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A B S T R A C T

Exploring a new concept before instruction can benefit conceptual understanding, but is demanding. The current
experiments examined whether providing guidance during exploration improves learning. Undergraduate stu-
dents explored the procedures and concept of statistical variance prior to direct instruction. In Experiment 1
(N= 123), exploring using worked examples (full guidance) led to higher posttest scores than exploring using an
invention activity (no guidance) or completion problems (partial guidance). In contrast, Experiment 2 (N= 190)
found no learning benefit of exploring using worked examples compared to inventing. Overall, exploring im-
proved learning compared to instruct-then-practice conditions. Experiment 3 (N= 147) demonstrated that ex-
ploring worked examples improved learning compared to exploring using an invention activity—but only when
preceded by a pretest. Students’ reported cognitive load, knowledge gaps, and interest were also assessed.
Findings suggest that combining a pretest with worked examples helps students perceive knowledge gaps and
discern problem features, maximizing exploration while reducing cognitive load.

1. Introduction

Traditionally, instructors first teach concepts and procedures, fol-
lowed by problem-solving practice. However, this approach may lead to
superficial attention and learning (DeCaro & Rittle-Johnson, 2012;
Renkl, 1999). Students do not always understand how the new in-
formation fits in with what they already know, and do not meaningfully
integrate the new information with prior knowledge (Schwartz &
Bransford, 1998). Students also focus on superficial features rather than
deeper principles (Glogger-Frey, Gaus, & Renkl, 2017). Additionally,
the ease of listening to a lecture can lead students to believe they un-
derstand the material better than they do (Bjork, 1994; Renkl, 1999).
For these reasons, the traditional approach often results in weak con-
ceptual understanding and limited ability to transfer to new contexts
(Kapur, 2012; Loibl & Rummel, 2014a, 2014b).

To counter these concerns, some instructors select constructivist-
inspired methods that offer minimal guidance, such as discovery
learning (Alfieri, Brooks, Aldrich, & Tenenbaum, 2011; Dean & Kuhn,
2007). Students are responsible for discovering underlying patterns,
absent of instructional guidance. However, purely constructivist ap-
proaches ignore capacity limits of working memory (Kirschner, Sweller,
& Clark, 2006), and often lead to weaker learning relative to guided
instruction (cf. Alfieri et al., 2011; Mayer, 2004).

Other approaches draw on both traditional and constructivist-

inspired instructional methods, often resulting in better learning than
either approach alone (Alfieri et al., 2011). For example, exploratory
learning includes two phases. First, students explore a new concept, in
keeping with constructivist-inspired methods. Then, students are given
instruction (DeCaro & Rittle-Johnson, 2012; Schwartz, Lindgren, &
Lewis, 2009; Weaver, Chastain, DeCaro, & DeCaro, 2018). We use the
term exploratory learning to encompass several specific literatures ex-
amining this two-phase procedure (i.e., inventing to prepare for future
learning, productive failure, and problem-solving first methods;
Likourezos & Kalyuga, 2016; Loibl, Roll, & Rummel, 2016). Typically,
procedures are learned equally well with traditional and exploratory
learning methods. However, conceptual understanding and transfer
have been shown to improve when using exploratory learning ap-
proaches compared to traditional instruction (see Kapur, 2015, 2016;
Schwartz et al., 2009).

The types of exploration activities differ across studies (Loibl et al.,
2016). For example, one type of exploratory learning activity, invention
problems, ask students to invent a method for solving a novel problem
targeting the to-be-learned concept (Schwartz & Martin, 2004). After-
wards, students receive direct instruction. Previous studies have shown
that invention with subsequent instruction enhances students’ under-
standing of concepts such as statistical variance and standard deviation
(d= 1.29–2.51, ηp

2 = 0.08−0.30; e.g., Jarosz, Goldenberg, & Wiley,
2016; Kapur, 2012, 2014; Loibl & Rummel, 2014a, 2014b; Schwartz &
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Martin, 2004). For example, Kapur (2012) found that ninth-grade stu-
dents who invented methods for calculating variance prior to instruc-
tion demonstrated greater conceptual understanding and transfer on a
posttest than students who received instruction followed by practice.

Across the current studies, we manipulate the amount of guidance
students receive during an invention activity prior to direct instruction.
We also examine whether including a pretest changes the benefits of
exploring. We assess students' self-reported cognitive load, knowledge
gaps, and interest/enjoyment. By comparing how different types of
invention activities impact learning and self-reports, we can better
understand when and why exploratory learning will support students’
understanding.

1.1. Cognitive mechanisms supporting exploratory learning

Several mechanisms have been proposed to explain how exploration
activities improve learning (Kalyuga & Singh, 2016; Loibl et al., 2016).
First, exploratory learning likely has metacognitive and motivational
benefits, by helping students become aware of gaps between their
current understanding and that required by the problem (Glogger-Frey,
Fleischer, Grüny, Kappich, & Renkl, 2015; Loibl & Rummel, 2014a).
Awareness of knowledge gaps may increase interest and help guide at-
tention during subsequent instruction by providing an impasse that
must be resolved, or a “need to know” (Berlyne, 1954; Glogger-Frey
et al., 2015; Glogger-Frey et al., 2017; Richland, Kornell, & Kao, 2009;
Rotgans & Schmidt, 2014; Schwartz & Martin, 2004; Wise & O'Neill,
2009). Situational interest and enjoyment can also be engaged when a
task is novel, somewhat complex, and requires personal direction
(Rotgans & Schmidt, 2014; Silvia, 2008). In contrast, traditional in-
struct-then-practice methods are less likely to lead students to perceive
knowledge gaps, creating an illusory perception that they understand
the material better than they actually do, and decreasing attention and
effort (Bjork, 1994; DeCaro & Rittle-Johnson, 2012; Dunlosky &
Rawson, 2012; Kapur, 2016; Renkl, 1999).

Second, exploratory learning is posited to have cognitive benefits.
Engaging in an exploration activity enables students to activate prior
knowledge of relevant concepts, such as central tendency when learning
about variance (Kapur, 2012, 2015; Schwartz, Sears, & Chang, 2007).
Prior knowledge is stored in long-term memory as schemas (Sweller,
2004; van Merriënboer & Sweller, 2005). Activating prior knowledge
during exploratory learning allows students to prepare preexisting
schemas to integrate with new information from instruction (Sweller,
van Merriënboer, & Paas, 1998). In addition, exploratory learning is
thought to help students better perceive deep structural problem features
(Kapur, 2012; Loibl et al., 2016; Schwartz & Bransford, 1998; Schwartz
& Martin, 2004). Students must test solution possibilities using trial and
error (DeCaro & Rittle-Johnson, 2012). Students then begin to de-
termine which features are important for solving the problem, and
which are not (Glogger-Frey et al., 2015; Schwartz & Martin, 2004).
This process is thought to support deeper understanding and transfer to
problems containing similar structural features (Glogger-Frey et al.,
2017; Schwartz & Bransford, 1998).

1.2. The case against exploratory learning

Despite evidence that exploratory learning is beneficial, these ac-
tivities can be difficult. Students must select among many possible so-
lution paths, leading to errors or failure to reach a solution (Kapur,
2016; Kirschner et al., 2006). Drawing on cognitive load theory,
Kirshner, Sweller, and Clark (2006) argue that such activities harm
learning, because they induce high cognitive load. Students’ limited
working memory resources are directed towards inappropriate solution
approaches rather than correct information (see also Hsu, Kalyuga, &
Sweller, 2015; Mayer, 2004; Mayer & Moreno, 2003). As described by
Kalyuga and Singh (2016), cognitive load theory states that learning
activities should maximize intrinsic load while reducing extraneous

load. Both intrinsic and extraneous load result in mental effort, but
intrinsic load is productive and extraneous load is unproductive for
attaining domain-specific knowledge (Kalyuga & Singh, 2016). Con-
sistent with this criticism, research has demonstrated that cognitive
load is higher following invention activities when compared with
guided alternatives (Glogger-Frey et al., 2015, d= 0.94; Likourezos &
Kalyuga, 2016, ηp

2 = 0.15).
Kalyuga and Singh (2016) recently outlined how exploratory

learning findings may be reconciled with cognitive load theory, con-
cluding that cognitive load theory does not apply to exploration ac-
tivities. Specifically, Kalyuga and Singh outline three general goals of
learning: (1) to prepare students to learn, for example by activating
knowledge gaps or situational interest prior to instruction; (2) to de-
velop domain-specific knowledge, such as learning specific facts and
procedures; and (3) to develop general concepts and the ability to
transfer within a domain. Kalyuga and Singh state that cognitive load
theory has traditionally focused only on the second goal, but may be
relevant to the third goal as well. However, they posit that cognitive
load is less relevant for the first goal, which includes exploratory
learning, because exploration is not intended to instruct students on
specific facts and procedures. They acknowledge that allowing learners
to encounter multiple solution paths and make errors may benefit later
learning, despite inducing cognitive load. In addition, they note that
cognitive load may still impact whether exploration activities success-
fully prepare students for future learning.

