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a b s t r a c t

Both exploration and explicit instruction are thought to benefit
learning in many ways, but much less is known about how the
two can be combined. We tested the hypothesis that engaging in
exploratory activities prior to receiving explicit instruction better
prepares children to learn from the instruction. Children (159 sec-
ond- to fourth-grade students) solved relatively unfamiliar mathe-
matics problems (e.g., 3 + 5 = 4 +h) before or after they were
instructed on the concept of mathematical equivalence. Exploring
problems before instruction improved understanding compared
with a more conventional ‘‘instruct-then-practice’’ sequence.
Prompts to self-explain did not improve learning more than extra
practice. Microgenetic analyses revealed that problem exploration
led children to more accurately gauge their competence, attempt a
larger variety of strategies, and attend more to problem features—
better preparing them to learn from instruction.

� 2012 Elsevier Inc. All rights reserved.

Introduction

Some theories of learning and development focus on howmuch children learn through exploration
and self-discovery of their environment without explicit instruction from a more knowledgeable per-
son (‘‘exploration’’; Hirsh-Pasek, Golinkoff, Berk, & Singer, 2009; Piaget, 1973; Schulz & Bonawitz,
2007; Sylva, Bruner, & Genova, 1976). Other theories focus on how children learn through guidance
and instruction from more knowledgeable others such as parents and teachers (‘‘explicit instruction’’;
Csibra & Gergely, 2009; Kirschner, Sweller, & Clark, 2006; Tomasello, Carpenter, Call, Behne, & Moll,
2005; Vygotsky, 1978). Both exploration and explicit instruction are thought to benefit learning in
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numerous ways. For example, allowing learners to explore a new environment or topic area may in-
crease their motivation, encourage broad hypothesis testing, and improve depth of understanding
(e.g., Bonawitz et al., 2011; Piaget, 1973; Sylva et al., 1976; Wise & O’Neill, 2009). At the same time,
children learn extensively from social partners, and teaching children new information directly can
lessen the burden on cognitive resources and support the development of accurate knowledge (Kirs-
chner et al., 2006; Klahr & Nigram, 2004; Koenig & Harris, 2005; Sweller, van Merrienboer, & Paas,
1998; Tomasello et al., 2005).

We evaluated whether the benefits of both exploration and explicit instruction can be combined to
improve children’s learning of a mathematical concept. In the current study, children were given ex-
plicit instruction on a mathematical concept. This instruction was combined with a problem-solving
activity. Some children were given the problem-solving activity as an exploratory activity, which we
defined in this context as an experience in which one has received little, if any, specific instruction on
the task and, therefore, must explore the parameters of the experience for oneself (Bonawitz et al.,
2011). After exploration, these children received explicit instruction. Other children received explicit
instruction first, followed by problem-solving practice. Beginning with instruction constrains and
guides students’ subsequent problem solving (Bonawitz et al., 2011; Sweller et al., 1998). Thus, the
same problem-solving activity was used to promote exploration prior to instruction or practice after
instruction. We reasoned that combining the strengths of exploration with subsequent explicit
instruction would better prepare children to learn from the instruction (cf. Dewey, 1910; Schwartz,
Lindgren, & Lewis, 2009). By comparing learning in this condition with a more conventional ‘‘in-
struct-then-practice’’ condition, we sought to reveal how exploration changes how children attend
to, process, and ultimately learn new information. Thus, the current work contributes to a theoretical
framework that seeks to understand the mechanisms by which different learning experiences can be
combined and how they affect children’s knowledge growth.

Exploratory activities and improving learning from instruction

Parents and teachers often use a ‘‘tell-then-practice’’ approach to teaching (Eisenberg et al., 2010;
Hiebert et al., 2003; Roelofs, Visser, & Terwel, 2003). First children are told the important information,
and then they are asked to practice using this information. This method helps children to quickly hone
their attention to the most important information and, therefore, reduces the burden on cognitive re-
sources (Bonawitz et al., 2011; Clark, 2009; Sweller et al., 1998). As a result, children spend less time
on trial and error and reduce their use of erroneous beliefs or behaviors, instead practicing an appro-
priate way of thinking or acting in a domain (e.g., Eisenberg et al., 2010; Rittle-Johnson, 2006). Criti-
cally, without accurate instructional guidance, children often fail to discover correct information (e.g.,
Alfieri, Brooks, Aldrich, & Tenenbaum, 2011; Klahr & Nigram, 2004; Koenig &Woodward, 2010; Mayer,
2004).

Despite the demonstrated benefits of explicit instruction frommore knowledgeable others, instruc-
tion can lead to overly narrow knowledge structures and problem-solving behaviors. For example, ex-
plicit instruction may lead children to stop searching for additional ideas or information (e.g., when
playing with a toy), as they perceive the instruction as having provided all that they need to learn
(Bonawitz et al., 2011). Indeed, explicit instruction can reduce problem-solving success, as children
try fewer means to solve a task after a demonstration by an adult than after free play (Sylva et al.,
1976). In addition, children may harbor misconceptions, irrelevant intuitions, or false beliefs about
their own understanding when they are taught new information, which often hinders their under-
standing of the new information (Carey, 1985; Eryilmaz, 2002; Hartnett & Gelman, 1998; McNeil &
Alibali, 2005; Vamvakoussi & Vosniadou, 2004). Explicit instruction can also lead individuals to have
greater feelings of fluency with the material and become overly confident in their level of understand-
ing (Bjork, 1994; Gerjets, Scheiter, & Catrambone, 2004).

Engaging children in exploratory experiences prior to providing them with explicit instruction may
help to allay the potential pitfalls of using explicit instruction alone. Exploratory activities may alert
children to the need to make sense of the experiences they are encountering (Dewey, 1910; Hiebert &
Grouws, 2007; Schwartz & Bransford, 1998; Wise & O’Neill, 2009). In particular, exploratory experi-
ences may prompt children to begin to wrestle with the similarities and differences between these
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experiences and their prior knowledge, including noticing inconsistencies in their prior knowledge
(i.e., inducing cognitive conflict; Carey, 1985; Eryilmaz, 2002). Indeed, these experiences may help
to dispel children’s illusions of competence by helping children to realize their limited understanding
of the topic (Bjork, 1994). Despite the inherent difficulty of exploration, this process could lead chil-
dren to search for new information and begin to revise their schemas, which should aid them in
encoding new instruction in a more meaningful and relevant way (a ‘‘desirable difficulty’’; Bjork,
1994; see also Carpenter, Franke, & Levi, 2003; Dewey, 1910; Duffy, 2009). Thus, even if limited, prior
exploratory experiences could better align instruction with children’s capabilities to understand (i.e.,
could place new instruction within their zone of proximal development; Vygotsky, 1934/1987; see
also Hiebert & Grouws, 2007; Schwartz, Sears, & Chang, 2007). Children would be better prepared
to learn from instruction (Dewey, 1910).

