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Abstract
Background:  In exploratory learning, students first explore 
a new topic with an activity and then receive instruction. This 
inversion of  the traditional tell-then-practice order typically 
benefits conceptual knowledge and transfer, but not always.
Aims:  The current work examines the impact of  includ-
ing contrasting cases in an exploration activity, which can 
enhance student perception of  novel problem features.
Samples:  Undergraduate physics students (Experiment 1, 
N = 129; Experiment 2, N = 92) participated as part of  their 
regular classroom instruction.
Methods:  Students completed an activity either before or 
after instruction (explore-first or instruct-first conditions). 
In Experiment 1, the activity included contrasting cases; in 
Experiment 2, the activity instead included a rich dataset. 
Students completed a post-test assessing procedural knowl-
edge, conceptual knowledge and transfer.
Results:  In Experiment 1, students in the explore-first 
condition demonstrated similar procedural knowledge, 
higher conceptual knowledge and higher transfer than 
students in the instruct-first condition. In Experiment 2, 
there were no significant differences in learning outcomes 
between explore-first and instruct-first conditions. In both 
experiments, students in the explore-first and instruct-first 
conditions reported similar cognitive load and interest and 
enjoyment after the activity.
Conclusions:  Contrasting cases may be important when 
designing exploratory learning activities, helping to improve 
both conceptual understanding and transfer to new topics.
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INTRODUCTION

Active learning strategies enable instructors to better engage students and provide opportunities 
for deeper learning (Borda et  al., 2020; Freeman et al., 2014; Streveler & Menekse, 2017; Theobald 
et al., 2020). One promising active learning technique is exploratory learning, which reverses the more 
traditional instruct-then-practice order. Exploratory learning methods include a novel activity given 
prior to instruction on the topic (DeCaro & Rittle-Johnson, 2012). This general term includes research 
using this two-phase method, including research on productive failure (e.g., Kapur, 2008), inventing to 
prepare for future learning (e.g., Schwartz et al., 2009) and problem solving prior to instruction (PS-I) 
methods (Loibl & Rummel, 2014). Across these literatures, research has demonstrated that exploratory 
learning can benefit conceptual knowledge and transfer to new concepts when compared to tradi-
tional tell-then-practice methods (e.g., Darabi et al., 2018; Loibl et al., 2017). The benefits of  exploring 
are generally selective to conceptual understanding; students' learning of  problem-solving procedures 
tends to remain similar between exploratory learning and traditional instruct-first conditions (e.g., Loibl 
et al., 2017).

However, exploration activities do not always improve learning (e.g., Chase & Klahr,  2017; Fyfe 
et al., 2014; Loehr et al., 2014, Study 1). In their literature review, Loibl et al. (2017) noticed that existing 
studies differed in their instructional designs, and relatedly, their results. Conceptual knowledge gains were 
present when the activity was based on contrasting cases – examples that vary systematically across problem 
features. However, when the activity did not include contrasting cases, benefits were only consistently 
observed when the instructions built upon student solutions (Loibl & Rummel, 2014). However, Loibl 
et al. (2017) noted that no studies had varied the type of  activity used during exploration while keeping 
other factors constant.

Recently, Loibl et  al.  (2020) performed one such experiment, manipulating instructional order 
(explore-first and instruct-first) and activity type (with or without contrasting cases). Their findings did not align 
with the conclusions of  Loibl et al. (2017). Loibl et al. (2020) found an overall procedural knowledge gain 
in the instruct-first conditions and equal conceptual knowledge between instructional orders with both 
activity types. Loibl et al. (2020) acknowledged several limitations of  their study, and it is clear that more 
work is needed to understand the impact of  various activity designs in exploratory learning.

The current work extends the investigation of  activity type in exploratory learning in a large, under-
graduate physics classroom. In two studies, we compared student performance following one of  two 
different activities and the same instruction in instruct-first and explore-first orders. Learning outcomes 
included procedural knowledge, conceptual knowledge and transfer. Additional measures included aware-
ness of  knowledge gaps, interest and cognitive load. Notably, these are the first studies to test the effects 
of  exploratory learning on a transfer assessment in an undergraduate physics course.

Exploration activities

Activities used in exploratory learning studies typically include information in one of  two layouts: 
contrasting cases or rich datasets (Loibl et al., 2017). These layouts differ in the number of  data points as 
well as the clarity of  underlying the problems' features. In contrasting cases, there are a minimal number 
of  data points, and each pair of  data points differs by a single problem feature (Roll et al., 2012; Schwartz 
et al., 2009). Rich datasets include many data points that effectively hide the underlying problem features 
(Kapur, 2008, 2010, 2014; Kapur & Bielaczyc, 2012; Loibl et al., 2017).