1.3. Providing guidance during exploratory learning

In the current research, we directly test whether cognitive load
matters during exploratory learning. Kalyuga and Singh (2016) em-
phasize the metacognitive and motivational processes of exploratory
learning, but largely overlook the cognitive benefits. If cognitive load
during exploration is too high, learners may be less likely to perceive
relevant problem features. Thus, high cognitive load—even during an
exploration activity—may impact conceptual understanding and
transfer.

One way to test this idea is to examine how providing different
levels of guidance during exploration impacts learning. Initial studies
have compared exploration using an invention activity to exploration
using worked examples prior to instruction. Worked examples are pro-
blems for which completely worked-out solutions are provided, usually
with brief explanations (cf. Chen, Kalyuga, & Sweller, 2015; Glogger-
Frey et al., 2015, 2017). Worked examples given in an exploratory
learning context allow learners to explore the conceptual bases of ap-
propriate solution approaches by studying someone else's steps. Worked
examples decrease cognitive load by eliminating multiple solution
paths and errors (Sweller et al., 1998; Tuovinen & Sweller, 1999).
Worked examples provided prior to direct instruction are considered to
be a form of guided exploration, as students are guided in the proce-
dures but not necessarily the underlying concepts. Students are pre-
paring to learn the full information provided in the subsequent in-
struction (Glogger-Frey et al., 2015, 2017).

Previous research comparing worked examples to invention activ-
ities prior to instruction have reported mixed results. Across two ex-
periments, Glogger-Frey et al. (2015) showed enhanced learning for
students who explored using worked examples compared to those given
an invention activity (d= 0.71−0.72)—even though inventing led to
higher perceived knowledge gaps, epistemic curiosity, and interest. In
the first experiment, student teachers learned how to evaluate the
quality of student learning journals. In the second experiment, eighth-
grade students learned about density and ratio indices in physics.
Cognitive load was also assessed and was lower in the worked-examples
condition (d= 0.94).

Likourezos and Kalyuga (2016) compared three levels of guidance
during an exploration task: No guidance, partial guidance (the final
solution was provided, guiding participants to the correct solution), and
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worked examples. Year 8 high school students learned about properties
of geometric figures. No differences were found between conditions on
the posttest measures. However, students in the worked examples
condition generated more creative and advanced responses during the
posttest. Students who explored worked examples also reported lower
extraneous load (ηp

2 = 0.15). These results provide limited support for
the idea that reducing cognitive load helped students in the worked
examples condition develop more sophisticated schemas.

In contrast to these studies, Glogger-Frey et al. (2017) found re-
duced cognitive load, but also lower learning, in a worked examples
condition, compared to an invention condition in which students re-
ceived extra practice (far-transfer: d= 0.61; near-transfer: d= 0.54).
Participants were eight-grade students learning about density and ratio
indices in physics.

2. Current studies

The current studies further examined whether providing guidance
during exploration benefits learning. Across three experiments, under-
graduate students were taught a different topic than in the previous
studies, the concept of variance, using an activity adapted from
Wiedmann, Leach, Rummel, and Wiley (2012).

In Experiment 1, students in a laboratory setting completed one of
three exploratory learning conditions that varied in the support pro-
vided. Students were provided with a table containing three datasets,
representing the amount of antioxidants in tea produced by three tea
growers over several years. Students in the invention condition were
asked to invent a method to evaluate which tea grower produced the
most consistent level of antioxidants. Students in the worked examples
condition had the method of calculating consistency worked out for
them, with explanations for each step (see Fig. 1). Students in the
completion problems condition viewed the same worked examples, but
with some blanks for them to fill in (Fig. 1). Following the learning
activity and instruction, all students completed a posttest measuring
procedural fluency (ability to calculate standard deviation), conceptual
understanding, and transfer.

Completion problems were intended to limit the solution possibi-
lities while also enabling learners to generate some solutions (Chen
et al., 2015; Paas, 1992; Slamecka & Graf, 1978; Sweller et al., 1998).
Although previous research has examined partially guided learning
activities prior to instruction, these activities either provided the final
solution without revealing the steps (e.g., Likourezos & Kalyuga, 2016),
or provided guidance with contrasting cases (e.g., Loibl & Rummel,
2014b). Completion problems in which learners complete partially
worked out solutions have yet to be explored in an exploratory learning
context.

Experiments 2 and 3 further compared the use of worked examples
to invention problems during exploratory learning. Experiment 2
compared these conditions to instruct-then-practice conditions in un-
dergraduate statistics courses. This experiment allowed us to examine
whether findings generalize to the classroom and whether using worked
examples as exploration had greater learning benefits than receiving
instruction first. Experiment 3 tested a potential boundary con-
dition—whether the use of a pretest enhances the benefits of using
worked examples during exploration. Pretests may serve as a form of
exploration activity (e.g., activating prior knowledge and perceptions of
knowledge gaps; Glogger-Frey et al., 2015, 2017; Kapur, 2016). How-
ever, this possibility has never been systematically tested in the ex-
ploratory learning literature. Use of a pretest has also not been tested in
conjunction with worked examples. Together, these instructional ele-
ments may provide a synergistic mixture of both guidance and ex-
ploration.

Thus, the current studies further test the potential benefits of de-
signing exploration activities that take cognitive load into account. We
extend prior studies by examining this question in a new domain across
both laboratory and classroom settings, and by comparing the use of

worked examples as exploration to instruct-then-practice conditions.
We further build theory by examining the impact of providing a pretest
prior to exploring. In all three studies, we assess learning outcomes and
potential learning mechanisms, including students’ perceived knowl-
edge gaps, cognitive load, and situational interest and enjoyment. By
doing so, these studies provide new insight into not only what factors
improve learning from exploration, but why.

3. Experiment 1

In Experiment 1, we manipulated the level of guidance provided
during exploratory learning in three conditions: invention (no gui-
dance), completion problems (partial guidance), and worked examples
(full guidance). Learning was assessed on an immediate posttest as-
sessing procedural fluency, conceptual knowledge, and transfer. We
measured students' perceived knowledge gaps, cognitive load, and in-
terest and enjoyment following the activity. We did not differentiate
between intrinsic and extraneous cognitive load in our measure.
Kalyuga and Singh (2016) argued that these definitions of cognitive
load do not apply to activities given prior to direct instruction. They
instead define cognitive load for these activities as “the intensity of
cognitive activity involved in achieving a specific goal of the task”
(Kalyuga & Singh, 2016, p. 848). Consistent with this framing, we
measured cognitive load as perceived mental effort during the activity,
using a measure commonly implemented in education research (Paas,
1992; see also; Hsu et al., 2015). Of course, self-report measures rely on
individuals’ perceptions, and may not always reflect objective experi-
ence.

Although Kalyuga and Singh (2016) argued that cognitive load is
not relevant to exploration activities, we hypothesized that reducing
cognitive load during exploration would increase learning. Specifically,
we tested the following predictions:

1. Learning Outcomes: We hypothesized that worked examples and
completion problems would increase posttest scores, compared to
invention. Comparing completion problems and worked examples,
we expected one of two possible outcomes. One possibility is that,
by reducing cognitive load and asking students to generate partial
problem solutions, completion problems will enhance learning re-
lative to worked examples. Another possibility is that reducing
cognitive load is more important than generation, thus worked ex-
amples will lead to the highest learning outcomes.

