test explicit hypotheses about the category structure
while at the same time integrating complex feature information and learning stimu-
lus—response mappings based on this information. Initially, there is a bias toward
explicit hypothesis testing, and when an explicit rule is discovered (e.g., in a rule-
based task), it dominates the categorization task (Zeithamova & Maddox, 2006).
But when a simple rule does not lead to accurate performance (e.g., in informa-
tion-integration tasks), procedural learning wins out.

Given that rule-based categorization demands the explicit testing of category fea-
ture combinations, and that such processes likely rely on the types of controlled atten-
tion abilities believed to be at the heart of working memory (Engle, 2002), it seems
logical that individual differences in working memory will moderate the learning of
rule-based category structures. In contrast, because information-integration category
structures are not as reliant on explicit hypothesis testing, one might assume no rela-
tion between individual differences in working memory and performance — just as
when believability and logic point in the same direction in the reasoning work pre-
sented above (De Neys, 2006; Evans, 2003; Stanovich & West, 2000). It has been sug-
gested, however, that explicit hypothesis testing may actually harm performance on
information-integration categorization tasks by limiting the ability of procedural
learning processes to take over (Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Markman, Maddox, & Worthy, 2006). To the extent that individuals higher in work-
ing memory more readily employ complex hypothesis testing and reasoning, then one
might very well find a relation between working memory capacity and information-
integration category learning — but in the opposite direction of that seen for rule-based
tasks. Such a finding would underscore the idea that a comprehensive understanding
of learning and performance not only requires considering situations in which more
working memory capacity will lead to better performance but also when it will lead
to worse. Moreover, it would highlight the need to address individual differences in
category learning — a topic that has been largely ignored in this literature to date.

In the current work, we build upon the ideas that (a) individual differences in
working memory carry implications for the ability to utilize complex hypothesis test-
ing and reasoning processes (Conway et al., 2005; Dougherty & Hunter, 2003; Gai-
ssmaier, Schooler, & Rieskamp, 2006) and (b) performance on rule-based versus
information-integration categorization tasks may differ as a function of the ability
to successfully hypothesis test (Ashby et al., 1998), to explore how working memory
capacity relates to category learning. To our knowledge, little work has considered
how individual differences in cognitive constructs such as working memory influence
the facility with which one discovers different category structures. Moreover,
although it has been suggested that different types of category learning may be med-
iated by different neural circuitry (for a review, see Ashby & Ell, 2001), no study has
demonstrated a double-dissociation between category structures and individual dif-
ference variables that supports a multiple systems perspective. Finally, given the
plethora of work demonstrating a positive relation between working memory
capacity and complex cognitive behaviors ranging from reasoning to problem solv-
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ing (Conway et al., 2005), demonstrations that this relation may not only be absent
but reversed are important for developing theories of executive control that take into
account the multifaceted nature of the tasks individuals encounter.

2. Current experiment

Individuals learned two types of category structures: rule-based and information-
integration. To the extent that working memory supports hypothesis generation and
testing, the higher one’s working memory, the faster one should learn rule-based cat-
egories. Such a result would be consistent with the abundance of research demon-
strating a positive relationship between working memory and performance
(Conway et al., 2005). However, the very capacity limitations associated with less
working memory may be just what is needed to optimally learn information-integra-
tion categories. If so, the lower one’s working memory, the more optimal learning
may be on this task.

2.1. Method

2.1.1. Participants
Undergraduate students (N =71) at a large Midwestern University served as
participants.

2.1.2. Procedure

Category learning task. Participants completed the categorization task individu-
ally on the computer. Individuals were instructed to place each stimulus into either
category A or category B by pressing one of two keys on the keyboard. Immediate
feedback was given on each trial, with the words “correct” or “incorrect” appearing
directly below the stimulus. Participants completed four sets of 200 trials each, sep-
arated by rest periods during which they were informed that they would be learning a
new rule. The four sets included two different rule-based tasks (R) and two different
information-integration tasks (I), with one of each category structure occurring in
the first two sets of trials (first block) and the other in the last two sets (second
block). Thus, four orders were possible (i.e., RIRI, IRIR, RIIR, IRRI) and counter-
balanced across participants. The order of the specific tasks within each category
structure (e.g., which rule-based task came first) was randomized across participants
as well. All participants performed the same four categorization tasks.

Categorization stimuli were adapted from Waldron and Ashby (2001). Each was a
square with either one or two symbols embedded within it. Sixteen stimuli were con-
structed by taking the factorial combination of four dimensions, two levels each:
square/background color (yellow or blue), embedded symbol shape (circle or
square), symbol color (red or green), and number of embedded symbols (1 or 2).
The two types of categorization structures, rule-based and information-integration,
used all 16 stimuli but differed in the mapping from stimuli to responses.

Rule-based categories were one-dimensional (e.g., “If the embedded symbol is a
circle, choose category A; if the symbol is a square, choose category B”’), affording
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an easy verbalizable strategy. Because previous studies (e.g., Waldron & Ashby,
2001) found no differences in performance depending on the dimension selected to
be relevant, symbol color was randomly chosen as the relevant dimension for one
rule-based task and symbol shape for the other.

