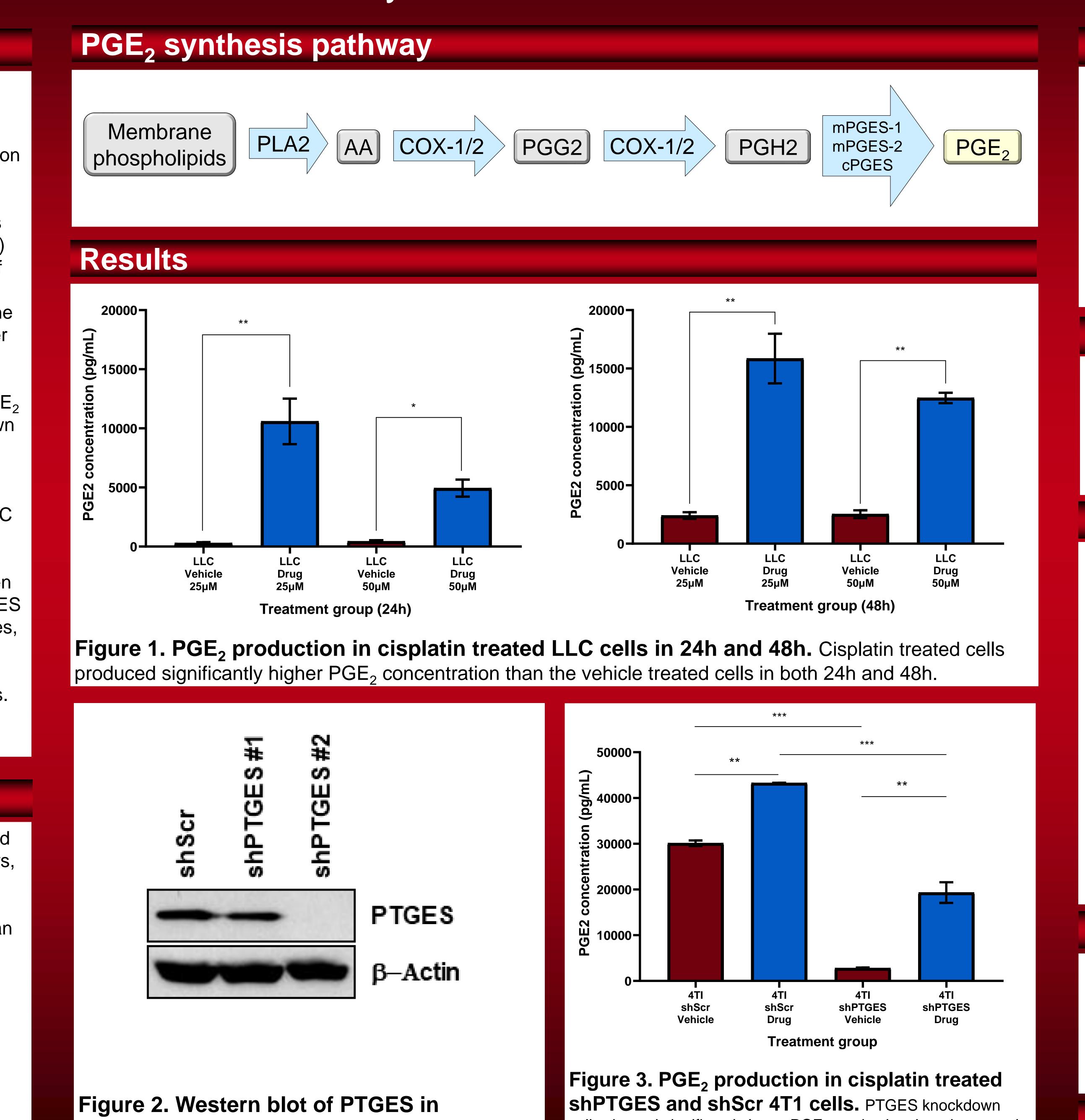
Abstract

Introduction: PGE₂ presence in cancer progression appear to support tumor health, leading to increased metastasis and angiogenesis, decreased apoptosis, and pro-tumor immunoregulation [1]. Thus, methods that inhibit PGE₂ production have potential to negatively impact cancer growth.

Objective: It is hypothesized that chemotherapy treatment induces PGE₂ production in cancer cells. This project examines PGE₂ levels in mammary (4T1) and Luis Lung Carcinoma (LLC) mouse cancer cells that have been exposed to varying levels of chemotherapy drug cisplatin. Platinum-based chemotherapy drugs are widely used to crosslink DNA, which should induce the most cell death among rapidly proliferating cells, such as cancer

Methods: LLC and 4T1 cells were plated with control and cisplatin treated groups. PGE₂ ELISA was used to measure PGE₂ concentration of supernatant. PTGES genes were knocked down in 4T1 cells using lentiviral shRNA technology.