Recent evidence supports the idea that people benefit from exploratory activities prior to instruc-
tion. For example, college students who initially explored a set of examples learned more deeply from
a lecture on cognitive psychology principles than students who simply summarized a relevant text
passage before the lecture (Schwartz & Bransford, 1998). Similarly, ninth-grade students who explored
sets of data before instruction and practice with descriptive statistics were better able to learn from
new instructional resources than students who received extended explicit instruction followed by
practice (Schwartz & Martin, 2004). These benefits of initial exploratory practice were not apparent
on traditional measures of memory or on success in solving familiar problem types; rather, they were
apparent on complex problems requiring new insights. Findings such as these led Schwartz and col-
leagues to conclude that initial exploratory practice prepares people to learn more deeply from
instruction compared with providing instruction first (Schwartz & Bransford, 1998; Schwartz & Mar-
tin, 2004; Schwartz et al., 2009; Sears, 2006).

Schwartz and colleagues’ proposal suggests that the common approach of first providing explicit
instruction and then having people practice using the instructional information is not optimal. How-
ever, despite initial evidence in support of this idea, more empirical evidence is needed. First, in Sch-
wartz and colleagues’ previous studies, the exploratory practice activities and the outcome measures
that distinguish between conditions are complex and rarely used in schools or homes. It remains to be
seen whether simpler activities can produce similar benefits. Second, these studies do not explicitly
compare the exploratory learning (plus instruction) conditions with a control condition in which peo-
ple are given the exact same learning activities in reverse order. Therefore, the effects of exploration
cannot be isolated from the potential benefits of the learning activities themselves (e.g., contrasting
datasets). Third, it is unknown whether children would benefit from initial exploratory experiences
as well as the adolescents and adults in previous studies. Exploration can place heavier demands on
working memory than explicit instruction (Kirschner et al., 2006), and working memory capacity
develops with age, with children demonstrating lower capacity than adolescents and adults (Gather-
cole, Pickering, Ambridge, & Wearing, 2004). Finally, the mechanisms by which learning is improved
have not been empirically examined. In general, lack of experimental evidence is cited as a primary
reason for the persistence of debates on the timing of explicit instruction (Mayer, 2009). The need
for further research in this area is quite important.

We propose that simply reversing the order of explicit instruction and problem solving should
benefit children’s learning. Specifically, we compared conditions in which children completed the
exact same tasks but used problem solving with feedback as exploration in one condition (prior
to instruction) and as practice in another condition (after instruction), thereby keeping the learning
materials the same across conditions. We anticipated that the simple experience of exploring unfa-
miliar problems on one’s own should (a) help children to better gauge their understanding of the
underlying concept (or lack thereof) and (b) challenge children to try new ways to solve problems,
thereby helping them to notice important problem features. As a result, this more accurate assess-
ment of their abilities and differentiated prior knowledge should help individuals to process subse-
quent instruction at a deeper level, improving conceptual knowledge acquisition and retention. We
expected these effects to occur with elementary school children and on traditional measures of
understanding, both immediately and over a delay, and we gathered empirical evidence for these
proposed mechanisms.

554 M.S. DeCaro, B. Rittle-Johnson / Journal of Experimental Child Psychology 113 (2012) 552–568



Self-explanation as an exploration tool

If exploratory activities help children to build relevant prior knowledge before explicit instruction,
then activities that help children to notice the most important information, such as self-explaining,
may also benefit learning. Self-explanation prompts ask learners to try to explain why correct content
is true, encouraging learners to actively manipulate, link, and evaluate information, and have been
shown to improve learning across a variety of domains (e.g., Chi, de Leeuw, Chiu, & LaVancher,
1994; Honomichl & Chen, 2006; Rittle-Johnson, 2006; Wellman, 2011). However, the benefits of
self-explanation for learning do not always outweigh the benefits of other learning activities that take
a comparable amount of time to complete (e.g., additional problem-solving practice; Matthews & Rit-
tle-Johnson, 2009). We examined the impact of self-explanation in conjunction with exploratory
activities, reasoning that self-explanation may bolster learning from exploration. However, the explor-
atory experience itself may be sufficient to help children prepare to learn from instruction; thus, self-
explanation might not significantly improve performance compared with solving additional problems,
demonstrating a possible boundary condition for the utility of self-explanation.

The current study

In this study, we investigated whether initial exploratory experiences and self-explanation
prompts helped children to learn from a brief explicit instruction. Through a series of microgenetic
analyses, we also examined potential reasons why different types of instructional experiences may al-
ter learning.

Children were instructed on the concept of mathematical equivalence—the concept that the two
sides of the equal sign represent the same quantity. Understanding mathematical equivalence is an
indicator of children’s flexibility in representing and using basic arithmetic ideas and is an important
prerequisite for understanding algebra (Carpenter et al., 2003; Kieran, 1992; Knuth, Stephens, McNeil,
& Alibali, 2006; Rittle-Johnson, Taylor, Matthews, & McEldoon, 2011). Unfortunately, based on early
experiences in solving problems where the equal sign is at the end of the problem (e.g., 3 + 5 =h), chil-
dren often incorrectly infer that the equal sign is a symbol that means to ‘‘sum’’ or ‘‘get the answer’’
(e.g., Carpenter et al., 2003). Thus, when solving problems involving operations on both sides of the
equal sign (e.g., 3 + 5 =h + 2, often called a mathematical equivalence problem), children often add
the numbers to the left of the equal sign (e.g., answering ‘‘8’’) or add all of the numbers (e.g., answering
‘‘10’’), consistent with their misconceptions about the meaning of the equal sign (e.g., McNeil & Alibali,
2005; Perry, Church, & Goldin Meadow, 1988). Second- to fourth-grade students have the computa-
tional skills to solve arithmetic problems but generally have little prior experience in solving equiva-
lence problems.