Information-integration categories involved three dimensions. One dimension was
randomly selected to be irrelevant (background color for one information-integra-
tion task and number of embedded symbols for the other). Each binary value of
the other three dimensions was randomly assigned either a —1 or a +1 (e.g., a green
symbol = —1 and a red symbol = +1); the three remaining relevant dimensions were
labeled X, Y, and Z. Stimuli were categorized according to the following rule: If
value(X) + value(Y) + value(Z) > 0, respond category A, otherwise respond cate-
gory B (Waldron & Ashby, 2001). Information-integration categories cannot use-
fully be described by simple verbal rules. Instead, dimensional values must be
integrated at a pre-decisional stage, presumably without access to conscious aware-
ness (Ashby & Maddox, 2005).

Following categorization, participants filled out a question regarding how much
pressure they felt to perform at a high level, ranging from 1 (very little performance
pressure) to 7 (extreme performance pressure). Previous research has demonstrated
that feelings of performance pressure impact category learning (Markman et al.,
2006). Thus, we were interested in ensuring that such perceptions did not differ as
a function of individual differences in working memory.

Working memory tasks. Finally, individuals completed two commonly used mea-
sures of working memory counterbalanced in order: a modified Operation Span
(Turner & Engle, 1989) and a modified Reading Span (Daneman & Carpenter,
1980). The Automated Operation Span (Aospan; Unsworth, Heitz, Schrock, &
Engle, 2005) and Automated Reading Span (Arspan) were both performed individ-
ually on a computer and require participants to remember a series of letters while
performing a concurrent task. Maintaining information in the face of interference
is thought to be at the heart of working memory (Engle, 2002).

In the Aospan, participants judge whether a math problem yields a true or false
answer. Individuals view an equation on the screen (e.g., “(1 *2) + 1=?") and are
instructed to press the mouse button after they have solved it. The equation is then
replaced by a number, which participants judge as either the correct or incorrect
equation answer by clicking a “true” or “false” screen box. Next, a letter is presented
(800 ms) for later recall. After a series of equation-letter trials, 12 letters are pre-
sented and individuals are asked to select the letters they remember, in the correct
order. To prevent letter rehearsal, participants are given a limited amount of time
to solve and respond to the math equation, determined by their performance speed
during a series of practice trials. Individuals are instructed to keep accuracy above
85% and feedback (i.e., equation accuracy and letter response) is provided. The
Arspan is similar to the Aospan. However, rather than judging equation accuracy,
participants are asked to read a sentence (e.g., ““Stacey stopped dating the light when
she found out he had a wife.”) and verify whether or not it makes sense. In both the
Aospan and the Arspan, participants view 75 total trials in random order, with 15
sets of 3-7 trials each. Lastly, participants were thanked and debriefed.
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3. Results

Working memory scores were calculated by summing the number of letters
selected for all correctly selected sets. Averages across the two working memory mea-
sures ranged from 2 to 72 (M =45.49, SE=1.9). Eleven additional participants
were tested but not included in the current work for failure to maintain above
85% accuracy on the math and sentence portions of the span tasks (Unsworth
et al., 2005). However, including these participants did not change the pattern of
results in any way. Moreover, working memory scores were not correlated with
reports of perceived pressure (M = 3.82, SE = .16), r = .13, p =.29. Thus, it would
be difficult to explain any of the working memory differences reported below by gen-
eral differences in perceived pressure to perform well on our categorization tasks.

Our main dependent measure was the number of trials taken to learn category
rules to criterion: eight correct trials in a row, log transformed due to positive skew
in the distribution. Log transformations are a common method for normalizing data
(Tabachnick & Fidel, 1996), including categorization data that is typically positively
skewed (e.g., Waldron & Ashby, 2001). Individuals who successfully learned all four
category rules (prior to the 200 trial max) and whose performance did not exceed two
SD above the mean trials to criterion in each block were included in the current
work. This exclusion criterion was designed to prevent extreme values in our distri-
bution from unduly influencing the results (Tabachnick & Fidel, 1996).

We began by regressing trials to criterion on average working memory scores, cat-
egory structure (rule-based versus information-integration, dummy coded), and their
interaction. This regression resulted in a significant working memory X category
structure interaction, = .609, r =3.11, p <.01. As can be seen in Fig. 1, for rule-
based category structures, the higher one’s working memory, the fewer trials one
took to reach criterion, = —.236, t = —2.02, p <.05. In contrast, for informa-
tion-integration category structures, the higher one’s working memory, the more tri-
als one took to reach criterion, ff = .274, t =2.36, p <. 03.!