2. Questionnaire: We predicted that worked examples would lead to
the lowest cognitive load ratings, and invention would lead to the
highest, with completion problems in the middle. We hypothesized
that perceived knowledge gaps and interest would be equal or
higher in the invention condition compared to the other two con-
ditions (Glogger-Frey et al., 2015).

3.1. Method

3.1.1. Participants
Undergraduate students (N= 123; age M= 19.02, SD = 2.04;

63.6% female) participated for research credit in an introductory psy-
chology course. As reported above, previous experimental studies ma-
nipulating guidance during exploratory learning have shown medium
to large effect sizes. A G*Power analysis for ANCOVA (α = 0.05,
power = .95, df = 2, groups = 3, covariates = 1; Faul, Erdfelder,
Buchner, & Lang, 2009) showed that a sample size of 129 would be
sufficient to achieve ηp

2 = 0.11 (f = 0.35; medium effect = 0.25,
large = 0.40). Students were randomly assigned to one of three con-
ditions: Invention (n= 40), completion problems (n= 42), or worked
examples (n= 41). Four additional students were excluded from ana-
lyses for failure to complete the posttest.
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3.1.2. Materials
The activity, instruction, and posttest are included in Appendices

A−C.
Pretest. The pretest included two items (Fig. 2). A central tendency

problem asked students to find the mean, median, and mode of an array
of nine numbers (1 point each; Paas, 1992). A variance problem
(adapted from Kapur, 2012) provided a table of attendance data for two
cinemas over five days, and asked students to determine mathemati-
cally which of the two cinemas enjoys the most consistent attendance
(4-points possible; Appendix D).

Problem-Solving Activity. The problem-solving activity (adapted
from Wiedmann, Leach, Rummel, & Wiley, 2015) asked students to help
a group of managers determine which of three tea growers produces tea
with the most consistent levels of antioxidants. A table listed anti-
oxidant levels for each tea grower over six years. Students in the in-
vention condition were instructed to invent a formula, or list the steps
used, to calculate consistency for each tea grower (Roll, Aleven, &
Koedinger, 2009). As shown in Fig. 1, students in the worked examples
condition received the same problem with standard deviation worked
out for each tea grower, with brief explanations for the calculations.

Fig. 1. Examples of the three activities used during exploration in Experiment 1.
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Students were instructed to study the calculations. The completion pro-
blems condition was the same as the worked example condition, with
some empty boxes in place of parts of the calculations. Empty boxes
were chosen to ensure encoding of various parts of the calculations
(e.g., dispersion of scores from the mean, sum of squares, dividing by n,
taking square root), and the number of boxes increased per tea grower.
Students were instructed to complete the calculations.

Questionnaire. Cognitive load was measured with the Mental
Effort Rating Scale (Paas, 1992). Students responded to the prompt (“In
solving or studying the previous problem I invested …”) on a scale from
1 (very, very low mental effort) to 9 (very, very high mental effort).
Interest and enjoyment were measured with three items (McDonald's
ω = 0.88) adapted from Ryan's (1982) Intrinsic Motivation Inventory.
Perceived knowledge gaps were measured with four items (McDonald's
ω = 0.89) adapted from Flynn and Goldsmith (1999). Items from both
scales were intermixed and rated on a 5-point Likert scale (1 = strongly
disagree; 5 = strongly agree; Table 1).

Instruction. Direct instruction was provided as a text passage
(adapted from Wiedmann et al., 2015). Students were given a worked
example, in addition to conceptual explanations and definitions. Stu-
dents were told that engineers were interested in comparing which
trampoline (A or B) has the most consistent levels of bounciness. A table
displayed data for inches of rebound for trampoline A, followed by the
formula and instructions to calculate standard deviation. Text boxes
explained concepts and calculations. Then a table displayed inches of
rebound for Trampoline B, followed by three questions to help students
practice. The first two questions asked students for the standard de-
viation of Trampoline B, and what this value meant. Finally, students
were instructed to determine which of the two trampolines has the most
consistent bounciness.

Posttest. Three posttest items were drawn from Wiedmann et al.
(2012; see also Kapur, 2012). One was from a psychological statistics
exam used at the students' university, and was similar to Schwartz and
Martin's (2004) symbolic insight problems.

A procedural fluency item asked students to determine in which of
two months an ice hockey tournament should be held. Students were
given a dataset including daily temperatures for each month and in-
structed to select the month with the most consistent temperatures.
Students were asked to explain their decision mathematically.

An item measuring conceptual understanding included the same da-
taset, and students were told that one of the values was incorrect. The
correct value was provided, and students were asked to determine
whether or not their choice from the previous item should change based
on this new information. They were further asked to explain why this
mistake mattered or not. Another conceptual understanding item listed
two components of the standard deviation formula (the numerator:
(x–M), ( )2, and ∑; and the square root √). Students were asked to ex-
plain how each component contributes to the concept of standard de-
viation.

Finally, a transfer item instructed students to determine which of
two students, the top physics student or the top chemistry student,
deserves the best science student award. A table displayed the scores of
the top physics and chemistry students for five years. The top students
from the current year both had higher scores than students in the
previous years. Students were asked which of the two current students
deserves the award more, and to explain their decision mathematically.
This problem is solved by calculating the standard deviation for both
physics and chemistry students, and then determining which of the two
current students is more standard deviations away from their dis-
ciplines’ mean score. This item required students to build upon their
conceptualization of standard deviation to develop standardized scores
(Kapur, 2012).

All items were scored on a four-point scale (Appendix D). Twenty
percent of the items were scored by a second observer; interrater re-
liability was high (r= 0.90).

3.1.3. Procedure
Students completed the study individually in sessions of up to fif-

teen in a reserved classroom. After providing consent, students were
instructed that the purpose of the study was to see how people learn
from various activities, and that they would learn about calculating
consistency in statistics. Students then completed an individual differ-
ences questionnaire and pretest (8 min). The 35-item questionnaire was
administered as part of a larger study and will not be discussed further.

Fig. 2. Pretest items used in Experiments 1 and 3.

Table 1
Interest and enjoyment and knowledge gap items.

Interest and enjoyment

1 I found this learning activity interesting.
2 I enjoyed this learning activity.
3 This learning activity was boring. (reverse coded)

Knowledge gaps

1 I do not feel very knowledgeable about calculating consistency.
2 When it comes to calculating consistency, I really don't know a lot.
3 Compared to most other people, I know less about calculating consistency.
4 I know pretty much about calculating consistency. (reverse coded)
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Afterwards, students worked on the problem-solving activity (15 min).
Activities were administered on paper and interleaved by condition,
and students were randomly assigned to condition based on the activity
they received. Following, students were given the questionnaire fol-
lowed by written instruction (15 min). Then students completed the
posttest (30 min) and were debriefed.

3.2. Results and discussion

3.2.1. Preliminary analyses
Pretest items were examined as a function of activity type, revealing

no effect on the central tendency item (invention: M= 2.04 out of 3,
SD= 0.92; completion problems: M= 2.31, SD= 0.87; worked ex-
amples: M= 2.50, SD= 0.74), F(2,120) = 1.52, p= .224. However,
activity type had a significant effect on the variance item (invention:
M= 1.10 out of 4, SD= 0.65; completion problems: M= 1.52,
SD= 0.67; worked examples: M= 1.02, SD= 0.80), F(2,120) = 5.75,
p= .004. Despite random assignment, prior knowledge of variance was
unequal across conditions. Thus, this variable was used as a covariate in
all subsequent analyses. The pattern of results reported below remains
statistically significant even without this covariate in analyses.

3.2.2. Learning outcomes
The distributions of posttest scores are shown in Fig. 3. Posttest

scores were examined using a 3 (activity type: invention, completion
problems, worked examples) × 3 (posttest subscale: procedural, con-
ceptual, transfer) repeated measures ANCOVA, with activity type as a
between-subjects factor, posttest subscale as a within-subjects factor,
and scores on the pretest variance item as a covariate. We predicted
that students who explored in the worked examples and completion
problems conditions would demonstrate higher posttest scores than
those who explored in the invention condition. We tested two possible
predictions for completion problems compared to worked examples:
higher scores for completion problems due to generating additional
problem information, or lower scores if generation is less important.