In the current study, children solved mathematical equivalence problems with accuracy feedback
either before or after receiving brief explicit instruction on the concept of mathematical equivalence.
During problem solving, children either self-explained or solved additional problems to equate the
time spent on the task. Thus, each child received one of four tutoring conditions based on a crossing
of these two factors (i.e., instruction order and self-explanation condition).

Children’s conceptual and procedural knowledge of mathematical equivalence was assessed prior
to the individual tutoring intervention, immediately following the intervention, and again after an
approximately 2-week delay using a detailed assessment developed in previous work (i.e., Rittle-John-
son et al., 2011). Conceptual knowledge consists of abstract or generic ideas generalized from particular
instances, including knowledge of problem structures. Procedural knowledge is knowledge of action se-
quences to solve problems (e.g., Greeno, Riley, & Gelman, 1984; Hiebert & Wearne, 1996; Rittle-John-
son, Siegler, & Alibali, 2001). Although these are distinct types of knowledge, they lie along a
continuum, often developing in an iterative fashion (Rittle-Johnson & Schneider, in press; Rittle-John-
son et al., 2001). Procedural knowledge items were similar to the problems used during the interven-
tion and, thus, tapped the ability to use or modify solution procedures learned during the intervention.
Conceptual knowledge items tapped both knowledge of the equal sign and knowledge of equation
structures, measured in a variety of ways and in formats that were not practiced during the interven-
tion. Unlike a majority of past assessments of mathematical equivalence knowledge, which have
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focused exclusively on equations with operations on both sides of the equal sign and/or explicit
knowledge of the meaning of the equal sign, our assessment also captured earlier emerging knowl-
edge such as comfort with operations on only the right side of the equal sign (e.g., 8 = 3 + 5) and com-
fort with no operations (e.g., 8 = 8) (see Rittle-Johnson et al., 2011, and Matthews, Rittle-Johnson,
McEldoon, & Taylor, 2012, for details on this measure).

Additional measures were collected during the intervention (e.g., understanding of equivalence,
subjective ratings of understanding) to assess the progression of learning and related factors.

We hypothesized that reversing the traditional tell-then-practice approach would benefit learning
in children. Indeed, rather than inducing too great of a cognitive load (as would be the case if children
never received instruction), we anticipated that asking children to solve problems before instruction
would produce a desirable difficulty (Bjork, 1994), preparing them to learn from instruction. We also
anticipated that self-explanation prompts would enhance this effect.

Specifically, we expected that children would encounter difficulty during the exploratory problem-
solving period, likely using incorrect strategies more often than they would if they solved the prob-
lems after instruction. However, in part because children were given accuracy feedback, this difficulty
should lead them to more accurately assess their understanding (Bjork, 1994), use a greater variety of
strategies (e.g., Alibali, 1999; Fyfe, Rittle-Johnson, & DeCaro, in press), and encode important features
of the problems (Schwartz et al., 2007; Siegler & Chen, 1998). Thus, children who solve problems be-
fore explicit instruction may perform worse during problem solving but demonstrate greater concep-
tual understanding at posttest. Moreover, because prior work suggests that the benefits of exploration
occur on measures of deeper understanding that reflect more integrated knowledge beyond simple
procedures (Schwartz et al., 2009; see also Hiebert & Grouws, 2007), we expected the benefit of
exploring problems prior to instruction to selectively occur on the conceptual knowledge measure.
We expected children across groups to make similar improvements in procedural knowledge.

Methods

Participants

Consent was obtained from 229 second- to fourth-grade students at a suburban public school serv-
ing a middle-class population. A pretest was given to identify children who did not already demon-
strate a high level of mathematical equivalence knowledge so that differences in learning between
conditions could be detected. Children scoring below 80% on this pretest were selected for the study
and randomly assigned to experimental conditions. Data from 5 of these children were excluded (2
because their instruction session was substantially interrupted, 2 because they had diagnosed learning
disabilities, and 1 because he was not available to participate in the intervention). The final sample
(N = 159, 56% girls and 44% boys) consisted of 77 second-graders, 56 third-graders, and 26 fourth-
graders. The average age was 8.5 years (range = 7.3–10.8). Approximately 18% of the participants were
ethnic minorities (10% African American, 6% Asian, and 2% Hispanic). These demographic characteris-
tics did not differ significantly by condition. An analysis of the second- to fourth-grade textbooks used
at the school (Greenes et al., 2005) indicated that, of all instances of the equal sign, operations were
present on both sides of the equal sign only 1 to 6% of the time and never included a definition of
the equal sign (Rittle-Johnson et al., 2011). Thus, equations with operations on both sides of the equal
sign were relatively unfamiliar to these students.

Design

Children completed a pretest, brief tutoring intervention, immediate posttest, and delayed reten-
tion test. Children were randomly assigned to one of four intervention conditions in a 2 (Order:
solve–instruct or instruct–solve)� 2 (Explanation Condition: extra practice or self-explanation)
design: solve–instruct with extra practice (n = 40: 21 second-graders, 12 third-graders, 7 fourth-
graders), solve–instruct with self-explanation (n = 39: 19 second-graders, 15 third-graders, 5 fourth-
graders), instruct–solve with extra practice (n = 38: 18 second-graders, 14 third-graders,
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6 fourth-graders), and instruct–solve with self-explanation (n = 42: 19 second-graders, 15 third-
graders, 8 fourth-graders).

Materials

Assessment
The mathematical equivalence assessment was adapted from past research (e.g., Carpenter et al.,

2003; Matthews et al., 2012; McNeil & Alibali, 2004, 2005; Rittle-Johnson, 2006; Rittle-Johnson
et al., 2011). Two parallel forms of the assessment were used, with Form 1 administered at pretest
and Form 2 administered at posttest and retention test. The two forms differed primarily in the spe-
cific numbers presented in the items. The assessment included conceptual and procedural knowledge
scales (10 points each). Conceptual knowledge items assessed two key concepts of mathematical equiv-
alence: (a) the meaning of the equal sign as a relational symbol and (b) the structure of equations,
including the validity of equations with no operations or with operations on only the right side or both
sides of the equal sign (see Table 1). Procedural knowledge problems were eight mathematical equiv-
alence problems, which had operations on both sides of the equal sign (e.g., 4 + 5 + 8 =h + 8), and two
easier but nonstandard problems (e.g., 7 =h + 5). Far transfer was assessed at retention test with se-
ven items intended to tap a higher level of conceptual thinking (e.g., ‘‘17 + 12 = 29 is true. Is

Table 1
Conceptual knowledge assessment items.