Results: Our results show that cisplatin-treated cancer cells produce significantly higher levels of PGE₂ in comparison to vehicle controls, with the peak PGE₂ production occurring in LLC cells 48 hours after the 25μ M cisplatin treatment. In addition, shPTGES knockdown 4T1 cells exhibit lower PTGES protein levels in western blots and produce significantly less PGE₂ when compared to normal 4T1 cells. When these 4T1 cells with PTGES knockdown are treated with cisplatin, PGE_2 production increases, albeit less than shScr control cells.


Conclusions: Chemotherapy drug cisplatin appears to induce significantly more PGE₂ production in 4T1 and LLC cancer cells. Cisplatin induces more PGE₂ production through the PTGES genes.

Background

 PGE_2 (prostaglandin E2) is a lipid molecule that can be secreted by various cell types in our body. Its G-protein coupled receptors, EP1-4, contain inhibitory and stimulatory subunits, causing downstream signaling cascades. Due to the ubiquitous expression of EP receptors and formation of PGE₂ in most organ systems, PGE₂ presence regulates a large range of biological effects, such as inflammation [4].

The PGE₂ synthesis pathway first begins when membrane phospholipids are cleaved by phospholipase A2 (PLA2), producing arachidonic acid (AA). Cyclooxygenase activity from the COX enzymes then produce intermediate PGG2, which is reduced into alcohol PGH2. From here, a variety of prostaglandins can be synthesized. PGH2 is rapidly converted into PGE₂ by three terminal synthases: mPGES-1, mPGES-2, and cPGES. In humans, these enzymes are encoded by the genes PTGES, PTGES2, and PTGES3 respectively.

Chemotherapy induces PGE₂ **production from cancer cells** Yuqing Deng, Omar Sadi Sarkar^{2,3}, Kavitha Yaddanapudi, Ph.D.^{1,3} Departments of Surgery¹ and Microbiology & Immunology² University of Louisville School of Medicine³

ShPTGES and ShScr 4T1 cell lysates. shPTGES 4T1 cells had significantly lower PTGES expression than the shScr 4T1 cells.

cells showed significantly lower PGE₂ production than the control cells. As shown in LLC cells, cisplatin treated ShPTGES and shScr 4T1 cells produced more PGE₂ than the vehicle treated, even though PTGES genes were knockdown in shPTGES 4T1 cells.

Methods

Culture: LLC and 4T1 cells (shPTGES and shScr) were cultured in complete media (10% FBS, 1% L-glutamine, 1% penicillin/streptomycin in DMEM) and incubated at 37°C in 5% CO2.

Treatment: 0.3 million cells/well plated and cultured for 24h. Plated LLC cells treated with 25µM and 50µM cisplatin and 25µM and 50µM vehicle control (NaCl) solution. Supernatant was collected after 24h and 48h and frozen. Cell lysates were collected for western blotting.

PGE₂**ELISA**: Following the manufacturer protocol PGE₂ concentration was measured in supernatants.

PTGES Knockdown: PTGES genes were knocked down in 4T1 cells using lentiviral shRNA technology.

Conclusions and clinical implications

Chemotherapy drug cisplatin appears to induce significantly more PGE₂ production in 4T1 and LLC cancer cells and cisplatin induces more PGE₂ production through the PTGES genes.

 Further research can aid in designing more efficient chemotherapy drugs

Future directions

Use CRISPR Cas-9 to completely knockout all enzymes that directly synthesize PGE₂ and observe PGE₂ production of these knockout cells in presence of cisplatin

Determine mechanistic pathways responsible for how cisplatin induces higher PGE₂ expression in cancer cells

Provide stronger evidence to solidify higher PGE₂ presence through methods such as:

- Western blot to determine protein levels of the enzymes that produce PGE₂
- PCR to determine gene expression rates of genes that code for PGE₂ producing enzymes
- Extend these research methods to other cell lines or chemotherapy drugs and observe if any distinct shift in PGE_2 levels occur

Determine viable methods of targeting PGE₂ receptors (EP1-4) that inhibit its binding with PGE₂

References

Finetti, Federica, Travelli, Cristina, Ercoli, Jasmine, Colombo, Giorgia, Buoso, Erica, & Trabalzini, Lorenza. (2020). Prostaglandin E2 and Cancer: Insight into Tumor Progression and Immunity. Biology (Basel, Switzerland), 9(12), 434.

Makovec, `Tomaz. (2019). Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiology and Oncology, 53(2), 148-158.

Murray, David, & Mirzayans, Razmik. (2020). Cellular Responses to Platinum-Based Anticancer Drugs and UVC: Role of p53 and Implications for Cancer Therapy. International Journal of Molecular Sciences, 21(16), 5766.

Nakanishi, Masako, & Rosenberg, Daniel W. (2013). Multifaceted roles of PGE2 in inflammation and cancer. Seminars in Immunopathology, 35(2), 123-137.

Acknowledgements

Research supported by a grant from University of Louisville Cancer Education Program NIH/NCI (R25-CA134283)