The assumption of sphericity was violated, p= .017. Therefore, the
lower-bound statistic was used. A non-significant main effect of activity
type was found, F(2,119) = 3.01, p= .053, ηp

2 = 0.05 (Table 2, Fig. 4).
Planned comparisons revealed that, as predicted, studying worked ex-
amples led to significantly higher posttest scores than invention, t
(119) = 2.37, p= .019, d= 0.54. This result replicates the effects
found by Glogger-Frey et al. (2015) using different subject matter.
However, completion problems did not improve posttest scores com-
pared to invention, t(119) = 1.68, p= .098, d= 0.36, or worked ex-
amples, t(119) = 0.73, p= .469, d= 0.15. Thus, completion problems
showed a middling effect.

A main effect of posttest subscale was found, F(1,119) = 16.05,
p < .001, ηp

2 = 0.12. Post-hoc comparisons with Bonferroni correction
(α = 0.016) revealed that students scored higher on procedural
(M= 3.30, SD= 0.94) compared with conceptual (M= 2.23,
SD= 1.10), t(119) = 11.89, p < .001, d= 1.06, and transfer
(M= 2.41, SD= 1.03) subscales, t(119) = 9.84, p < .001, d= 0.90.
Conceptual and transfer subscales did not differ significantly, t
(119) = −1.68, p= .094, d= 0.15. There was no interaction between
activity type and posttest subscale, F < 1, indicating that the effects of
activity type were similar across the subscales.

3.2.3. Questionnaire
Questionnaire data were examined with ANCOVAs (Table 2). A

significant effect of activity type was found for cognitive load, F
(2,118) = 3.20, p= .045, ηp

2 = 0.05. Planned comparisons demon-
strated that, as hypothesized, worked examples led to less cognitive
load than invention, t(118) = −2.39, p= .019, d= 0.60. Also as pre-
dicted, completion problems did not lead to less cognitive load than
either worked examples, t(118) = 0.48, p = .630, d= 0.09, or inven-
tion, t(118) = −1.87, p= .063, d= 0.45. Thus, cognitive load for

completion problems was between that of the other two conditions.
The finding that completion problems did not significantly impact

posttest scores or cognitive load ratings compared to invention conflicts
with documented benefits of generation on memory and learning
(Slamecka & Graf, 1978). These findings do align with others demon-
strating no benefit of partial guidance during exploratory learning (cf.
Alfieri et al., 2011; Likourezos & Kalyuga, 2016; Loibl & Rummel,
2014b; but see; Borek, McLaren, Karabinos, & Yaron, 2009). A key
difference between studies is the form of guidance used. Rather than
using worked examples, Borek et al. provided hints and feedback during
a learning activity. Thus, results may differ depending on the type of
guidance used.

An effect of condition was found for perceived knowledge gaps, F
(2,117) = 13.83, p < .001, ηp

2 = 0.19. As predicted, completion pro-
blems, t(117) = −4.65, p < .001, d= 1.16, and worked examples, t
(117) = −4.36, p < .001, d= 1.21, led to significantly lower knowl-
edge gaps than invention. The finding that inventing led to greater
perceived knowledge gaps than worked examples, but did not lead to
superior learning, also replicates Glogger-Frey et al. (2015).

We had hypothesized that interest and enjoyment would be either
higher in the invention condition or equal across conditions. Interest
and enjoyment did not differ as a function of condition, F
(2,116) = 1.62, p= .203, ηp

2 = 0.02.

3.2.4. Conclusion
These findings suggest that worked examples maintain the benefits

of exploratory learning while reducing cognitive load. Previous studies
have only examined guided alternatives to invention within an ex-
clusively exploratory learning context (Glogger-Frey et al., 2015;
Likourezos & Kalyuga, 2016), or have only included direct instruction
conditions in which instruction is followed by unguided practice pro-
blems (e.g., Loibl & Rummel, 2014b). These findings cannot speak to
whether worked examples actually enable exploratory learning or
whether they simply function as another method of providing instruc-
tion first. We provide this comparison in Experiment 2.

4. Experiment 2

Experiment 2 compared the impact of guidance during problem
solving in both an exploratory learning and traditional instruction
setting, using a 2 (activity type: invention, worked examples) × 2
(order of instruction: explore-first, instruct-first) between-subjects fac-
torial design. Because completion problems did not show learning dif-
ferences compared to the other conditions in Experiment 1, this con-
dition was not included. We also attempted to replicate and extend the
findings from Experiment 1 to an undergraduate psychological statistics
course, in order to gauge the ecological validity of the findings. The
materials were the same as in Experiment 1, except that we excluded
the pretest due to concerns that the pretest may achieve instructional
goals inherent to minimally guided exploration (e.g., Kapur, 2016).

We tested the following hypotheses:

1. Learning Outcomes: We predicted an overall benefit of exploratory
learning, whereby students in the explore-first conditions would
outperform those in the instruct-first conditions on the posttest.
Based on Experiment 1, we also hypothesized that those who ex-
plored using worked examples would outperform those who ex-
plored using invention.

2. Questionnaire: We hypothesized that cognitive load and perceived
knowledge gaps would be highest for those who invented prior to
instruction, compared to other conditions.

4.1. Method

4.1.1. Participants
Participants were 190 undergraduate students (Age M= 20.67,
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SD= 4.33; 72.9% female) enrolled in three sections of a psychological
statistics course across two semesters, with two different instructors.
Students were randomly assigned to one of four conditions: Explore-
first/worked examples (n= 46), explore-first/invention (n= 48), in-
struct-first/worked examples (n= 47), or instruct-first/invention
(n = 49). A G*Power analysis for ANCOVA (α = 0.05, power = .95,
df = 3, groups = 4, covariates = 1; Faul et al., 2009) showed that a
sample size of 195 would be enough to achieve a medium effect

(f = 0.30). Additional students were excluded from analyses for failure
to provide consent (n= 3), failure to complete the posttest (n= 11),
absence or inability to link their posttest to their first session materials
(e.g., no name on the paper; n= 24), or for having participated in
Experiment 1 (n= 5).

4.1.2. Materials
The materials used in Experiment 2 were identical to Experiment 1,

Fig. 3. Distribution of posttest scores for each condition in Experiment 1.
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aside from three changes: (1) The pretest was cut from the procedure;
(2) A prompt in the worked example asked students if they agreed with
the chosen tea grower; (3) In the instruct-first condition activities,
students were asked to use what they had just learned about standard
deviation to help the managers determine which tea grower produces
the most consistent levels of antioxidants, rather than to come up with
this formula; (4) The consent form, problem-solving activity, ques-
tionnaire, and instruction were combined into one set of paper mate-
rials, with signals to stop and wait for instruction at the end of each
section.

The invention and worked examples conditions were the same as in
Experiment 1. These activities were provided either before instruction
(explore-first conditions) or after instruction (instruct-first conditions).
The questionnaire always followed the activity. A second rater scored
20% of the posttests (interrater reliability: r= 0.90).

4.1.3. Procedure
Students completed the study across two course lab sessions that

were 1–2 weeks apart, occurring prior to lectures covering standard
deviation and variance. Students were told that the activities would
help them learn about concepts relevant to the course, and to try their
best, but their performance on the activities would not affect their
grade. The first session included the problem solving activity, ques-
tionnaire, and direct instruction. The second session included the
posttest. Students were provided with calculators.

Students were randomly assigned to condition based on the mate-
rials they received, which were interleaved by condition. After re-
viewing the consent form, students completed the first section (pro-
blem-solving activity/questionnaire or direct instruction, depending on
condition; 15 min). Students then completed the second section

(problem-solving activity/questionnaire or direct instruction, de-
pending on condition; 15 min). In the second session, students com-
pleted the posttest (30 min) and a demographics questionnaire, and
were debriefed.

4.2. Results and discussion

Although the course instructors did not administer the learning
materials, we controlled for possible differences based on instructor in
all analyses.

4.2.1. Learning outcomes
Distributions of posttest scores are shown in Fig. 5. Posttest per-

formance was examined with a 3 (posttest subscale: procedural, con-
ceptual, transfer) × 2 (order of instruction: explore-first, instruct-
first) × 2 (activity type: invention, worked examples) ANCOVA, with
posttest subscale as a within-subjects factor and order of instruction and
activity type as between-subjects factors. The assumption of sphericity
was violated, p < .001, so the lower-bound statistic was used.