Concept Item Scoring criteria

Structure of equations 1. Correct encoding: Reproduce
three equivalence problems, one
at a time, frommemory after a 5-
s delay

1 Point if child put numerals,
operators, equal sign, and blank
in correct positions for all three
problems (position, but not
value of, the numerals must be
correct)

2. Recognize correct use of equal
sign in multiple contexts:
(a) Indicate whether seven
equations in nonstandard
formats, such as 8 = 5 + 3 and
5 + 3 = 3 + 5, are true or false

1 Point if 75% of equations
correctly identified as ‘‘true’’ or
‘‘false’’

(b) Explain why two equations
are true

1 Point per explanation if child
shows through words or
mathematics that both sides of
the equation are the same

Meaning of equal sign 1. Define the equal sign 1 Point if defined relationally
(e.g., ‘‘both sides are the same’’)

2. Identify the pair of numbers
from a list that is equal to
another pair of numbers (e.g.,
6 + 4)

1 Point if identified correct pair
of numbers

3. Identify the symbol from a list
that, when placed in the empty
box (e.g., ‘‘10 cents h one
dime’’), will show that the two
sides are the same amount

1 Point if chose the equal sign

4. Rate definitions of the equal
sign: Rate three definitions (two
fillers) as ‘‘good,’’ ‘‘not good,’’ or
‘‘don’t know’’

1 Point if rated the statement
‘‘The equal sign means two
amounts are the same’’ or ’’The
equal sign means the same as’’ as
a good definition

5. Which (of the above) is the
best definition of the equal sign?

1 Point if chose the relational
definition (see above)

6. Define the equal sign in the
context of a money-related
question (e.g., 1 dollar = 100
pennies)

1 Point if defined relationally

M.S. DeCaro, B. Rittle-Johnson / Journal of Experimental Child Psychology 113 (2012) 552–568 557



17 + 12 + 8 = 29 + 8 true or false? How do you know?’’). However, accuracy on these items was quite
low, and no differences were found across conditions, so we do not discuss this far transfer measure
further. A brief version of Form 1 (three conceptual knowledge items and two procedural knowledge
items) was used as a midtest during the tutoring intervention to assess the progression of knowledge
change during the intervention.

Intervention problem solving
Intervention materials were presented on a laptop computer using E-Prime 2.0 (Psychology Soft-

ware Tools). All instruction was scripted and well practiced so that all experimenters gave the same
instruction to all of the children. During the problem-solving block, children saw mathematical equiv-
alence problems one at a time on the computer screen and were asked to try to figure out the number
that went in the box to make the number sentence true. Children were given pencil and paper and told
that they could use these to help them solve the problems. When they had an answer, they typed this
answer on a number pad connected to the computer. After each problem, children were asked to re-
port their strategy use. Then they were given accuracy feedback. Specifically, children were told
whether their answer was correct or incorrect, and the correct answer was displayed on the computer
screen and read aloud.

Problems increased in difficulty to help elicit relevant prior knowledge (cf. Carpenter et al., 2003).
The first problem in a set was a three-operand problem (e.g., 10 = 3 +h) that children often solve cor-
rectly, followed by two four-operand problems (e.g., 3 + 7 = 3 +h, 3 + 7 =h + 6). The next three prob-
lems were five-operand problems with a repeated addend on the two sides of the equation (e.g.,
5 + 3 + 9 = 5 +h).

We manipulated what children did during the problem-solving block. Children in the extra practice
condition solved two sets of six problems each to attempt to control for the amount of time other chil-
dren spent self-explaining. Problems in the second set were isomorphic to those in the first set. Chil-
dren in the self-explanation condition solved one set of six problems and were given self-explanation
prompts after they solved each problem using the same procedure as in previous work (e.g., Matthews
& Rittle-Johnson, 2009; Rittle-Johnson, 2006). Specifically, after solving each problem and reporting
their strategy use, children were shown one correct answer and one typical incorrect answer. Children
were asked to explain how a child might have gotten each answer and then why the answer was cor-
rect or incorrect. ‘‘Why’’ prompts were used in addition to ‘‘how’’ prompts to help children discrimi-
nate simple problem-solving procedures from the deeper conceptual responses associated with the
benefits of self-explaining (Chi et al., 1994). Explaining both correct and incorrect answers helps chil-
dren to distinguish correct and incorrect ways of thinking (Siegler, 2002).

Intervention instruction
During instruction (adapted from Matthews & Rittle-Johnson, 2009), children were briefly taught

about the relational meaning of the equal sign. Specifically, number sentences were shown on the
computer screen, and the experimenter gave scripted explanations of both the structure of these num-
ber sentences (i.e., that there are two sides) and the explicit meaning of the equal sign (i.e., that the
equal sign means that both sides are equal or the same). For example, for the first number sentence,
3 + 4 = 3 + 4, children were told, ‘‘There are two sides to this problem, one on the left side of the equal
sign [sweeping gesture under left side] and one on the right side of the equal sign [sweeping gesture
under right side]. . . . What the equal sign [pointing] means is that the things on both sides of the equal
sign are equal or the same [sweeping hand back and forth].’’ Then the meaning of the equal sign was
reiterated with four other number sentences of various sorts (e.g., 4 + 4 = 3 + 5; 3 + 4 =h;
5 + 4 + 3 = 5 +h). Children were often prompted with questions and asked to point to the two sides
of the problem to ensure that they were attending to instruction. Solution procedures were not
discussed.

