SILICON DIOXIDE PLASMA ETCH GUIDE

Author: Michael Martin Version: 2.5

February 12, 2020, April 12, 2022

Purpose: Plasma etch rates of SiO2 and resist 1827 for several recipes and 2 tools

Processes: Trion and March plasma etching of thermal SiO₂ (silicon dioxide)

Restrictions/requirements: General cleanroom safety training, training on the Trion and March RIE from cleanroom personnel

Limitations: Reproducibility is governed by a stable DC bias during the etch

Oxide Etch Rate (nm/min)	Shipley 1827 Resist Etch Rate (nm/min)	ICP/Refl (W)	RIE/Refl (W)	DC Bias (V)	Gas 1 (sccm)	Gas 2 (sccm)	He Cooling (Torr)	Pressure (mTorr)	Tool	Comments
80.4		400/10	50/6	-124	CHF3, 40	02, 3	5	20	Trion	
131		400/10	100/10	-150 to -200	CHF3, 40	02, 0	5	20	Trion	
98.6	>230	400/10	100/9	-150 to -200	CHF2, 30	CF4, 10	5	20	Trion	
112.4 <i>,</i> 118 ⁺	> 260, 390 ⁺	NA	300/3	?	CF4, 50%	H2, 3%	NA	300	March	
14	44	300/6	25/9	-27 to -23	CHF3, 30	CF4, 10	5	20	Trion	
54.4, 68.4, 50, 57.9 [†]	61, 96.2, 58.4, 72.3 [†]	300/7, 300/17	50/6, 50/7	-150 to -90	CHF3, 40	0	5	20	Trion	Hard baked 1827 for 1hr at 115°C, hard bake 5 min
80, 82.3	-133.8, -187.2 [‡]	300/17	100/12	-200 to -300	CHF3 40	0	5	20	Trion	Hard bake 5 min

⁺ More than one value indicates results of separate trials.

‡ Resist thickness actually increased during the first 5 minutes of the etch

Best recipe for resist selectivity from above is the last:

Using the Trion Plasma Etcher with resist hard baked for 5 min at 115° C ICP: 300 W Ref: 17 RIE 100 ref: 12 DC Bias: -200 to -300 V He: 5 torr CHF₃: 40 sccm O₂: 0 Pressure: 20 mT NOTE: Resist thickness actually increases due to incorporation of fluorine and sulfur

Under Cut and EDS of Resist

ICP: 300 W Ref: 7 RIE: 50 ref: 2 DC Bias: -150 to -90 V He: 5 torr CHF₃: 40 sccm O₂: 0 Pressure: 20 mT

ICP: 300 W Ref: 17 RIE 100 ref: 12 DC Bias: -200 to -300 V He: 5 torr CHF₃: 40 sccm O₂: 0 Pressure: 20 mT

Conclusions from SEM and EDS:

- 1. Undercut of the oxide is negligible for these thicknesses.
- 2. The photo resist thickness seems to have increased due to absorption of fluorine and sulfur. The fluorine is found in the etch gas CHF_3 but we are not sure about the source of the sulfur perhaps from SF_6 used in previous runs? It is clear that a higher RIE power and thus DC bias drives more fluorine and sulfur into the resist.