As in Experiment 1, a significant effect of posttest subscale was
found F(1,185) = 32.74, p < .001, ηp

2 = 0.14. Students scored higher
on procedural (M= 3.03, SD= 1.12) than conceptual (M= 2.21,
SD= 1.21), t(185) = 13.83, p < .001, d= 1.01, and transfer subscales
(M= 2.53, SD= 1.19), t(185) = 6.52, p < .001, d= 0.48. Transfer
scores were higher than conceptual scores, t(185) = 4.47, p < .001,
d= 0.32.

We predicted an overall benefit of exploratory learning over in-
struct-first conditions. Supporting this hypothesis, a main effect of order
of instruction was found. Those in the explore-first condition
(M= 2.75, SD= 1.04) outperformed their instruct-first (M= 2.44,
SD= 1.0) counterparts, F(1,185) = 4.29, p= .040, ηp

2 = 0.02 (Fig. 6).
In contrast to our hypothesis, there was no main effect of activity type
(invention: M= 2.57, SD= 1.01; worked examples: M= 2.31,
SD= 0.98) or interaction, Fs < 1. For those in the explore-first con-
ditions, a planned comparison revealed no difference between the
worked examples or invention conditions, t(185) = 0.15, p= .878,
d= 0.03 (Table 3). Similarly, in the instruct-first conditions, there was
no difference between the worked examples and invention conditions, t
(185) = 1.22, p= .222, d= 0.55.

4.2.2. Questionnaire
An order of instruction × activity type ANCOVA revealed a sig-

nificant main effect of activity type on cognitive load (Table 3). As
predicted, those in the worked examples conditions reported lower
cognitive load (M= 4.91, SD= 1.64) than those in the invention
conditions (M= 5.57, SD= 1.49), F(1,175) = 7.75, p= .006,
ηp

2 = 0.04. Order of instruction did not affect cognitive load, F
(1,175) = 1.07, p= .302, ηp

2 = 0.01. There was no interaction, F
(1,175) = 2.82, p= .095, ηp

2 = 0.02. Planned comparisons showed
that, in the explore-first conditions, those who studied worked ex-
amples reported lower cognitive load than those who invented, t
(175) = −3.24, p= .001, d= 0.72. In the instruct-first conditions,
cognitive load was comparable between activity types, t(175) = −0.76,
p= .449, d= 0.15.

For perceived knowledge gaps, an ANCOVA revealed a significant
main effect of order of instruction. As predicted, students in the explore-
first conditions (M= 3.36, SD= 1.05) reported greater knowledge gaps
than those in the instruct-first conditions (M= 2.76, SD= 0.96), F
(1,175) = 16.99, p < .001, ηp

2 = 0.09. There was also a main effect of
activity. Students who invented (M= 3.33, SD= 1.06) reported greater
knowledge gaps than those who studied worked examples (M= 2.83,
SD= 1.05), F(1,175) = 9.07, p= .003, ηp

2 = 0.05. These effects were
qualified by a significant interaction, F(1,175) = 20.46, p < .001,
ηp

2 = 0.11 (Table 3). As predicted, students who explored reported
greater knowledge gaps in the invention condition than in the worked
examples condition, t(175) = 5.49, p < .001, d= 1.16. Students who

Table 2
Means (standard deviations in parentheses) of posttest and questionnaire data
as a function of activity type (Experiment 1).

Invention Completion Problems Worked Examples

Posttest Score 2.40 (0.85) 2.71 (0.85) 2.83 (0.73)
Cognitive Load 5.70 (0.99) 4.98 (2.02) 4.80 (1.86)
Knowledge Gaps 3.90 (0.80) 2.79 (1.09) 2.85 (0.93)
Interest and Enjoyment 3.13 (0.91) 3.43 (0.84) 3.20 (0.95)

Note: Posttest scores were out of 4 possible points. Cognitive load was measured
with a 9-point Likert scale. Knowledge gaps and interest and enjoyment were
measured with a 5-point Likert scale.

Fig. 4. Experiment 1 mean posttest scores as a function of activity type. Error
bars represent 95% confidence intervals.
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received instruction first reported similar knowledge gaps across both
activity types, t(175) = 1.05, p= .351, d= 0.23.

For interest and enjoyment, an ANCOVA revealed no significant
main effects of order of instruction, F(1,175) = 3.38, p= .068,
ηp

2 = 0.02, activity type, F < 1, or interaction, F(1,175) = 1.25,
p= .265, ηp

2 = 0.01 (Table 3).

4.2.3. Conclusion
Thus, on average, students in the explore-first conditions out-

performed students in the instruct-first conditions on the posttest, re-
gardless of the guidance they received. This finding is consistent with
others demonstrating the benefits of exploratory learning prior to in-
struction, adding to this literature a tightly-controlled study in a psy-
chological statistics classroom setting.

However, this experiment did not replicate the results of activity
type in Experiment 1. In the explore-first conditions, students who
studied worked examples reported lower cognitive load and knowledge
gaps, yet demonstrated comparable learning to students who invented.
Two differences between experiments might account for these dis-
crepant results. First, the sample in Experiment 1 was recruited for a

Fig. 5. Distribution of posttest scores for each condition in Experiment 2.

Fig. 6. Experiment 2 mean posttest scores as a function of order of instruction
and activity type. Error bars represent 95% confidence intervals.

Table 3
Means (standard deviations in parentheses) of posttest scores and questionnaire data as a function of order of instruction and activity type (Experiment 2).

Explore-First Instruct-First

Invention Worked Examples Invention Worked Examples

Posttest Score 2.73 (0.99) 2.76 (1.10) 2.57 (1.00) 2.31 (0.98)
Cognitive Load 5.65 (1.31) 4.59 (1.61) 5.49 (1.69) 5.24 (1.64)
Knowledge Gaps 3.88 (0.84) 2.82 (0.97) 2.66 (0.92) 2.88 (0.99)
Interest and Enjoyment 3.19 (0.82) 3.34 (0.74) 3.56 (0.94) 3.44 (0.83)

Note: Posttest scores were out of 4 possible points. Cognitive load was measured with a 9-point Likert scale. Knowledge gaps and interest and enjoyment were
measured with a 5-point Likert scale.
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laboratory-based experiment from an introductory psychology course
typically taken by first-year students. The sample in Experiment 2 in-
cluded students in a psychological statistics course typically taken in
the second or third year. Students in Experiment 2 may have had more
prior knowledge and motivation to learn the material.

Experiment 1 also included a pretest, whereas Experiment 2 did not.
Pretests are commonly used to assess and control for prior knowledge.
However, a pretest can function as a learning tool, if the pretest targets
the to-be-learned concept (e.g., Richland et al., 2009). The pretest in-
cluded an item similar to the learning activity, asking students to de-
termine which of two cinemas enjoyed the most consistent attendance.
Students may have engaged in aspects of exploration while completing
the pretest. Thus, worked examples may only facilitate exploration in
combination with a pretest. This possibility was tested in Experiment 3.

5. Experiment 3

Experiment 3 was designed to reconcile the contradictory findings
of Experiments 1 and 2 by testing the impact of a pretest, keeping the
sample constant across conditions. We conducted a laboratory-based
experiment using a 2 (activity type: invention, worked examples) × 2
(pretest condition: pretest, no-pretest) between-subjects factorial de-
sign. All students completed exploratory learning activities, either in-
venting or exploring worked examples prior to instruction, with or
without a pretest.

We tested the following hypotheses:

1. Learning Outcomes: We hypothesized that worked examples would
enhance posttest scores relative to invention only when a pretest
was administered.

2. Questionnaires: We hypothesized that worked examples would lead
to lower cognitive load ratings, lower knowledge gaps, and

comparable interest and enjoyment, compared to invention. We also
explored how these mechanisms were impacted by the pretest.