Additional measures
Children were asked two questions to assess their subjective ratings of understanding. Specifically,

children were shown a new mathematical equivalence problem (5 + 2 + 3 = 7 +h) and asked whether
they thought they could solve it correctly, and then they were asked whether they thought they
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understood what the equal sign means. Response options for both items were ‘‘yes,’’ ‘‘maybe,’’ and
‘‘probably not,’’ which were later converted to a 3-point scale and averaged. Two other measures were
administered but were not relevant for the current study and, therefore, are not discussed further: a
self-report on learning and performance goals for mathematics (adapted from Elliot, 1999) and a mea-
sure of working memory capacity (backward digit span; Wechsler, 2003).

Procedure

Children completed the written pretest in their classrooms in one 30-min session. Children who
scored below 80% on the pretest completed a one-on-one tutoring intervention and immediate post-
test in one session lasting approximately 45 min. This session occurred at least 1 day after the pretest.
The tutoring intervention consisted of two components, a problem-solving block and an instruction
block. The order in which students completed these blocks varied. Specifically, children given the in-
struct–solve order received instruction first, followed by the problem-solving block. Children given the
solve–instruct order did the opposite, completing the problem-solving block first, followed by instruc-
tion. The problem-solving block was audio- and video-recorded.

The midtest and subjective ratings of understanding measure were administered between the two
blocks, and the subjective ratings of understanding measure was administered again at the end of the
intervention. Approximately 2 weeks after the tutoring intervention, children completed the written
retention test in group sessions.

Coding

On the conceptual knowledge assessment, each item was scored using the criteria in Table 1. Two
raters who were blind to the experimental conditions independently coded 20% of the items requiring
an explanation, and interrater agreement was high (kappas = 89–96%). On the procedural knowledge
assessment, answers to problems were scored as correct if they came within 1 of the correct answer to
reduce false negatives due to arithmetic errors. Scores were converted to percentages correct.

Children’s strategy reports were transcribed and coded by trained raters. Two raters independently
coded 20% of the strategy reports, and interrater agreement was high (kappa = 80%). We also coded
children’s self-explanations during the intervention for whether children mentioned the concept of
equivalence (e.g., ‘‘They both have to equal the same thing’’), and interrater agreement on 20% of
explanations was high (kappa = 89%).

Treatment of missing data

On the day of the retention test, 6 participants (3.7% of the sample) were absent from school (1 in
the solve–instruct with extra practice condition, 3 in the instruct–solve with extra practice condition,
and 2 in the instruct–solve with self-explanation condition). These participants did not differ from the
other participants on the pretest. Their missing data were replaced using a multiple imputation
technique because multiple imputation leads to more precise and unbiased conclusions than does
case-wise deletion (Peugh & Enders, 2004; Schafer & Graham, 2002). We used the expectation
maximization (EM) algorithm for maximum likelihood estimation via the missing value analysis
module of SPSS, as recommended by Schafer and Graham (2002). Children’s missing scores were
estimated from all nonmissing values on continuous variables that were included in the analyses
presented below. Analyses using a case-wise deletion approach yielded the same basic findings.

Results

Pretest

At pretest, children who were included in the intervention answered a minority of procedural and
conceptual items correctly (M = 47% correct, SD = 27, and M = 36% correct, SD = 19, respectively). For

M.S. DeCaro, B. Rittle-Johnson / Journal of Experimental Child Psychology 113 (2012) 552–568 559



example, most children were successful on equations with a single addition operation on the right side
of the equal sign. As expected, neither conceptual nor procedural knowledge differed by order or
explanation condition at pretest (Fs < 1).

Posttest and retention test

We expected that children who solved problems prior to instruction would show better conceptual
knowledge—indicative of a deeper level of understanding—than children who solved problems after
instruction. We also investigated whether self-explanation prompts improved learning more than
solving additional problems, particularly when used prior to conceptual instruction. We expected sim-
ilar effects of order and explanation condition across both posttest and retention test. To evaluate
these hypotheses, we conducted 2 (Order: instruct–solve or solve–instruct) � 2 (Explanation Condi-
tion: extra practice or self-explanation) � 2 (Time: posttest or retention test) analyses of covariance
(ANCOVAs), with order and explanation condition as between-participants factors and time as a with-
in-participants factor. Conceptual and procedural knowledge pretest scores, as well as children’s age
at pretest, were included in all analyses as covariates to control for prior knowledge. In preliminary
analyses, we explored whether effects of condition depended on pretest knowledge or age (e.g.,
whether either pretest measure interacted with order or explanation condition), but they did not,
so these terms were not included in the final models. Effect sizes are reported using partial eta-
squared.

Procedural knowledge
First, we verified that condition did not affect procedural knowledge. There was a marginal effect of

time on procedural knowledge, F(1,152) = 3.07, p = .082, g2
p = .02; children’s percentage correct on the

procedural knowledge items generally improved from posttest (M = 72%, SE = 2) to retention test
(M = 76%, SE = 2) (see Table 2). However, there were no effects of order or explanation condition or
any interactions (Fs < 1). Children across all experimental conditions demonstrated greater procedural
knowledge after the tutoring intervention, and neither the order of instruction nor the explanation
condition differentially affected performance.

Conceptual knowledge
Next, we considered differences in conceptual knowledge. A main effect of order was found for con-

ceptual knowledge, F(1,152) = 5.07, p = .026, g2
p = .03. As shown in Fig. 1, children given the solve–in-

struct order scored higher on the conceptual knowledge measure (M = 67%, SE = 2) than children given
the instruct–solve order (M = 60%, SE = 2). There was no effect of explanation condition or an
Order � Explanation Condition interaction (Fs < 1), indicating that self-explanation did not help chil-
dren’s conceptual knowledge beyond additional problem-solving practice alone for either instruc-
tional order (see Table 2). Finally, there was a main effect of time on conceptual knowledge,

Table 2
Mean percentages correct on procedural and conceptual knowledge assessments as a function of order and explanation condition
at posttest and retention test.

Instruct–solve condition Solve–instruct condition

Assessment Extra practice Self-explain Extra practice Self-explain

Conceptual knowledge
Posttest 59 (28) 60 (23) 64 (22) 64 (24)
Retention test 62 (26) 63 (21) 65 (22) 69 (21)

Procedural knowledge
Posttest 74 (33) 73 (30) 70 (27) 69 (32)
Retention test 76 (31) 76 (28) 75 (27) 78 (28)

Note: Standard deviations are in parentheses.
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F(1,152) = 8.75, p = .004, g2
p = .05, indicating that conceptual knowledge scores improved from posttest

(M = 62%, SE = 2) to retention test (M = 65%, SE = 2).
To verify that the effect of order was consistent across both posttest and retention test, we con-

ducted a separate Explanation Condition � Order ANCOVA for each test occasion. At both posttest
and retention test, there was a main effect of order, F(1,152) = 4.39, p = .038, g2

p = .03, and
F(1,152) = 3.97, p = .048, g2

p = .03, respectively. There was no effect of explanation condition or inter-
action between order and explanation condition at either test occasion (Fs < 1.3).

