
In the Era of Precision Medicine and Big Data,
Who Is Normal?

The definition of “normal” values for common labora-
tory tests often governs the diagnosis, treatment, and
overall management of tested individuals. Some test re-
sults may depend on demographic traits of the tested
population including age, race, and sex. Ideally, labora-
tory test results should be interpreted in reference to a
population of “similar” “healthy” individuals. In many set-
tings, however, it is unclear exactly who these individu-
als are. How much population stratification and what cri-
teria for healthy individuals are optimal? In particular,
with the evolution of medicine into fully personalized or
“precision” medicine and the availability of large-scale
data sets, there may be interest in trying to match each
person to an increasingly granular normal reference
population. Is this precision feasible to obtain in reli-
able ways and will it improve practice?

There are limited systematic analyses of baseline
variation across demographically diverse population
strata (including race/ancestry, gender/sex, age, and
socioeconomic strata of the population) for even wide-
spread clinical laboratory tests. Even after decades of
routine use, it may be that reference standards should

be reconsidered for some populations. For example, he-
moglobin A1c (HbA1c)1 was recently found to systemati-
cally underestimate past glycemia in African American
patients with the sickle cell trait.2 There is even less
documentation of whether and how more granular
stratification correlates with clinical outcomes. An-
swering these questions would require studies that
assess the outcomes of individuals with laboratory
measurements classified as normal with one system vs
abnormal with another. Outcomes could include both
natural history and treatment benefits and harms.
With limited data, small laboratory studies, and incom-
plete capture of long-term outcomes, this has been
difficult to achieve.

However, with the proliferation of large data sets
emblematic of precision medicine,3 it is becoming fea-
sible to study stratified variation and clinical outcomes
at scale. Sample size limitations are no longer a chal-
lenge. However, the task of defining a “normal” popu-
lation becomes even more challenging. Who should de-
fine normality and using which criteria? When should
standardized efforts be used across populations and in-

strumentation? How can multiplicity across myriad popu-
lation strata be overcome as the normal population be-
comes more precise and personalized?

It is essential to answer these questions for widely
used clinical laboratory tests such as complete blood cell
count and blood chemistries before delving into more
rare tests. Such tests are a routine entry point for inva-
sive and expensive follow-up tests and procedures, yet
remain poorly characterized across strata. Data sets suf-
ficiently capacious to study stratified variation at scale
include select research cohorts, electronic health rec-
ords, and insurance claims data sets. Although some data
sets may be queried with relative ease (eg, electronic
health records at an investigator’s institution or public
claims data), how generalizable findings are to other clini-
cal settings is unclear.4

Challenges of Precision Medicine and Big Data
Defining Normality
The first challenge to ensuring precise application of clini-
cal laboratory testing is defining a “healthy” population
to estimate the normal range of variation across popu-

lation strata. A set of criteria for normal-
ity (eg, absence of chronic disease) may
appear reasonable but substantial differ-
ences can result from 2 sets of equally
reasonable criteria. More specifically, the
Clinical and Laboratory Standards Insti-
tute (CLSI) guidelines state that 120
“reference individuals” should be used to
establish reference intervals for labora-

tory analytes.5 In practice, researchers and testing labo-
ratories may use fewer than 120 individuals, often jus-
tified as sufficient to verify, rather than establish, an
existing reference range. Anecdotal reports from some
laboratories of major hospitals suggest that only 20
individuals may often be used for this purpose.