5.1. Method

5.1.1. Participants
Participants were 147 undergraduate students (Age M= 19.47,

SD= 4.46; 53% female) recruited for research credit in an introductory
psychology course. Students were randomly assigned to one of four
conditions: No-pretest/invention (n= 37), no-pretest/worked ex-
amples (n= 37), pretest/invention (n= 37), or pretest/worked ex-
amples (n = 36). A G*Power analysis (α = 0.05, power = .95, df = 3,
groups = 4; Faul et al., 2009) showed that a sample of 145 would be
enough to achieve a medium effect (f = 0.35). Additional students were
excluded for falling asleep during the experiment (n= 1) and failure to
complete the posttest (n= 5).

5.1.2. Materials
The activities, instruction, and questionnaires were identical to

Experiment 1, with one exception. Due to an error, the prompt for the
invention activity was the same as that for the instruct-first condition in
Experiment 2. Across all experiments, the activity cover story stated
that the managers “want a formula for calculating the consistency of
antioxidant levels for each tea grower” and that “this formula should
apply to all tea growers and help provide a fair comparison.” However,
in the previous studies’ explore-first conditions, students were asked to
come up with a formula for consistency, and to show their proposed
formulas or steps. In Experiment 3, students were instructed to use what
they just learned about standard deviation to help determine which tea
grower produces the most consistent levels of antioxidants, and to show
their calculations.

Additionally, the questionnaire was administered twice in the

Fig. 7. Distribution of posttest scores for each condition in Experiment 3.
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pretest conditions, once following the pretest, and once following the
activity.

5.1.3. Procedure
Sessions included groups of up to 15 in a reserved classroom. Due to

differences in timing, each session included either the pretest condi-
tions or the no-pretest conditions. Following consent, students in the
pretest conditions completed the pretest and post-pretest questionnaire
(6 min). Then, all students began the exploratory learning activity.
Students were randomly assigned to activity condition based on the
materials they received (15 min). Following, students completed the
post-activity questionnaire and direct instruction (15 min). Finally,
students completed the posttest (30 min) and a demographics ques-
tionnaire, then were debriefed. Posttests were scored by two in-
dependent scorers (interrater reliability: r= 0.93).

5.2. Results and discussion

5.2.1. Preliminary analyses
In the pretest conditions, prior knowledge was equal across the in-

vention (central tendency: M= 2.14, SD= 1.03; variance: M= 1.46,
SD= 0.61) and worked examples conditions (central tendency:
M= 2.41, SD= 0.77; variance: M= 1.50, SD= 0.56), ts(71) = −1.31
and −0.297, ps = .192 and .768, ds = −0.30 and −0.07, respectively.

5.2.2. Learning outcomes
The distributions of posttest scores are shown in Fig. 7. Scores were

analyzed with a 3 (subscale: procedural, conceptual, transfer) × 2
(activity type: invention, worked examples) × 2 (pretest condition:
pretest, no-pretest) mixed-factorial ANOVA, with subscale as a within-
subjects factor and activity type and pretest condition as between-
subjects factors. The assumption of sphericity was violated, p < .001,
so the lower-bound statistic was used.

As in Experiments 1 and 2, a main effect of posttest subscale was
found, F(2,143) = 97.68, p < .001, ηp

2 = 0.40. Students scored higher
on procedural (M= 3.39, SD= 0.70) than conceptual (M= 2.23,
SD= 0.95), t(143) = 17.31, p < .001, d= 1.41, and transfer
(M= 2.63, SD= 1.17) subscales, t(143) = 8.36, p < .001, d= 0.68.
Transfer scores were higher than conceptual, t(143) = 4.29, p < .001,
d= 0.36. No main effects of pretest, F(1,143) = 1.50, p= .222,
ηp

2 = 0.01, or activity type, Fs < 1, were found. No interactions in-
cluding subscale were significant, Fs ≤ 2.76, ps > .098. Thus, any ef-
fect of condition occurred similarly across subscales.

There was a significant activity type × pretest condition interaction,

F(1,143) = 4.28, p= .040, ηp
2 = 0.03 (Fig. 8; Table 5). We hypothe-

sized that worked examples would enhance exploratory learning com-
pared to invention only when used in combination with a pretest. Re-
sults supported this prediction. For the pretest conditions, planned
comparisons revealed that students who explored worked examples had
higher posttest scores than those who invented, t(143) = 2.33,
p= .022, d= 0.62. In the no-pretest conditions, worked examples did
not lead to better posttest performance than inventing, t
(143) = −0.60, p= .550, d= 0.15.

As shown in Fig. 8 and Table 5, the two pretest conditions resulted
in the highest and lowest posttest averages, with the no-pretest condi-
tions in the middle. However, scores for the pretest/worked examples
condition were not significantly higher than those of the no-pretest
conditions, ts ≤ 1.67, ps≥= .096, ds≤ 0.39. Moreover, scores for the
pretest-invention condition were not significantly lower than the two
no-pretest conditions, ts ≤ −0.65, ps≥ .214, ds≤ 0.31. Thus, although
the pretest had a divergent effect on activity type, these results cannot
speak to whether the pretest improves exploring with worked examples
or decreases exploring with invention (or both).

5.2.3. Post-pretest questionnaire
We first analyzed questionnaire data for students in the two pretest

conditions, to examine changes from post-pretest to post-activity
(Table 4). Each questionnaire was examined using a 2 (questionnaire
timing: post-pretest, post-activity) × 2 (activity type: invention,
worked examples) ANOVA, with questionnaire timing as a within-
subjects factor and activity type as a between-subjects factor.

For cognitive load ratings, no main effects were found for ques-
tionnaire timing, F(1,63) = 1.47, p= .231, ηp

2 = 0.02, or activity,
F < 1. However, there was a significant interaction, F(1,63) = 12.26,
p= .001, ηp

2 = 0.16. For students who invented, cognitive load in-
creased from post-pretest to post-activity, t(63) = −3.46, p= .001,
d= 0.52. For students who explored worked examples, cognitive load
remained the same, t(63) = 1.56, p= .124, d= 0.27. Although cogni-
tive load increased for the pretest/invention condition, cognitive load
was not significantly higher than in the pretest/worked examples
condition either post-pretest, t(63) = 0.56, p= .578, d= 0.31, or post-
activity, t(63) = 1.79, p= .078, d= 0.45.

For knowledge gaps, there was no main effect of questionnaire
timing, F(1,61) = 3.51, p= .066, ηp

2 = 0.05. A main effect of activity
was found, F(1,61) = 5.61, p= .021, ηp

2 = 0.08. Students in the
pretest/invention condition (M= 3.16, SD= 0.75) perceived greater
knowledge gaps overall than students in the pretest/worked examples
condition (M= 2.75, SD= 0.62). These effects were qualified by a
significant interaction, F(1,61) = 16.43, p < .001, ηp

2 = 0.21. In the
pretest/worked examples condition, knowledge gaps dropped from
post-pretest to post-activity, t(61) = 3.98, p < .001, d= 0.59. In the
pretest/invention condition, knowledge gaps remained constant post-
pretest to post-activity, t(61) = −1.63, p= .107, d= 0.39. At post-
pretest, knowledge gaps were the same for both pretest conditions, t
(61) = 0.49, p= .629, d= 0.12. Following the activity, knowledge
gaps were greater in the pretest/invention condition than in the
pretest/worked examples condition, t(61) = 4.57, p < .001, d= 1.16.
Thus, the pretest instantiated knowledge gaps in both pretest condi-
tions. However, these knowledge gaps decreased in the worked ex-
amples condition relative to the invention condition.

A main effect of questionnaire timing was found for interest and
enjoyment, F(1,62) = 4.70, p= .034, ηp

2 = 0.07. Ratings were higher
following the activity (M= 3.44, SD= 0.82) than following the pretest
(M= 3.29; SD= 0.78). There was no main effect of activity type or
interaction, Fs < 1.