Intervention

As shown in the preceding analyses, children who solved problems prior to receiving instruction on
the underlying concepts demonstrated greater conceptual knowledge on subsequent assessments. We
next sought to better understand the reasons for this improved learning. Pretest knowledge and age
were included as covariates in all analyses.

Midtest
Children completed a midtest between the problem-solving and instruction blocks of the interven-

tion. Two of the midtest items were procedural knowledge items. A 2 (Order) � 2 (Explanation Con-
dition) ANCOVA on accuracy on these items revealed no differences between conditions (M = 67%,
SE = 3, Fs < 1.64).

In contrast, there were differences between conditions in conceptual knowledge, but the effects
varied with the item type. One midtest item asked children to define the equal sign. Children who
had just received conceptual instruction on the meaning of the equal sign were more likely to give
a relational definition of the equal sign (58% of children in the instruct–solve condition) than children
who had only solved problems at that point (20% of children in the solve–instruct condition), v2(1,
N = 159) = 23.18, p < .001.

The other two conceptual knowledge items assessed children’s encoding of the problem structures
by asking children to reproduce equivalence problems from memory. Past work has demonstrated
that children often make systematic errors when reconstructing problems (e.g., they reproduce
5 + 4 + 8 = 5 +h as 5 + 4 + 8 + 5 =h; McNeil & Alibali, 2004). Children in the solve–instruct group were
more likely to encode the structure of the problems correctly at midtest (M = 54% correct, SE = 4) than
children in the instruct–solve group (M = 44%, SE = 4), F(1,152) = 4.16, p = .043, g2

p = .03. This finding is
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striking given that children in the instruct–solve condition were explicitly taught about the structure
of the problems and guided through several examples. Exploring the problems allowed children in the
solve–instruct condition to better notice the structure of the equations than children who had re-
ceived explicit instruction.

Problem-solving accuracy
We next examined children’s accuracy on the problem-solving portion of the intervention. In all

analyses with intervention problems, we report findings using the first set of intervention problems
only (i.e., Problems 1–6) to equate the dependent variable for all groups. However, the same pattern
of findings is obtained when including both sets of intervention problems for the extra practice
groups.

Because children in the solve–instruct group solved problems as an exploratory tool (i.e., without
prior instruction), we expected these children to solve problems less accurately than children in the
instruct–solve group. A 2 (Order) � 2 (Explanation Condition) ANCOVA on intervention problem-solv-
ing accuracy confirmed this prediction. A main effect of order was found, F(1,152) = 6.36, p = .013,
g2
p = .04. Children in the solve–instruct group (M = 52%, SE = 4) were less accurate when solving the

intervention problems compared with children in the instruct–solve group (M = 65%, SE = 4). No other
significant effects were found (Fs < 1).

Strategy use
We next examined the percentage of intervention problems on which children used each strategy

type with separate 2 (Order) � 2 (Explanation Condition) MANCOVAs for correct and incorrect strat-
egies. As shown in Table 3, children in the instruct–solve group used correct strategies more often,
F(5,148) = 3.24, p = .008, g2

p = .10, and incorrect strategies less often, F(4,149) = 3.07, p = .018,
g2
p = .08, than children in the solve–instruct group—consistent with their superior accuracy. However,

children in the instruct–solve group still used incorrect strategies to solve more than a quarter of the
problems.

Strategy variability
Given that children in the solve–instruct group were exploring the intervention problems prior to

instruction, we expected these children to try a greater number of strategies during the intervention.
For each child, we calculated the total number of different discernible strategies used on the interven-
tion problems (correct strategies: equalizer, grouping, add–subtract; incorrect strategies: add all, add
to equals; see Table 3) and submitted these totals to separate 2 (Order) � 2 (Explanation Condition)
ANCOVAs for correct and incorrect strategies. No significant differences were found for the number
of correct strategies used (M = 1.26, SE = 0.06, Fs < 2.13). Even though children in the solve–instruct

Table 3
Mean percentages correct and incorrect strategy use during tutoring intervention problem-solving block.

Sample explanation: 3 + 4 + 8 =h + 8 Instruct–solve Solve–instruct

(A) Correct strategies
Equalizer 3 + 4 is 7, 7 + 8 is 15, and 7 + 8 is also 15 51 (34) 36 (34)*

Grouping I took out the 8s and I added 3 + 4 10 (17) 7 (16)
Add–subtract I did 8 + 4 + 3 equals 15 and subtract 8 6 (11) 3 (9)
Incomplete procedure I added 7 plus 8 (gave correct answer) 4 (12) 8 (11)a

Insufficient work I used my fingers 4 (9) 2 (6)a

(B) Incorrect strategies
Add all I added 8 and 3 and 4 and 8 together 5 (10) 7 (13)
Add to equals I just added 3 + 4 + 8 6 (14) 15 (21)*

Don’t know I don’t know 5 (13) 5 (14)
Other incorrect I just added 8 to 3 8 (15) 16 (23)*

Note: Standard deviations are in parentheses. ‘‘Other incorrect’’ strategies were counted as one category of incorrect strategies
in analyses.
* p < .05.

a p < .10.
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group used correct strategies less often across all of the problems, these children did discover the same
number of correct strategies as those in the instruct–solve group. For incorrect strategies, a main effect
of order was obtained, F(1,152) = 7.12, p = .008, g2

p = .05. Children in the solve–instruct group used a
greater number of different incorrect strategies (M = 0.74 out of 2, SE = 0.07) than children in the in-
struct–solve group (M = 0.47, SE = 0.07). No other effects were found (Fs < 1). Children in the solve–in-
struct group employed a greater number of incorrect strategies involving common misconceptions
about the equal sign than children who had received instruction before problem solving.