For example, Schwartz et al. (2011) studied the effectiveness of  exploring contrasting cases to teach 
eighth-grade students about density. They presented six cases that varied systematically by features anal-
ogous to mass, volume and density. These problem features were clear and discoverable. In this activity, 
students were asked to invent a strategy for calculating ‘crowdedness’, a well-known concept that is similar 
to density.
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In contrast, Kapur (2014) used a rich dataset (i.e., two long lists of  data) when introducing standard 
deviation to ninth graders in an activity before instruction. Students were asked to generate a method for 
determining which dataset was more ‘consistent’, a well-known concept similar to the novel concept of  
standard deviation. In this case, problem features were not obvious.

Learning mechanisms

It is likely that both contrasting cases and rich dataset activity types invoke some of  the same learn-
ing mechanisms but also different ones, or to a different degree. For instance, regardless of  activity 
type, learners must draw from their existing knowledge as they attempt to solve a novel problem (Capon & 
Kuhn, 2004; Kapur,  2011, 2012, 2014; Schwartz & Bransford,  1998). Then, as students discover that 
their prior knowledge is not enough to solve the problem at hand, they become aware of  the gaps in their 
knowledge (e.g., Glogger-Frey, Kappich, et al., 2015; Loibl et al., 2017; Loibl & Rummel, 2014). Students' 
metacognitive awareness of  their knowledge gaps likely motivates them to attend subsequent instruction 
(Wise & O'Neill, 2009).

Importantly, students will likely experience prior knowledge activation, knowledge gap awareness 
and increased attention to instruction regardless of  activity type. In addition, these processes do not 
depend on whether students are successful at problem-solving, because the problem-solving phase is 
followed by instruction. Unsuccessful problem solving during exploration has been called productive failure 
because, following instruction, students have demonstrated learning gains compared to a more traditional 
instruct-then-practice order (e.g., Kapur, 2008, 2016).

However, contrasting cases and rich datasets may differ in whether they promote an opportunity for 
students to discern underlying problem features during the activity (Loibl et al., 2017; Schwartz et al., 2011). 
During the exploration of  a new problem, students can begin to determine what information is useful 
and what is not (DeCaro & Rittle-Johnson, 2012). This process enables students to identify important 
problem features during the activity and consider the meaning and significance of  these features. Students 
may even derive relational structures of  individual variables in a complex formula that will be later intro-
duced in instruction (Alfieri et al., 2013; Chin et al., 2016). In prior studies, students who attended to the 
deep structure of  the activity had greater learning outcomes (Glogger-Frey et al., 2015; Holmes et al., 
2014; Schwartz et al., 2011). Because of  their design, contrasting cases might make it easier for students 
to discern problem features than rich datasets (Alfieri et al., 2013; Roelle & Berthold, 2015; Schwartz & 
Bransford, 1998).

Learning outcomes

Exploratory learning benefits are most often observed in students' conceptual knowledge, which is abstract 
and relational (Jonassen, 2009; Rittle-Johnson et al., 2001). Conceptual knowledge consists of  the prin-
ciples in a domain as well as the connections between associated concepts. In contrast, procedural knowl-
edge is a series of  sequential actions that can be used to solve problems (Jonassen, 2009; Rittle-Johnson 
et al., 2001). Assessments of  procedural knowledge have participants complete the same procedures that 
were taught during instruction, whereas conceptual assessments query relational principles. Exploratory 
learning has been shown to generally result in equal procedural knowledge and higher conceptual knowl-
edge when compared to an instruction-first order (Loibl et al., 2017).

In addition, exploratory learning can benefit transfer, learners' ability to adapt existing knowledge to 
a new situation or different type of  problem (Barnett & Ceci, 2002). Transfer assessments target knowl-
edge generalization, depth and flexibility, which are higher-level goals than specific knowledge acquisition 
(Kalyuga & Singh, 2016). One method of  assessing generalized domain understanding and transfer is a 
dynamic future learning assessment (Schwartz & Martin, 2004). Future learning assessments include a learning 
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resource on a new topic (e.g., a worked example with explanations) within the assessment, and students 
are then asked questions on the new content. Schwartz et al. (2009) argue that there are benefits of  meth-
ods such as exploratory learning that can only be observed with future learning assessments, and some 
research on exploratory learning support this point (Schwartz et al., 2009; Schwartz & Bransford, 1998; 
Schwartz & Martin, 2004; Sears, 2006). However, future learning assessments are rarely implemented. 
No prior exploratory learning studies have assessed future learning with a rich dataset activity or with an 
undergraduate student sample.