5.2.4. Post-activity questionnaire
We next examined post-activity questionnaire ratings across all

conditions (Table 5). For cognitive load, an activity type × pretest
condition ANOVA revealed no main effects of activity type, F

Fig. 8. Experiment 3 mean posttest scores as a function of pretest condition and
activity type. Error bars represent 95% confidence intervals.
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(1,142) = 2.44, p= .121, ηp
2 = 0.02, pretest condition, or interaction,

Fs < 1.
For perceived knowledge gaps, a main effect of activity type was

found, F(1,142) = 31.52, p < .001, ηp
2 = 0.18. Students who invented

(M= 3.43, SD= 0.90) reported greater knowledge gaps than those
who explored worked examples (M= 2.59, SD= 0.93). A main effect
of pretest condition was also found, F(1,142) = 4.21, p= .042,
ηp

2 = 0.03. Students who received a pretest (M= 2.85, SD= 0.91)
experienced lower perceived knowledge gaps post-activity than those
who did not (M= 3.16, SD= 1.07). There was no interaction, F < 1.
Following the activity, both exploring worked examples and completing
a pretest lowered perceived knowledge gaps, but these two factors did
not have a significant combined impact.

For interest and enjoyment following the activity, no main effects or
interaction were found, Fs < 1.

5.2.5. Conclusion
Confirming our hypothesis, completing a pretest led to higher

posttest scores for students who explored using worked examples
compared to those who invented. When no pretest was given, students
learned at the same level in the worked examples and invention con-
ditions. Although students in the pretest conditions received an addi-
tional questionnaire following the pretest, these results replicated those
of Experiment 1 in which no questionnaire was given following the
pretest. Thus, adding the questionnaire did not likely impact learning.

In the pretest/invention condition, cognitive load increased from
post-pretest to post-activity. In contrast, cognitive load remained con-
stant in the pretest/worked examples condition. Thus, the invention
activity increased students’ mental effort relative to the pretest. This
increase may have been due to the greater number of elements in the
activity, increased time, or completing two problems in a row.
However, following the activity, cognitive load did not differ between
the four conditions. We consider these findings, and those for the other
questionnaires, more in the next section.

6. General discussion

Exploratory learning prior to direct instruction has been demon-
strated to improve learning across several domains, age groups, and
types of activities (see Alfieri et al., 2011; Kapur, 2016; Loibl et al.,
2016). However, there is a need for more tightly controlled experi-
mental conditions in this literature (Glogger-Frey et al., 2015; Hsu
et al., 2015; Loibl et al., 2016; Schwartz, Chase, Opezzo, & Chin, 2011;
Sweller, Kirschner, & Clark, 2007). In addition, not every study finds a

benefit of exploring (e.g., Chase & Klahr, 2017; Fyfe, DeCaro, & Rittle-
Johnson, 2014), indicating that more work is needed to understand the
mechanisms supporting exploratory learning. Across three experiments,
we examined whether reducing the cognitive demands of exploration
enhances its learning benefits. Undergraduate students explored the
topic of statistical variance, using materials adapted from previous
exploratory learning studies.

In Experiment 1, students who explored worked examples (full
guidance) prior to receiving instruction showed greater learning, lower
cognitive load, and lower knowledge gaps than students in the inven-
tion condition (no guidance). Students in the completion problems
condition (partial guidance) did not have significantly different scores
than either other condition, demonstrating a middling effect. This
benefit of worked examples to learning and cognitive load is consistent
with previous research (Paas, 1992; Tuovinen & Sweller, 1999), and
extends this work to an exploratory learning context.

In Experiment 2, students in a psychological statistics course com-
pleted invention or worked examples activities either as exploration
(before instruction) or as practice (after instruction). There was an
overall benefit of exploring over receiving instruction first, replicating
and extending prior exploratory learning studies to undergraduate
statistics using a tightly-controlled experimental design. However, we
did not replicate the findings of Experiment 1—students who explored
using worked examples showed identical learning outcomes to those
who invented, despite reporting lower cognitive load and knowledge
gaps.

Experiment 3 tested whether the use of a pretest explains these
conflicting results. A pretest was given in Experiment 1 but not in
Experiment 2. In Experiment 3, students were either given a pretest or
not, then explored using either worked examples or an invention pro-
blem. Exploring with worked examples led to greater learning than
inventing when students also completed a pretest, but not when the
pretest was absent. These findings mirror the results of Experiments 1
and 2, respectively, and demonstrate that a pretest may serve as an
invention activity. Although suggested by others (e.g., Glogger-Frey
et al., 2017, 2015; Kapur, 2016), the impact of a pretest in exploratory
learning research has not been systematically tested.

6.1. Using a pretest in learning experiments

The pretest may have activated similar learning mechanisms
thought to underlie exploratory learning, even if answered incorrectly.
These mechanisms mirror those suggested by the literature on testing
effects more generally. The process of retrieval allows students to

Table 4
Means (standard deviations in parentheses) for post-pretest and post-activity questionnaires in both pretest conditions.

Pretest/Invention Condition Pretest/Worked Examples Condition

Post-Pretest Post-Activity Post-Pretest Post-Activity

Cognitive Load 5.20 (1.39) 5.89 (1.57) 5.43 (1.96) 5.10 (1.97)
Knowledge Gaps 3.02 (0.88) 3.30 (0.79) 3.13 (0.95) 2.36 (0.86)
Interest and Enjoyment 3.24 (0.79) 3.38 (0.83) 3.34 (0.79) 3.51 (0.83)

Table 5
Means (standard deviations in parentheses) of posttest and post-activity questionnaire data as a function of pretest condition and activity type (Experiment 3).

Pretest No-Pretest

Invention Worked Examples Invention Worked Examples

Posttest Score 2.57 (0.69) 2.98 (0.64) 2.79 (0.75) 2.68 (0.75)
Cognitive Load 5.81 (1.62) 5.22 (1.94) 5.68 (1.36) 5.41 (1.64)
Knowledge Gaps 3.30 (0.79) 2.40 (0.82) 3.55 (1.00) 2.76 (1.00)
Interest and Enjoyment 3.38 (0.81) 3.47 (0.82) 3.36 (0.69) 3.27 (0.86)

P.M. Newman and M.S. DeCaro Learning and Instruction 62 (2019) 49–63

60



activate and reconstruct relevant prior knowledge, and can have a
potentiating effect whereby new information is better encoded in
memory (Carpenter, 2011; Kapur, 2012; Karpicke, 2012; Richland
et al., 2009; Rowland, 2014). Pretesting can also draw students’ at-
tention to the most important features (Karpicke, 2012; Richland et al.,
2009). Finally, pretesting can improve metacognition, by eliciting
awareness of knowledge gaps (Rohrer & Pashler, 2010).

The finding that the pretest impacted learning has widespread im-
plications for research comparing direct instruction to constructivist-
inspired teaching methods such as exploratory learning. For example,
Klahr and Nigam (2004) compared pure discovery learning to a direct
instruction condition and found greater learning in the direct instruc-
tion condition. However, Klahr and Nigam also used an extensive
pretest which targeted the to-be-learned material. This pretest may
have activated the mechanisms thought to underlie exploratory
learning. Thus, their direct instruction condition is better characterized
as an exploratory learning condition. Using this framing, Klahr and
Nigam actually demonstrated that exploratory learning (not direct in-
struction) led to higher learning outcomes than pure discovery learning.

A similar conclusion could be applied to a study by Chase and Klahr
(2017), who ostensibly compared exploratory learning to a tell-then-
practice condition and found no differences in learning outcomes.
However, in both conditions, a 30-min pretest was given in a prior
session. An additional pretest was given at the beginning of the inter-
vention session, immediately preceding the exploration and direct in-
struction activities. If the pretest served as an exploration activity, these
null results are less surprising. Chase and Klahr simply compared two
exploratory learning conditions, with one versus multiple exploration
activities given prior to instruction.

Use of a pretest might also explain some of the mixed results in
previous studies comparing guided and unguided exploration. Glogger-
Frey et al. (2015) used a pretest in the first experiment, and not in the
second. Although they found a benefit of exploring with worked ex-
amples over invention in both experiments, this benefit was restricted
to far transfer in the second experiment. Likourezos and Kalyuga (2016)
used a pretest that only included items assessing prerequisite knowl-
edge, not knowledge of the targeted concepts. They found comparable
learning between unguided and guided exploration conditions, al-
though there were more creative and advanced solutions provided in
the guided exploratory learning condition. Glogger-Frey et al. (2017)
did not use a pretest, and also gave additional practice on the activity in
both conditions, and found the reverse effect—that exploring with in-
vention led to better far transfer than exploring with worked examples.
These results roughly align with the idea that including a pretest with
guided exploration improves learning relative to unguided exploration,
and not including a pretest leads to little or no benefit of guidance.