Subjective ratings of understanding
The difficulty experienced during the initial exploratory problem-solving phase may have led the

solve–instruct group to gain more accurate perceptions of their understanding (or lack thereof). This
more accurate perception could, in turn, have alerted the solve–instruct group to the importance of
the subsequent instruction. To explore this idea, we analyzed children’s subjective ratings of under-
standing after each block of the intervention in a 2 (Order) � 2 (Explanation Condition) � 2 (Block:
1 or 2) ANCOVA. A significant Order � Block interaction was found, F(1,152) = 5.81, p = .017,
g2
p = .04. No other condition effects reached significance (Fs < 2.83). As shown in Table 4, after Block

1, children in the solve–instruct condition rated their understanding as lower than children in the in-
struct–solve condition, F(1,152) = 6.12, p < .05, g2

p = .04. After Block 2, children in the solve–instruct
condition rated their understanding as high as children in the instruct–solve condition (F < 1).

To gauge whether children in the solve–instruct group were more accurate in their assessments of
understanding, we correlated final subjective ratings of understanding with conceptual knowledge at
posttest and retention test. At posttest, ratings of understanding were significantly correlated with
conceptual knowledge for both groups (solve–instruct: rp = .24, p = .039; instruct–solve: rp = .23,
p = .042), indicating that both groups accurately rated their understanding immediately prior to com-
pleting the posttest. At retention test, the correlation between ratings of understanding and concep-
tual knowledge remained significant for the solve–instruct group (rp = .27, p = .020). However, the
relationship was no longer significant for the instruct–solve group (rp = .13, p = .249). These findings
suggest that children in the solve–instruct group more accurately perceived their understanding in
a way that was maintained over time.

Explanation quality
Self-explanation prompts did not improve performance relative to solving extra practice problems.

One reason may be the low frequency of conceptually oriented explanations. In both instructional or-
ders, the frequency of explanations that included the concept of equivalence was relatively low (26
and 35% of explanations for the solve–instruct and instruct–solve groups that were prompted to
self-explain, respectively, F < 2, ns). Rather, children’s explanations of why an answer was correct or
incorrect more often focused on reiterating the solution procedure.

Discussion

A key concern for parents, teachers, and researchers is how to structure learning situations to facil-
itate understanding (cf. Hirsch-Pasek et al., 2009; Piaget, 1973; Schwartz et al., 2007; Vygotsky, 1934/
1987). In the current study, we examined how combining elements from two predominant theories of
learning—exploration and explicit instruction—affects children’s understanding of mathematical
equivalence. Children solved relatively unfamiliar problems either before or after receiving brief
instruction on the concept. Solving problems prior to receiving conceptual instruction (solve–instruct

Table 4
Mean subjective ratings of understanding during tutoring intervention.

Block 1 Block 2

Condition Instruct–solve 1.68 (0.47) Instruct 1.68 (0.36) Solve
Solve–instruct 1.53 (0.46) Solve 1.70 (0.38) Instruct

Note: Standard deviations are in parentheses.
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condition) resulted in significantly higher conceptual knowledge compared with a conventional in-
struct-then-practice approach (instruct–solve condition) at both an immediate posttest and a delayed
retention test.

Incorporating an element of exploration in the learning environment had a marked benefit despite
the fact that children in the solve–instruct condition used less sophisticated problem-solving strate-
gies and showed poorer understanding during the tutoring intervention. The difficulty experienced
by children in this condition appeared to help them more accurately assess their understanding, try
a larger variety of incorrect strategies, and better encode the structure of the problems. Self-explana-
tion prompts did not significantly improve children’s understanding relative to additional practice.
These findings document the importance of exploratory activities in combination with explicit
instruction and reveal how certain learning activities can alter the ways in which children attend to
the information they are learning.

Benefits of exploration

Although solving problems before instruction was more difficult than solving problems after
instruction, there appear to have been several benefits to such struggle. Specifically, children may have
been more likely to realize their limited understanding and attend to the learning activities at a deeper
level.

Realizing limited understanding
Children who solved problems before instruction performed more poorly during the problem-solv-

ing portion of the tutoring intervention than children who received instruction first—solving problems
less accurately, using poorer problem-solving strategies, and demonstrating lower explicit under-
standing of the equal sign midway through the intervention. These children, accordingly, rated their
understanding as lower during the intervention compared with children in the instruct–solve
condition.

Many researchers have noted the importance of struggle, cognitive conflict, relevant cognitive load,
and/or difficulty during learning, arguing that a manageable level of such difficulty can ultimately lead
to better learning and retention (Bjork, 1994; Eryilmaz, 2002; Hiebert & Grouws, 2007; Schmidt &
Bjork, 1992; Sweller et al., 1998; Vamvakoussi & Vosniadou, 2004). The initial difficulties posed by
exploratory practice in our study may have helped children to recognize their limited, and sometimes
incorrect, prior knowledge and more accurately gauge their understanding of equations. Indeed, chil-
dren’s ratings of understanding during the intervention were correlated with their retention of con-
ceptual knowledge over a 2-week delay in this condition. In contrast, in the instruct–solve
condition, children’s ratings of understanding were not correlated with their conceptual knowledge
after a delay. Initial struggle may help children to better gauge their understanding.

Attending to learning activities at a deeper level
A better sense of limitations in one’s knowledge may encourage children to more actively attend to

the learning activities (Hiebert & Grouws, 2007). Children often fail to notice important information in
the learning environment, and learning what information to attend to (i.e., encode) is a prominent
process underlying learning and development (e.g., Case & Okamoto, 1996; Siegler, 1989). In the case
of mathematical equivalence problems, children must notice that there are operations on both sides of
the equal sign, but many children encode the problems as having operations only on the left side (e.g.,
reproduce 5 + 7 + 4 = 5 +h from memory as 5 + 7 + 4 + 5 =h; McNeil & Alibali, 2004). Children in the
solve–instruct condition encoded the structure of mathematical equivalence problems more accu-
rately midway through the intervention than children in the instruct–solve group. This difference oc-
curred despite the fact that the instruct–solve group had been explicitly taught the problem structure
and is consistent with the idea that the lack of struggle can lead people to process information super-
ficially (Bjork, 1994; Wittwer & Renkl, 2008). Exploring problems prior to instruction appears to have
helped children to notice and encode important features of the problems, particularly the way in
which the problem structure differs from problems they have commonly encountered in the past.
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Children may have been more likely to notice these important problem features in the process of
generating and revising potential solution strategies during exploration (Siegler, 1996). Children in the
solve–instruct group used a larger variety of incorrect strategies than children in the instruct–solve
condition, although they discovered correct strategies as well. This finding is particularly noteworthy
because it contrasts a common notion that trying incorrect paths hurts performance. For example,
associationist theories of learning and cognitive load theory (Kirschner et al., 2006; Seyler, Kirk, & Ash-
craft, 2003; Siegler & Shipley, 1995) suggest that learning is advanced when the problem space is con-
strained as soon as possible so that erroneous associations are not reinforced. Such theories may
underestimate the benefits of exploring a problem space. Generating and revising potential solution
strategies may help children to identify and encode necessary features of the problems (Siegler, 1996).