Current research

The current experiments examined the impact of  exploratory learning in an undergraduate physics 
course. In Experiment 1, we assessed the benefits of  exploration with contrasting cases. In the explore-first 
condition, students were given the exploration activity followed by instructions. In the instruct-first condi-
tion, students received instruction and then worked on the same activity. Thus, students completed the 
same learning materials in both conditions, and the only difference was whether the activity came before 
or after instruction. All students then completed a post-test that included procedural, conceptual and 
future learning assessments. We measured interest/enjoyment and cognitive load after the activity. The 
same basic experimental design and assessments were used in Experiment 2, which utilized a rich dataset 
instead of  contrasting cases in the activity.

We predicted that students in the explore-first condition with contrasting cases (Experiment 1) would 
demonstrate equal procedural knowledge, greater conceptual knowledge and greater transfer than students 
in the instruct-first condition, similar to other exploratory learning studies using contrasting cases. For 
Experiment 2 (rich datasets), we predicted one of  two outcomes. One possibility was that we would 
obtain results similar to Experiment 1, consistent with prior studies using rich datasets (e.g., Kapur, 2012, 
2014). However, students may have difficulty discovering important problem features when exploring rich 
datasets. If  the process of  discovering relevant problem features is necessary for exploratory learning, 
then it is possible that no difference between explore-first and instruct-first conditions would be found 
when the activity is based on rich datasets.

Importantly, many prior studies – including those using either contrasting cases or rich datasets – vary 
other factors in addition to the order of  activity and instruction (see Hsu et al., 2015; Loibl et al., 2017; 
Schwartz et al., 2011). In addition, none of  the prior studies has used the same topic or materials as the 
current study, and the majority were done with younger students. Thus, it would not be entirely unex-
pected if  we did not replicate the benefits of  exploration in these experiments when using a controlled 
experimental design with a new topic and sample.

As discussed previously, Loibl et al. (2020) directly compared the use of  contrasting cases versus rich 
datasets as exploration activities and found results that contradict the typical pattern of  findings. Post-test 
performance was very low in all conditions, indicating that the learning materials may have been quite 
difficult for this age group, leading to a high cognitive load. Prior research has shown that more difficult 
materials (i.e., an activity with high element interactivity) can reduce the benefits of  exploring before 
instruction, such that an instruct-first condition results in higher learning (e.g., Ashman et al., 2020; see 
also Chen et al., 2015). The current studies included measures of  cognitive load and interest/enjoyment 
to gauge both difficulty and engagement of  our materials for our sample. We expected that these materials 
could be attempted by students without being overly difficult because the instructor collaborated on the 
material design and was familiar with students' prior knowledge. Based on the potential for exploration to 
be more challenging but engaging (Kapur, 2016), we predicted that students in an explore-first condition 
would perceive equal or higher cognitive load and equal or higher interest and enjoyment of  the activity 
compared to students in an instruct-first condition, in both experiments. This prediction aligns with the 
concept of  productive failure (e.g., Kapur,  2008, 2016). Students  in the explore-first conditions were 
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expected to be able to attempt the activities, but not necessarily gain high accuracy (Kapur, 2016). Yet, this 
experience of  exploring was expected to translate to a higher conceptual understanding.

By examining different activity designs and resulting learning outcomes in undergraduate physics, 
these studies allow us to further investigate the importance of  contrasting cases in exploratory learning. 
Because contrasting cases are designed to help students discover problem features, a differential benefit 
of  exploring in Experiment 1 but not in Experiment 2 would indicate that emphasizing deep problem 
features during exploration may be important to achieve the learning benefits observed in the literature. If  
instead we found higher learning scores when exploring in both experiments (using contrasting cases and 
rich datasets), the findings would indicate that the learning mechanisms similar to both (prior knowledge 
activation and knowledge gap awareness) may be enough to generate the learning benefits of  explora-
tion. Alternatively, this finding could suggest that, despite not being intentionally designed to highlight 
problem features, rich datasets still enable students to sufficiently explore these features. Either outcome 
would further our understanding of  whether contrasting cases are important when designing exploration 
activities.

EXPERIMENT 1

Experiment 1 tested learning outcomes following a contrasting cases activity and instruction in an under-
graduate physics classroom in two instructional orders: explore-first and instruct-first.

Methods

Participants

Participants (N = 129) were all students who attended a first-semester undergraduate physics course for 
engineers and physics majors on the date of  the study and completed all learning materials.

Materials

All materials are provided in Figures 1 and 2 and the Supplemental Online Materials.

Instruction
The course instructor lectured with a slideshow presentation. He began by relating the current topic 
(gravitational field) to the preceding topic (gravitational force). The instructor then outlined the basic 
formulas, and how another previous course topic (vector addition) could be used to do the calculations. 
Students were familiar with vector addition at this point in the course, having used it in several different 
contexts including gravitational force. Therefore, the emphasis of  this lesson was on the gravitational field 
concept and magnitude formula. Lastly, the instructor walked through an example problem by hand on 
his laptop which was projected on the same screen as the slideshow (see Figure 1).