6.2. Mechanisms of exploratory learning

Taken together, our results provide important information about the
mechanisms by which exploration activities benefit learning. By com-
paring the impact of guidance and a pretest on learning outcomes and
survey measures, we conclude that successful exploration activities
serve at least two key functions: increasing perceived knowledge gaps,
and enabling students to discern relevant problem features. Activating
prior knowledge and increasing situational interest and enjoyment may
play a role as well, but our studies either did not systematically test
these factors or show differences between conditions.

6.2.1. Cognitive load, knowledge gaps, and problem features
Across the experiments, increasing guidance during exploration by

using worked examples lowered reported cognitive load, although this
finding was not statistically significant in Experiment 3. However,
worked examples did not consistently improve learning: When there
was no pretest before the worked examples, learning did not improve
relative to the invention condition. Thus, reducing cognitive load is not

sufficient to improve learning.
However, worked examples did improve learning when combined

with a pretest, demonstrating that the pretest served an important ad-
ditional function. Our findings indicate that the pretest increased
knowledge gaps. In Experiment 3, we assessed knowledge gaps im-
mediately following the pretest. In the worked examples condition,
knowledge gaps decreased from pretest to activity. In the invention
condition, knowledge gaps remained at the same, higher, level. Thus,
knowledge gaps were instantiated by the pretest, but resolved by the
worked examples. Across all studies, knowledge gaps were consistently
higher after the activity in the invention conditions than in the worked
examples conditions. Invention conditions also led to lower learning.

Together, these cognitive load and knowledge gap findings suggest
that an initial experience that increases knowledge gaps, combined with
an exploration activity that provides guidance, improves exploratory
learning. Without knowledge gaps, reducing cognitive load has little
benefit, as shown in the no-pretest/worked examples conditions. And
without supporting cognitive load, knowledge gaps have little ad-
vantage, as demonstrated in the invention conditions.

We further propose that worked examples supported important
cognitive learning mechanisms. Inventing a problem solution can be
difficult for students (Kapur, 2015). In contrast, worked examples
constrain the solution possibilities, possibly helping students discern
the structural problem features from the superficial features (Glogger-
Frey et al., 2015). Following, direct instruction may help students build
on such knowledge and allow for a better connection between the
procedures they viewed during exploration and the conceptually rich
instruction.

Thus, combining a pretest with guidance prior to more direct in-
struction may benefit learning via both metacognitive and cognitive
mechanisms. This latter mechanism is largely overlooked by Kalyuga
and Singh (2016), who primarily discussed the metacognitive me-
chanisms of exploratory learning, and argued that it may be irrelevant
to consider cognitive load during exploration. Our findings suggest that
reducing cognitive load during exploration directly increases domain-
relevant knowledge and/or conceptual understanding and transfer.
Therefore, considering cognitive load may help instructors design
better exploration activities.

6.2.2. Other mechanisms
Exploratory learning is also thought to activate prior knowledge, so

that new information from instruction can be better integrated with
already-existing schemas in long-term memory (Kapur, 2015; Schwartz
et al., 2007). This mechanism seems inherent to all exploration activ-
ities, as students must draw upon their knowledge to grapple with a
new concept or problem prior to instruction. However, we found that
some exploratory learning conditions were better than others. Thus,
activating prior knowledge is unlikely the sole mechanism driving the
benefits of exploratory learning.

Situational interest and enjoyment is also unlikely a driver of our
results, as this measure consistently showed no differences between
conditions. Importantly, this finding also demonstrates that neither the
more proscribed worked examples nor the more taxing invention ac-
tivity dampened students’ interest. The means were consistently slightly
above the scale midpoint, suggesting that students found the activities
somewhat interesting. Previous studies have found mixed results on
interest and enjoyment measures (Glogger-Frey et al., 2015; Weaver
et al., 2018). However, these null results are inconsistent with work
showing that perceiving more knowledge gaps enhances interest and
curiosity (Glogger-Frey et al., 2015; Rotgans & Schmidt, 2014). In our
study, interest was not higher in the invention conditions, when
knowledge gaps were also higher. One possible reason for this incon-
sistency is that students in our study were asked to rate how interesting
they perceived the learning activity, whereas previous studies assessed
how interested in or curious about the topic they were (Glogger-Frey
et al., 2015). Perceived knowledge gaps may not enhance interest in the
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learning activity itself, but rather lead to interest in seeking elsewhere
for information to fill these gaps.

6.3. Methodological considerations and limitations

These conclusions must be considered in the context of our meth-
odology. More research is needed to determine if these results gen-
eralize to other types of students (e.g., children) or learning domains. In
addition, our findings may have been different if we had used (a)
contrasting cases in our exploration activity, (b) a different type of
pretest, or (c) different posttest items. We also cannot definitively speak
to whether our use of worked examples functioned as exploration or
instruction.

6.3.1. Contrasting cases
We argue that worked examples benefit exploratory learning by

helping to make the problem structure more apparent. This support
may have been especially helpful because we used rich datasets, which
present data tables with a lot of information that students must work
with—although we only used six data points for each of the three tea
growers in our activity. Many other studies instead use contrasting
cases (e.g., Glogger-Frey et al., 2017, 2015; Loibl & Rummel, 2014b;
Schwartz et al., 2011; Schwartz & Martin, 2004). With contrasting
cases, students compare and contrast across cases that differ by a single
problem feature, highlighting the deep structure of the problem. In our
activity, one dataset had a feature that contrasted the other two (i.e., it
was missing a value, to highlight the importance of sample size).
However, the other two datasets did not differ in any significant way.
By highlighting important problem features, both worked examples and
contrasting cases may serve comparable goals. However, Glogger-Frey
et al. (2015) used contrasting cases in their exploration activities, and
found that worked examples still enhanced learning and reduced cog-
nitive load compared to inventing.

6.3.2. Type of pretest
We found that combining a pretest with worked examples enhanced

knowledge gaps and learning. However, the type of pretest items may
impact whether knowledge gaps increase, or whether they benefit ex-
ploratory learning. If our pretest had only assessed central tendency,
students may have had directed less motivation or attention to the topic
of consistency. Consistent with this idea, Likourezos and Kalyuga
(2016) used a pretest assessing prerequisite knowledge, not knowledge
of the target concepts. They found comparable learning between un-
guided and guided exploratory learning conditions. Findings might also
differ for open-ended versus closed-ended items such as multiple choice
questions (cf. Richland et al., 2009).

6.3.3. Posttest subscales
Most exploratory learning studies find benefits to conceptual

knowledge and/or transfer, rather than procedural fluency. We did not
find condition differences as a function of subscale. One possibility is
that our measure conflates these three subscales. For example, for
students to receive full credit on our procedural fluency item, they must
not only compute standard deviation but also understand what the
resulting value means conceptually. Future research is needed using
items that more fully differentiate these knowledge types.

6.3.4. Is use of worked examples exploration or instruction?
We have argued that worked examples function as exploration when

used prior to more detailed procedural and conceptual instruction.
Although students are guided through the procedures for solving a
novel problem, they have not been told the conceptual basis of the
problem. However, this framing is debatable, and worked examples
may simply be an additional form of direct instruction. If this were the
case, then one might argue that the pretest served as the invention
activity in the pretest/worked examples conditions. In this case, our

findings would demonstrate that providing a very brief, open-ended
pretest on the target concept followed by more extensive direct in-
struction led to better performance than the same pretest followed by a
more extensive invention activity. More research is needed to de-
termine whether the shortened pretest would have served the same role
as invention. In addition, worked examples can include more con-
ceptual information than ours did. Adding this information could lead
to even less exploration, and findings more akin to a tell-then-practice
condition.

6.4. Conclusion

Despite the benefits of constructivist-inspired teaching methods, not
all of these methods are necessarily better than direct instruction. The
current findings provide greater insight into how a particular type of
constructivist method—exploratory learning—may best benefit student
understanding. Exploration activities should be designed to help stu-
dents perceive gaps in their knowledge, but also support cognitive load.
By doing so, students may be best able to draw out the deep structure of
the problem, supporting conceptual understanding.
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