Furthermore, as the guideline states, health “is a
relative condition lacking a universal definition.” The
way in which healthy individuals are defined is not
standardized and the characteristics of the tested
population may vary considerably between laborato-
ries. To illustrate the potential effect of this, the US
Centers for Disease Control and Prevention’s National
Health and Nutrition Examination Survey (NHANES)6

2013-2014 survey data were examined using 3 com-
peting definitions of normality: (1) based on the
absence of common disease conditions (eg, diabetes,
coronary heart disease, cancer) (62% of the NHANES
population sample); (2) based on an overall excellent
self-rating of health (16% of the population sample);
and (3) including only individuals aged 18 to 40 years
(35% of the population sample).
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The 3 definitions are all defensible but lead to significant varia-
tion in the inferred normal range of HbA1c, defined as lower than
the 95th percentile (eFigure A in the Supplement). For example,
12%, 16%, and 27%, respectively, of all individuals would be
flagged as “abnormal” using the 3 methods of defining reference
ranges, based on being out of the reference range of at least 1
demographic stratum. Furthermore, using very stringent defini-
tions for normality can lead to the paradox of “normal” becoming a
rarity. For example, only 5% of the NHANES population sample
have none of these disease conditions, self-rate their health as
excellent, and are aged 18 to 40 years.

Multiplicity
Multiplicity across population strata causes further problems.
When the distribution of an analyte (such as HbA1c) is examined
over many subpopulations, even when there is no difference
across the subpopulations, many differences are likely to be
detected if there is not a correction for the number of compari-
sons performed. Dealing with multiplicity is standard in some
research communities, such as human genetics, but the issue is
equally important in laboratory analyte comparisons in which set-
ting reference thresholds may be much less coordinated. It is
especially risky when only specific comparisons of strata are pub-
lished (eg, based on having achieved statistical significance). The
extent of such selective reporting biases in information on refer-
ence ranges is unknown.

A simple simulation illustrates how daunting this prob-
lem might be. Assuming there are no differences in the true analyte
distributions across 5 race × 10 age × 2 gender × 3 socioeco-
nomic = 300 population strata, if 120 individuals are repeatedly
sampled (eg, from the same subpopulation) the phantom appear-
ance of statistically significant differences will almost always be
produced (many of which might seem to also have clinical rel-
evance) even when none exist (eFigure B in the Supplement). The
problem is exacerbated if the reference intervals are derived from
fewer than the standard 120 individuals. The risk of erroneous
inferences about reference ranges is multiplied by the number of
analytes that could be tested.

Potential Solutions
The challenges involved in computing reference intervals while over-
coming multiplicity can lead to suboptimal use of a test across a broad
and diverse population, reducing both sensitivity and specificity and,
eventually, clinical utility. Fortunately, the same large-scale data sets
that present challenges to computing reference intervals (eg, elec-
tronic health records, insurance claims data) may also contain so-
lutions. First, if longitudinal outcomes data can be reliably linked at
the individual level, the clinical importance of differences in refer-
ence intervals may be testable. Second, shared large-scale data-
bases may enable systematic analyses across data sets and labora-
tories while explicitly accounting for the scale of multiple testing.
Third, definitions of “normal” ranges can be tailored based on pa-
tient attributes and delivered to physicians at the point of care.
Fourth, and perhaps most emblematic of the precision medicine
movement, computationally derived genetic ancestry (now rou-
tine to determine with genotyping arrays or sequencing) paired with
laboratory testing data should allow moving beyond the often
“administratively assigned” and problematic conflation of race and
ancestry ubiquitous in health care data.7

Achieving these goals will likely benefit from the efforts of mul-
tiple groups including researchers, laboratories, health care institu-
tions, journals, and funders. Researchers and laboratories can
start by broadly sharing estimated reference intervals across
demographic strata and documenting design choices such as out-
lier procedures and inclusion criteria, allowing other researchers to
reproduce their calculations. Health care institutions could make con-
sented patient data available to compute reference ranges for their
populations. Tailored reference ranges may be possible to provide
at the point of care. Journals and funders could enforce (eg, as pre-
condition for publication or funding) or incentivize requirements that
promote data sharing and explicit descriptions of selection criteria
and analytic methods. Testing laboratories could share consented rec-
ords that enable researchers to reevaluate claims about clinical util-
ity across population groups. As several countries around the world
embark on establishing large-scale research biobanks, it will be cru-
cial to compute precise reference ranges and rigorously test when
and how this level of precision improves care.
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