Contrasting cases activity
The contrasting cases activity is illustrated in Figure 2. The complete set of  10 scenarios (points PA – PJ) 
were designed to differ along critical problem features (distance, mass, relative position and number of  
objects). To make the different problem features discoverable, the 10 points were grouped into three 
diagrams. The first diagram had only one particle, m1, with points either directly below it or directly to the 
right. Points PA and PB differed only by distance from the particle, and points PC and PD differed from PA 
and PB only by relative position. The third diagram had two particles of  different masses with points along 
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a single axis. This diagram made the relative value of  mass to distance (g = m/d 2) discoverable. The second 
diagram had multiple points and masses that were not on a single axis, which introduced the vector addi-
tion component of  multiple masses. Only PF and PG were points for which the gravitational field was at 
an angle, and PF was given as an example. Students could therefore deduce the vector addition nature of  
the gravitational field, although again this was not necessary due to the instruction that followed.

The activity instructions for the explore-first and instruct-first conditions were as parallel as possible 
(Figure 2). In the explore-first condition, students were instructed to ‘invent a mathematical formula…’ 
We used invention instructions in keeping with prior studies using contrasting cases (e.g., Schwartz 
et al., 2011). Chin et al.  (2016) found that invention instructions led to higher learning outcomes, and 
more global synthesis across cases, than explicit instructions to compare contrasting cases.

Contrasting cases activity review
The activity review consisted of  showing the correct answers on a slide and asking students if  they had 
any questions.

Survey
The survey was designed to assess interest/enjoyment and cognitive load following the activity. The 
interest and enjoyment scale was adapted from Ryan (1982; Cronbach's α = .82; see Weaver et al., 2018). 
Students responded to four items on a Likert scale from 1 (strongly disagree) to 7 (strongly agree), such as 
‘Today's activity has been interesting’. Cognitive load was measured with the single-item Mental Effort 
Rating Scale (Paas, 1992). The question read, ‘In completing the learning activity today I invested:’, and 
the response was on a Likert scale ranging from 1 (very, very low mental effort) to 9 (very, very high mental effort).

Assessments
The procedural knowledge scale (7 items, α = .71) consisted of  multiple-choice questions requiring students 
to use formulas from recent instruction for different scenarios. The conceptual knowledge scale (10 items; 
α = .76) consisted of  True/False questions that queried relational and verbal understanding, including 
several common misconceptions. The future learning assessment consisted of  a learning resource followed 
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F I G U R E  2   Contrasting cases activity used in Experiment 1, including instructions for the (a) instruct-first condition and 
(b) explore-first condition
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by procedural questions (9 items; α = .82) and a final transfer question (1 item). The learning resource 
introduced students to an electric field with a written description, equations and an example problem.

The procedures for calculating electric field properties are very similar to gravitational field calculations, 
and the underlying concepts are similar as well. Procedural questions required students to calculate electric 
field magnitude and direction. The transfer question asked students to predict the equation for electric 
force, which has the same relationship to electric field as gravitational force does to gravitational field.

Procedures

The experiment was conducted in one 75-min class period. Students were randomly assigned to condi-
tions and divided between two classrooms. Students in the instruct-first condition (n = 82) completed 
the study in their regular classroom, which was a large lecture hall. Because no similar classrooms were 
available for the study, students in the explore-first condition (n = 47) completed the study in a 60-seat 
active learning classroom.

The experiment included six phases, as outlined in Table  1. The order of  instruction and activ-
ity varied by condition. Students in the instruct-first condition received the instruction followed by the 
activity, and students in the explore-first condition completed the activity, then the instruction. Three 
instructors moved between the two classrooms for different phases of  the study. The course instructor 
gave the instruction, a secondary instructor led the activity with the course Teaching Assistant and a third 
instructor gave the survey. The assessment was led by the instructor in the classroom at the end of  the 
period. Students were debriefed about the study in a letter emailed at the end of  the semester and given 
the opportunity to withdraw their data. All procedures were approved by the University Institutional 
Review Board.

Results and discussion

Learning outcomes

Performance on the procedural and conceptual assessments was examined using a 2 (question type: proce-
dural and conceptual) × 2 (order: explore-first and instruct-first) mixed-factorial analysis of  variance 
(ANOVA), with the order as a between-subjects factor and question type as a within-subjects factor. There 
was a significant main effect of  question type, F(1, 127) = 25.75, p < .001, ηp 

2 = .17. Procedural ques-
tions (M = 72.76%, SE = 1.67) were answered more accurately than conceptual questions (M = 61.09%, 
SE = 2.18). The main effect of  the order was not significant, F < 1. However, there was a significant 
Order × Question Type interaction, F(1, 127) = 7.57, p = .007, ηp 

