

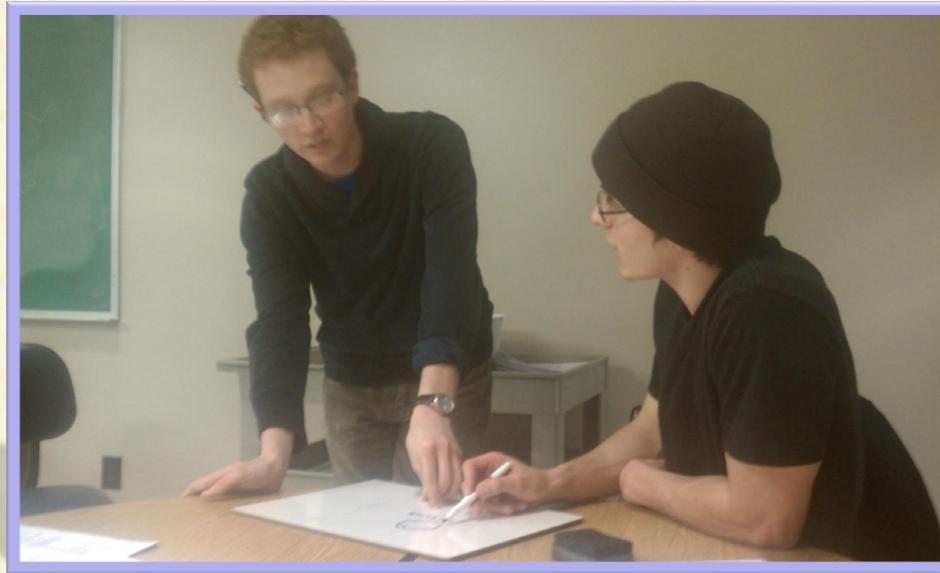
Partnership for Retention Improvement in Mathematics, Engineering, and Science

Christine Rich¹, Thomas R. Tretter², Gerold Willing³, Stephanie Philipp², Melissa Shirley² ¹Department of Chemistry, ²College of Education and Human Development, ³J.B. Speed School of Engineering

PRIMES Project Overview

PROJECT GOAL

Increase by 25% the number of STEM baccalaureate degrees awarded in biology, chemistry, engineering, geosciences, mathematics, and physics and astronomy by 2016.


PROJECT STRATEGIES

PRIMES has 2 evidence-based project strands focused on the retention of STEM majors :

- **Transform teaching and learning** in STEM introductory courses. Improve retention by training and supporting cohorts of undergraduate teaching assistants (UTAs) that can serve as effective peer mentors equipped to better engage novice STEM learners.
- Increase faculty-student interactions and build a sense of both community and science identity among STEM majors. PRIMES will facilitate these interactions by sponsoring social and academic meetings by STEM Recognized Student Organizations and by hosting campus-wide STEM events.

PROJECT IMPLEMENTATION: UTA STRAND

- Creation and institutionalization of 9 STEM Practicum courses across 2 Colleges for enrolling UTAs.
- Collaborative training of UTAs via workshops and seminars • with an emphasis on *experiencing* and *distilling* best practice strategies such as formulating guiding questions, addressing student preconceptions, using formative assessments, & promoting metacognitive learning.

Supporting UTAs' pedagogical growth throughout the semester as they assume teaching assistant positions in recitations, teaching laboratories, or as leaders in peergroup supplemental instructional settings.

Empirical Evidence of Elements that Positively Impact STEM Retention

- 1) What is impact of PRIMES on UTAs (cognitive, pedagogical, identity)?
- 2) What is the UTA impact on academic achievement of entry-level STEM majors?
- 3) What is the UTA impact on STEM degree persistence of entry-level STEM majors?
- 4) What is the UTA impact on STEM identity development of entry-level STEM majors?
- 5) What is the overall project impact on the institution (faculty, structures, culture)?

Student Impact Study: Detailed GenChem Example

STUDY-LEVEL RESEARCH QUESTIONS

- 1) Impact of UTAs on student academic achievement
- 2) Impact of UTAs on student persistence in STEM
- Impact of UTAs on student STEM-identity 3)

SAMPLE

594 CHEM 201 students (284 UTA treatment in 14 recitation sections; 310 in GTA comparison in 15 sections)

RESEARCH DESIGN & DATA & ANALYSIS

- Quasi-experimental treatment-comparison; random assignment
- Achievement = common final exam; Persistence = enroll in CHEM 202
- Post-survey on STEM identity
- Multi-level modeling (HLM) controlling for ACT & college GPA for achievement analysis. Logistic regression for persistence analysis

RESULTS

- Achievement: 8.5% higher final exam with UTA for those above GPA mean
- Persistence: 3 times more likely to enroll in CHEM 202 with UTA
- STEM Identity: Stronger STEM identity with UTA

Opportunity

- PRIMES success has created interest in education research among STEM faculty.
- The Leadership Team is helping STEM disciplinary faculty frame department-specific research studies on UTA impacts.

Project-Level Research Questions

IMPACT ON UTAs

- Stronger metacognitive learner

IMPACT ON STUDENTS

- study example)
- 201 and CHEM 202)

IMPACT ON INSTITUTION & FACULTY

- (e.g. questioning, mental models)
- departments

- structures.

University of Louisville

Project Impact Summary

Deeper understanding of foundational concepts in discipline

Improved teaching & communication skills

Stronger achievement, persistence, STEM identity (see detailed

Dosage effect – the more UTA semesters, the stronger the academic achievement impact (0, 1 or 2 semesters across CHEM

Structured Practicum courses in each of 9 STEM departments

Enhanced faculty conversations about pedagogical techniques

UTAs becoming highly desirable resource for faculty

• Integration of UTA-training elements into GTA-training in some

Next Steps

Dept.-level studies across multiple STEM departments. Converging on various effective UTA-implementation approaches tuned to fit within existing departmental

Ongoing cross-departmental faculty conversations about supporting STEM students, including seeking additional external resources to advance these initiatives.