Exploration and explicit instruction: joining forces

These findings have important implications for theories of learning and development that differ in
their emphasis on the importance of exploration and explicit instruction from a social partner. In for-
mal instructional contexts, several researchers have concluded that explicit instruction practices have
received far more substantial empirical support (Alfieri et al., 2011; Kirschner et al., 2006; Mayer,
2004; Tobias, 2009). Although some note that forms of guided discovery are promising (e.g., Alfieri
et al., 2011; Mayer, 2004), explicit instruction appears to be rising as the more strongly favored formal
instructional approach in the research literature. It is also the dominant instructional model in U.S.
mathematics education. For example, in representative eighth-grade lessons from six countries, at
least two thirds of individual work time was spent solving problems using a teacher-demonstrated
procedure, whereas less than a quarter of time was potentially spent developing new solution proce-
dures or modifying previously learned procedures (with the least potential time spent being in U.S.
lessons at 9%; Hiebert et al., 2003). The current study, drawing from constructivist theories, demon-
strates the utility of adding exploratory activities to explicit instruction. It provides much-needed
experimental evidence on the timing of explicit instruction (Mayer, 2009).

Attending to the ways in which explicit and exploratory experiences might work in combination
more generally has important implications for theories of learning and development. For example,
children can learn language both through explicit instruction from a social partner (e.g., pointing
and labeling; Koenig & Harris, 2005; Tomasello et al., 2005) and through observations of language
used around them (e.g., overhearing and associating words and their referents; Schneidman, Buresh,
Shimpi, Knight-Schwarz, & Woodward, 2009; Smith & Yu, 2008). Perhaps children might more appro-
priately generalize from explicit labeling if they are first exposed to the word–referent pairing in their
own explorations. The current findings suggest that other types of learning and development—such as
language development—might be better understood by examining how, and in what order, explicit
and exploratory experiences can be combined.

The role of self-explanation

Unlike exploratory practice, self-explanation prompts did not significantly improve performance.
Self-explanation has been lauded as a powerful, domain-general learning process (e.g., Chi et al.,
1994; Rittle-Johnson, 2006). However, a majority of the empirical support for self-explanation con-
founds self-explanation with time on task (i.e., children who are prompted to self-explain also spend
more time on the task than children who are not prompted to self-explain). In the five published
experimental studies in which time on task has been equivalent in the self-explain and no-self-explain
conditions, two have found a benefit for self-explanation and three have not (Aleven & Koedinger,
2002; de Bruin, Rikers, & Schmidt, 2007; compared to Große & Renkl, 2006; Matthews & Rittle-John-
son, 2009; Mwangi & Sweller, 1998). For example, in Matthews and Rittle-Johnson (2009), all children
received conceptual instruction and then solved problems, and self-explanation prompts did not im-
prove learning compared with solving additional practice problems instead. We have replicated this
finding and extended it to a context in which problem solving and self-explanation prompts occurred
before instruction. It is important to note that only about a quarter of self-explanations contained con-
ceptual ideas in the current study even though we attempted to support effective self-explanations by
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including easier problems thought to elicit early emerging understanding of the equal sign (e.g.,
10 = 3 +h) and by including conceptual instruction before self-explanation for some children. These
findings highlight difficulties in eliciting effective self-explanations.

Limitations and future directions

Despite the promising implications for theories of learning and instruction, these findings are based
on a brief, one-on-one scripted instruction in a single, formal tutoring intervention. In addition, this
intervention focused on just one fairly constrained activity that does not encompass the range of
exploratory activities. For example, our exploratory activity included problems with which students
were familiar as well as less familiar mathematical equivalence problems in an effort to activate rel-
evant prior knowledge during exploration (cf. Carpenter et al., 2003; Dewey, 1910; Schwartz et al.,
2007). Moreover, we demonstrated these effects in a domain where children often carry misconcep-
tions into the learning situation. Although similar results have been shown in domains with less obvi-
ous misconceptions (e.g., cognitive psychology: Schwartz & Bransford, 1998; learning a new toy’s
function: Bonawitz et al., 2011), future work should examine whether there are characteristics of
the learning domain that enhance or reduce the benefits of exploration prior to instruction. Future
replications and extensions are needed before these methods can be generally prescribed to other con-
texts, such as the classroom and home, or to other exploratory activities, such as identifying causal
factors through experimentation (e.g., Klahr & Nigram, 2004).

We also have demonstrated that, on average, exploratory activities lead to processes that improve
learning. Future research should examine how individual differences also affect how children learn
from exploratory activities and when these activities may be more or less important for understanding
instruction (e.g., they may be less important when a person already has sufficiently differentiated
prior knowledge; Schwartz et al., 2007).

Finally, this study has demonstrated several potential mechanisms for improved learning due to
exploratory activities, and future work should examine these further. By better understanding the cog-
nitive processes that underlie learning from exploration, we not only can better understand what fac-
tors improve learning but also can better predict the circumstances in which understanding will be
best attained.

In conclusion, this study has demonstrated that exploratory activities can alter how children pro-
cess new information, significantly improving subsequent conceptual understanding from instruction
both immediately and over a 2-week time period. In addition to the implications for theories of learn-
ing and development, these findings have practical implications, demonstrating that exploratory
activities do not need to be complex or time-consuming. Solving relatively unfamiliar problems with
feedback can be sufficient to prepare children to learn from instruction.
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