2 = .06. Simple effects  were examined 
using the 95% confidence intervals. As illustrated in Figure 3, procedural knowledge was not significantly 
different between students in the explore-first order (M = 70.45, SE = 2.66, 95% CI [65.19, 75.71]) and 
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Phase Explore-first Instruct-first

1 Activity 20 min Instruction 20 min

2 Survey 4 min Activity 20 min

3 Instruction 20 min Survey 4 min

4 Activity Review 1 min Activity Review 1 min

5 Assessment Part 1 10 min Assessment Part 1 10 min

6 Assessment Part 2 15 min Assessment Part 2 15 min

T A B L E  1   Instructional order and timing in explore-first and instruct-first conditions



students in the instruct-first order (M = 75.07, SE = 2.01, 95% CI [71.09, 79.05]). However, conceptual 
knowledge was significantly higher for students in the explore-first order (M = 65.11, SE = 3.48, 95% 
CI [58.23, 71.98]) than for students in the instruct-first order (M = 57.07, SE = 2.63,  95% CI [51.87, 
62.28]), d = .36.

Performance on the future learning assessment was also examined using a 2 (order) × 2 (question type: 
procedural and transfer) mixed-factorial ANOVA. There was a main effect of  the order, F(1, 127) = 5.20, 
p = .024. Students in the explore-first condition (M = 53.78%, SE = 3.90, 95% CI [46.06, 61.51]) scored 
higher overall than students in the instruct-first condition (M =  42.62%, SE =  2.96, 95% CI [36.77, 
48.46]), d = .41. There was also a significant main effect of  question type, F(1, 127) = 115.44, p < .001, 
ηp 

2 = .48, with procedural questions (M = 70.39%, SE = 2.48, 95% CI [65.48, 75.30]) answered more 
accurately than the transfer question (M = 26.01%, SE = 3.79, 95% CI [18.51, 33.51]), d = 1.32. These 
effects were qualified by a significant Order × Question Type interaction, F(1, 127) = 4.91, p =  .029, 
ηp 

2 = .04. As illustrated in Figure 4, students in the explore-first condition scored significantly higher on 
the transfer question (M = 36.17, SE = 6.04, 95% CI [24.21, 48.13]) than students in the instruct-first 
condition (M = 15.85, SE = 4.57, 95% CI [6.80, 24.91]), d = .47. Scores on the procedural questions did 
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F I G U R E  3   Experiment 1 post-test scores by condition. Note: Error bars = ±1 SE
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not significantly differ between students in the explore-first condition (M = 71.40, SE = 3.96, 95% CI 
[63.57, 79.22]) and students in the instruct-first condition (M = 69.38, SE = 3.00, 95% CI [63.45, 75.30]), 
d = .05.

Survey

Seven students did not complete surveys, and one student did not answer the cognitive load question. No 
effects of  the order were found for either the interest and enjoyment scale, F(1, 121) = 1.79, p = .184, or 
the cognitive load item, F(1, 120) = 1.69, p = .196 (see Table 2). Thus, survey responses were similar across 
conditions, and near the mid-point of  the scales, indicating that any additional effort associated with 
exploring before instruction did not negatively impact cognitive load or interest/enjoyment. This result 
suggests that our new exploration activity was appropriately difficult and engaging (see Kapur, 2016).

Conclusion

Students who explored contrasting cases scored higher than those who received instruction before the 
activity on the conceptual knowledge and future learning transfer assessments. Students learned proce-
dural knowledge equally well in both conditions. These findings are consistent with our hypotheses and 
extend research on exploratory learning in undergraduate classrooms (e.g., Weaver et al., 2018) to a new 
physics topic. This study is also the first to show that exploratory learning can benefit undergraduate 
students' transfer.

EXPERIMENT 2

Experiment 2 tested the benefits of  exploratory learning using the same topic as in Experiment 1, with a 
rich dataset instead of  contrasting cases in the activity.

Methods

Participants

Participants (N =  92) included all students who attended on the study dates and completed all learn-
ing materials, from two introductory physics courses. One course included predominantly premedical 
students (N = 53), and the other included engineering and physics majors (N = 39). Both courses were 
conducted in a different semester from Experiment 1. Although the course with premedical students was 
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Order M SE 95% CI

Interest/enjoyment (of  7) Explore-first 4.61 .14 [4.33, 4.89]

Instruct-first 4.92 .18 [4.56, 5.28]

Cognitive load (of  9) Explore-first 5.53 .17 [5.20, 5.86]

Instruct-first 5.88 .22 [5.45, 6.31]

T A B L E  2   Experiment 1 survey results



different from Experiment 1, all courses had the same instructor of  record and received the same overall 
content along the same timeline throughout the semester.

Materials

All materials are provided in Figure 5 and the Supplemental Online Materials.