! An alternative approach to this analysis is to assess whether (i) the Pearson r between the average
working memory scores and trials-to-criterion is significantly different from 0 (and negative) in the rule-
based condition, (ii) the Pearson r between the average working memory scores and trials-to-criterion is
significantly different from 0 (and positive) in the information-integration condition, and (iii) the two
correlation coefficients differ from each other. Tests (i) and (ii) were confirmed: the Pearson r between (log)
trials-to-criterion and the average working memory score in the rule-based task was —.236, #(69) = —2.02,
p <.05, and the Pearson r between trials-to-criterion and the average working memory score in the
information-integration task was .274, #(69) =2.36, p <.03. To assess test (iii), we use the procedure
described in Meng, Rosenthal, and Rubin (1992) which allows us to compare correlation coefficients which
are “overlapping” in the sense that the same working memory variable participates in both correlation
coefficients which may be correlated themselves because the same participants produced the trials-to-
criterion outcome in each. By their procedure (see p. 173, Egs. (1)—(4) in Meng et al. (1992)), the difference
in the two Pearson r’s is significant (z = 3.075, p <.01, two-tailed). The 95% confidence interval for the
difference between the r obtained in the information integration task and the r obtained in the rule-based
task is (.189,.854).
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Fig. 1. Mean trials to criterion as a function of category structure and individual differences in working
memory. Nonstandardized regression coefficients are plotted at +1 SD.

4. Discussion

The higher one’s working memory, the faster one learned rule-based categories.
The opposite occurred for information-integration category structures. Both hypoth-
esis testing and procedural learning are thought to be instantiated at the outset of
any category learning task, with the former dominating successful rule-based catego-
rization and the latter supporting information-integration learning (Maddox & Ash-
by, 2004). Thus, individual differences in cognitive control may influence which
category learning process is most readily (and effectively) utilized. Higher working
memory individuals’ executive attention resources are thought to support successful
hypothesis testing (Dougherty & Hunter, 2003). These same resources, however,
seem to hinder learning of information-integration category structures.

The finding that the higher individuals’ working memory, the slower they learned
information-integration category structures may seem inconsistent with a scientific
literature that emphasizes the positive benefits of working memory and attentional
control (Beilock, Kulp, Holt, & Carr, 2004; Engle, 2002). However, as mentioned
in Section 1, individual differences in working memory are not always predictive
of performance. In reasoning for example, when a logically valid conclusion is also
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believable, no relation between working memory and performance is observed (De
Neys, 2006; Stanovich & West, 2000). This is because the complex reasoning associ-
ated with higher working memory capacity does not inform behavior over and above
more associatively driven processes that are thought to operate largely outside of
working memory.

In the current work, we go beyond merely demonstrating a lack of a relation
between individual differences and performance — showing that for tasks in which
complex hypothesis testing may hinder effective learning, the higher one’s working
memory, the worse one performs. Optimal information-integration performance is
thought to be based on proceduralized learning processes, and it has been suggested
that the explicit hypothesis testing of category membership may actually inhibit ulti-
mate learning (Ashby et al., 1998). The fact that those individuals highest in working
memory performed the worst on this task suggests that higher working memory indi-
viduals may, at times, rely on complex computational processes that are not neces-
sarily optimal for the task at hand. This counterintuitive finding demonstrates that
the availability of executive attention resources can actually hinder the learning of
tasks that rely more so on proceduralized processes and calls into question the utility
of using the performance of higher working memory individuals as the universal
benchmark for optimal performance across all tasks (De Neys, 2006; Stanovich &
West, 2000).

Although investigations of the impact of secondary tasks on category learning can
lend insight into the types of category structures that are heavily dependent on exec-
utive control resources (Waldron & Ashby, 2001; Zeithamova & Maddox, 2006), the
double-dissociation between category structure and working memory in the current
work opens a window into category learning — and learning more broadly — in a way
many dual-task studies do not. Indeed, previous work has shown that a secondary
demanding task hurts rule-based category learning but spares information-integra-
tion learning (Waldron & Ashby, 2001). Yet, these types of secondary load studies
have not shown the information-integration learning benefit seen for those lower
in working memory in the current work. It may be that the addition of a demanding
secondary task (e.g., numerical Stroop task; Waldron & Ashby, 2001) impacts one’s
ability to successfully encode the relevant stimulus features needed for procedural
learning processes. Indeed, in the Waldron and Ashby study, the secondary task
was concurrently displayed with the category stimulus to be encoded. Capitalizing
on individual differences in working memory then may allow for the expression of
procedural learning when individuals are able to encode the relevant stimulus fea-
tures but are less able to apply rule-based reasoning processes to the stimuli they
encode (e.g., individuals lower in working memory). By demonstrating systematic
individual differences in learning various category structures we highlight that there
is not always a positive relation between working memory and performance, thus
underscoring the need to address individual differences in category learning — a topic
that has been largely ignored in this literature to date.

In conclusion, individual differences in working memory influence the propensity
with which individuals learn new categories, with the nature of the relation between
working memory and category learning dependent on the demands of the task being



M.S. DeCaro et al. | Cognition 107 (2008) 284-294 293

performed. More specifically, in the learning of information-integration category
structures, the positive relation commonly seen between individual differences in
working memory and performance is not only absent, but reversed. Thus, a compre-
hensive understanding of category learning requires knowledge of the cognitive and
neural substrates supporting the category structure being learned and consideration
of how these processes interact with the cognitive abilities of the performer.
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