Rich dataset activity
The activity with a rich dataset is shown in Figure 5. This activity consisted of  five particles and two 
points, positioned asymmetrically on a single xy plane, and the particle masses and locations were given 
in a table. The goal of  the activity was for students to identify which of  the two points was influ-
enced more by the five particles. This activity differed from the activity of  the contrasting cases in 
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F I G U R E  5   Rich dataset activity used in Experiment 2, with instructions for the (a) instruct-first condition and (b) 
explore-first condition

a

b 



that the particles and points were not separated or organized around axes, and thus the underlying 
problem features were hidden. The layout and type of  information given were similar to activities given 
to students in other rich dataset studies (e.g., Kapur,  2014) which allowed students to use different 
mathematical procedures towards a goal during exploration. Activity instructions mirrored those in 
Experiment 1 (Figure 2 and 5).

Survey
The survey included the interest/enjoyment and cognitive load scales from Experiment 1. We also added 
a perceived knowledge gap awareness scale (Cronbach's α = .87; adapted from Flynn & Goldsmith, 1999). 
The scale included four items, with responses on a Likert scale from 1 (strongly disagree) to 5 (strongly agree; 
e.g., ‘I do not feel very knowledgeable about calculating gravitational field’). These items were interleaved 
with the interest/enjoyment scale, which was modified to Likert 5.

Assessments
Assessments in Experiment 2 were adapted with slight modifications from those in Experiment 1. A 
section break was added between the procedural assessment (7 items, α = .69) and the conceptual assess-
ment (10 items, α = .41). In the future learning assessment, conceptual questions were added (4 items, 
α = .26), and the procedural scale was shortened by removing items with low variability (4 items, α = .59). 
Because of  (a) the extremely low reliability of  the new conceptual scale, (b) the lack of  similar data in 
Experiment 1, and (c) no difference between experimental conditions, analysis of  the conceptual scale in 
the future learning assessment is not included in this article.

Procedure

As in Experiment 1, students were randomly assigned to the instruct-first (N  =  40) or explore-first 
(N = 52) conditions and worked simultaneously in different active-learning classrooms. The courses met 
in 50-min sessions, therefore students participated over 2 consecutive class days. On the first day in both 
conditions, students participated in the activity, survey, instruction and activity review. On the following 
class day, students completed the assessments within the same, original classroom. The timing of  each 
phase is detailed in Table 3.

Results and discussion

Results were analysed using the same procedures as in Experiment 1.
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Day Phase Explore-first Instruct-first

1 1 Activity 20 min Instruction 20 min

2 Survey 4 min Activity 20 min

3 Instruction 20 min Survey 4 min

4 Activity Review 1 min Activity Review 1 min

2 5 Assessment Part 1 8 min Assessment Part 1 8 min

6 Assessment Part 2 5 min Assessment Part 2 5 min

7 Assessment Part 3 15 min Assessment Part 3 15 min

T A B L E  3   Instructional order and timing in explore-first and instruct-first conditions



Learning outcomes

The main effect of  the order was not significant, F(1, 90) = 1.78, p = .185, ηp 
2 = .02. There was a signifi-

cant main effect of  question type, F(1, 90) = 6.51, p = .012, ηp 
2 = .07. Procedural questions (M = 71.29%, 

SE = 2.76) were answered more accurately than conceptual questions (M = 65.09%, SE = 1.77). The 
Order × Question Type interaction was not significant, F(1, 90) < 1, p = .513, ηp 

2 = .01 (see Figure 6; 
procedural knowledge: explore-first M = 74.73, SE = 3.65, 95% CI [67.48, 81.97]; instruct-first M = 67.86, 
SE = 4.16, 95% CI [59.60, 76.11]); and conceptual knowledge: explore-first M = 66.92, SE = 2.33, 95% 
CI [62.30, 71.55]; instruct-first M = 63.25, SE = 2.66, 95% CI [57.97, 68.53].

On the future learning assessment, the main effects were not significant for order, F < 1, or question 
type (procedural and transfer), F(1, 90) = 2.43, p = .123, ηp 

2 = .03. The Order × Question Type interaction 
was also not significant, F < 1, p = .696, ηp 

2 < .01 (see Figure 7): procedural knowledge, explore-first order 
(M = 43.27, SE = 3.10, 95% CI [37.12, 49.42]) and procedural knowledge, instruct-first order (M = 43.75, 
SE = 3.53, 95% CI [36.74, 50.76]); transfer, explore-first order (M = 36.54, SE = 6.67, 95% CI [23.48, 
49.79]) and transfer, instruct-first order (M = 32.50, SE = 7.61, 95% CI [17.39, 47.61]).
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FIGURE 6  Experiment 2 (rich dataset) post-test scores as a function of  order and question type. Note: Error bars = ±1 SE
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F I G U R E  7   Experiment 2 future learning assessment scores by order and question type. Note: Error bars = ±1 SE
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Survey

One student was missing data on the knowledge gap awareness scale. No significant order differences 
were found for interest/enjoyment, F(1, 90) = 1.75, p = .189, or cognitive load, F < 1. Again, responses 
were near the mid-point of  the scales, indicating that any additional effort associated with exploring 
before instruction did not negatively impact cognitive load or interest/enjoyment. Knowledge gap aware-
ness, however, was significantly higher for students in the explore-first condition than students in the 
instruct-first condition, F(1, 89) = 15.16, p < .001, ηp 

2 = .15 (see Table 4).

Conclusion

Learning outcomes were consistent with our second set of  hypotheses: there were no differences in 
procedural or conceptual knowledge or future learning between the explore-first and instruct-first condi-
tions. Merely reversing the order of  instruction and activity with a rich dataset did not provide learning 
benefits.

GENERAL DISCUSSION

We tested the causal impact of  reversing the order of  instruction and activity on learning and transfer 
in undergraduate physics classrooms. We also varied the activity design between the two experiments. 
Activities differed in whether important problem features were made salient, with examples presented as 
contrasting cases (Experiment 1) or a rich dataset (Experiment 2).

In Experiment 1, students who explored contrasting cases before instruction demonstrated equiv-
alent procedural knowledge and greater conceptual knowledge, compared to students who completed 
the activity after instruction. These results align with the majority of  studies in the growing exploratory 
learning literature (Loibl et al., 2017; Sinha & Kapur, 2021), supporting the idea that there are beneficial 
learning mechanisms invoked by reversing the common tell-then-practice order. In addition, students 
who explored before instruction showed greater transfer to a new, related topic – extending prior research 
(e.g., Schwartz & Martin, 2004) into undergraduate STEM disciplines. This result underscores the poten-
tial for exploratory learning to benefit generalized domain understanding. It is critical in advanced STEM 
degrees that students connect earlier and later concepts throughout multiple semesters and adapt and 
apply known procedures to novel questions. Therefore, instructional methods that facilitate conceptual 
understanding may be especially useful in these disciplines.

The results from Experiment 2 differed from Experiment 1. Students who explored a rich dataset 
showed similar learning outcomes as students in the instruct-first condition. The null finding for concep-
tual knowledge contradicts some prior studies using activities with rich datasets before instruction (e.g., 
Kapur, 2008, 2012, 2014). One possible reason for this inconsistency may be that many prior studies did 
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Order M SE 95% CI

Interest/enjoyment (of  5) Explore-first 3.89 .09 [3.70, 4.07]

Instruct-first 3.70 .11 [3.49, 3.91]

Cognitive load (of  9) Explore-first 6.39 .16 [6.06, 6.71]

Instruct-first 6.35 .19 [5.98, 6.72]

Knowledge gap awareness (of  5) Explore-first 3.30 .11 [3.08, 3.52]

Instruct-first 2.64 .13 [2.38, 2.89]

T A B L E  4   Experiment 2 survey results



not experimentally control the learning materials given between instruct-first and explore-first conditions. 
Thus, a factor other than the order of  instruction may have led to the benefits of  exploring rich datasets. 
More importantly, prior studies using rich datasets often include instruction on common student solu-
tions for the explore-first condition, whereas we did not. Loibl et al. (2017) found that prior studies using 
rich datasets that did include such instruction were more likely to show the benefits of  exploring before 
instruction (e.g., Loibl & Rummel, 2014). Instruction on student errors may serve to highlight problem 
features in the instruction as opposed to during the activity. More research is needed to test whether meth-
ods that highlight common student errors have similar benefits as using contrasting cases in the explora-
tion activity. Such findings would indicate that highlighting the problem features is key, whether it occurs 
during the activity or instruction. Contrasting cases during the activity may be one way to accomplish this 
goal, and highlighting student solutions in the instruction may be another way.

Together, the learning outcomes from Experiments 1 and 2 indicate that the design of  exploration 
activities may impact the benefits of  exploratory learning by activating different learning mechanisms. We 
assume that activities given prior to instruction, with either contrasting cases or a rich dataset, encourage 
students to activate their prior knowledge and become aware of  their knowledge gaps. Although we did 
not measure knowledge gap awareness in Experiment 1, perceived knowledge gaps were higher following 
the activity in the explore-first condition than instruct-first condition in Experiment 2. However, given 
the null results in Experiment 2 (rich datasets), it seems likely that prior knowledge activation and knowl-
edge gap awareness do not alone lead to the benefits of  exploratory learning. Instead, our results suggest 
that discernment of  problem features is also required (Newman & DeCaro, 2019). Our results support 
the idea that many learning mechanisms work together to benefit learning outcomes (Loibl et al., 2017) 
and suggest that contrasting cases help complete the set of  learning mechanisms required by encouraging 
students to identify problem features.

Cognitive load and engagement

The survey results demonstrated that exploration was not more cognitively demanding or less interesting/
enjoyable than solving a problem after instruction. Cognitive load was rated right around the mid-point 
of  the scale in both studies, demonstrating that the task was not overly difficult for students. Activities 
with high element interactivity can be perceived as more difficult (i.e., cognitively demanding), and in such 
contexts, instruct-first conditions have been shown to lead to better learning than explore-first conditions 
(e.g., Ashman et al., 2020). This idea aligns with the findings of  Loibl et al. (2020), who compared the 
use of  contrasting cases and rich datasets in exploration activities and found a benefit of  instruct-first 
conditions. Future exploratory learning studies may benefit from measuring cognitive load to continue to 
explore perceived cognitive load as a potential moderator.

Limitations

Despite the many factors that were the same between Experiments 1 and 2, there were differences 
that limit our ability to fully compare the results of  exploring with contrasting cases with rich datasets. 
In Experiment 1, students were in different types of  classrooms for the two experimental conditions; 
in Experiment 2, students in both conditions were in the same type of  classroom. However, it seems 
unlikely that the physical environment fully accounts for our results in Experiment 1, given the consist-
ency with many other studies examining exploratory learning. Also, the reliability of  the conceptual 
scale was low in Experiment 2 (α = .41), and not in Experiment 1 (α = .76), which could have limited 
our ability to detect significant differences between conditions. Although the procedural and conceptual 
knowledge items were the same between experiments, these subscales were split into different timed 
segments in Experiment 2, potentially impacting students' responses. The samples were also slightly 
different between experiments. Experiment 1 included primarily engineering students, whereas Exper-

EXPLORATORY LEARNING ACTIVITY DESIGN 15



iment 2 included both engineering and premedical students. Due to the length of  class periods (75 vs. 
50 min), Experiment 1 was conducted in a single class period, whereas Experiment 2 was conducted 
over two class periods. Although the null results in Experiment 2 could be driven by the delay in the 
assessment, prior studies have found benefits of  exploring even with a delay (e.g., Kapur, 2012; Weaver 
et al., 2018). Finally, in designing activities that use contrasting cases versus rich datasets, the problems 
students were exposed to in the activities were not exactly the same. Thus, we cannot say for certain 
whether it was the use of  contrasting cases, or some other change in the content, that led to the different 
pattern of  findings between experiments. Certainly, additional studies are needed to replicate and extend 
our findings on the effect of  activity type, with students randomly assigned to both order of  instruction 
and activity type conditions.

Another limitation concerns the interpretation of  the findings for the contrasting cases conditions 
(Experiment 1). Our experiments were designed to test how the order of  the activity (i.e., before or 
after instruction) impacted students' learning. Thus, we controlled for other factors, including the 
materials given to the students. We can conclude that students in the explore-first condition scored 
higher on conceptual and transfer assessments than students in the instruct-first condition. But we 
cannot determine which condition drove this effect. Students in the explore-first condition might have 
benefitted from the activity, or students in the instruct-first condition might have been hindered by the 
activity. For example, students in the instruct-first condition were taught the mathematical procedure  in 
the instruction right before the activity and therefore, might have approached our more conceptually 
oriented activity in a more procedurally oriented way (e.g., by doing complex math rather than thinking 
deeply about the concepts). Indeed, students often apply the rote procedures they learn in instruction 
to practice problems; exploratory learning might help to avoid a more superficial approach to the 
problems (Bonawitz et al., 2011; Schwartz et al., 2012). However, more research is needed to examine 
these ideas.

Relatedly, the final limitation of  this study was that the procedural knowledge assessment did not 
include any problems with complex math (vector addition). These types of  problems take longer to solve, 
and we decided to instead include multiple, more concise items on the procedural scale. It is therefore 
possible that we may have missed an effect in procedural knowledge either in favour of  the explore-first 
group or instruct-first group. However, prior research has indicated that switching the order of  instruc-
tion does not often impact procedural knowledge (Loibl et al., 2017). Additionally, vector addition was a 
relatively common procedure used in this physics course and was not specific to this topic. Therefore, it 
was expected that students would be able to complete this procedure regardless of  condition.

CONCLUSION

There is currently a strong push to use active learning methods in undergraduate education. Explor-
atory learning is a promising method due to the observed benefits of  conceptual understanding and 
transfer, both of  which are critical for students to connect and apply their learning to novel problems. 
However, more work is needed to fully investigate the potential boundary conditions and moderators of  
this method. The current findings indicate that including contrasting cases in the activity may facilitate 
learning from exploring. Our results suggest that different learning mechanisms might be activated by 
different activity designs. A good goal is to design activities that enable students to activate their prior 
knowledge, become aware of  gaps in their knowledge and discover problem features for themselves.
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