Developing an Immunocompetent Mouse Lung Cancer Model for the Evaluation of Virotherapy Effectiveness

Introduction

The preclinical characterization of oncolytic adenoviruses has so far been restricted to immunodeficient xenograft tumor models adenoviruses do not because human replicate efficiently in murine tumor cells.

These immunodeficient animal models can demonstrate effective replication in and destruction of human tumors by adenovirus type 5 (Ad5)-based vectors. However, the viruses do not replicate in mouse tissues, and thus the models can neither assess the complete safety and efficacy profile of the vectors in normal tissue, nor do they permit evaluation of the impact of an active immune system on overall vector potency. In contrast, the effect of virus replication and the immune response could be evaluated in an immunocompetent syngeneic tumor model.

reported that Previously has been It autophagy plays a key role in oncolytic adenovirus replication. Moreover, the chemotherapeutic agent Temozolomide (TMZ), an autophagy inducer, enhances virotherapy effectiveness human in glioblastoma cells. We hypothesize that TMZinduced autophagy will enhance oncolytic Ad replication in mouse Lewis Lung Carcinoma-1 (LLC-1) thereby enhancing cancer cell killing effect. This study evaluated the ability of TMZ to enhance oncolytic Ad replication in the syngeneic mouse C57BL LLC-1 cell line.

Eric Riedinger¹, Jonathan Nitz¹, Kelly M. McMasters^{1, 2}, and Jorge G. Gomez-Gutierrez¹ ¹The Hiram C. Polk MD Department of Surgery and ²James Graham Brown Cancer Center, University of Louisville, School of Medicine, Louisville, KY, 40202.

Results

This study provides evidence that syngeneic mouse LLC-1 cells treated with TMZ became susceptible to human oncolytic Ad replication. Additionally, TMZ-induced autophagy might not be required for TMZ-enhanced oncolytic

In this study it was also found that the combination therapy of oncolytic adenovirus (Adhz60) with TMZ resulted in a synergistic cancer cell killing effect and apoptosis induction. Minimal cytotoxicity was observed in

This approach will provide an excellent model a better understanding of interaction between the immune system and oncolytic

Predicting adverse events in patients undergoing hepatectomy – validation of preoperative nomogram and risk score Travis Spaulding, BS, Robert CG Martin II, MD, PhD Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, KY

Introduction

Malignancy in the liver, including the biliary tree, has many etiologies, including hepatocellular carcinoma, metastatic cancer from primary colorectal or breast, cholangiocarcinoma, and gallbladder carcinoma. Management of these conditions is often accomplished at least in part through hepatectomy, with therapeutic options ranging from ablation, to wedge resection, to full lobectomy. It is important that physicians have the means to effectively quantify the risk of morbidity in patients preoperatively, for the benefit of the patient.

There is much published research on preoperative measures of postoperative mortality in the surgical treatment of liver malignancies, but little on morbidity. Dhir et al. and Simons et al. have a published preoperative nomogram and perioperative risk score, respectively, assessing the risk of mortality post-hepatectomy.

mortality, confirming past research.

6

- In the analysis of morbidity, scores according to *Dhir et al.* were a poor predictor of morbidity.
- (p=0.0028), complication grade (p=0.0033), and hepatic-specific complications (p=0.0003).

Tables I & 2: Simons et al. & Dhir et al. ordinal grouping data											
Simons, et al. Risk Score Group	1 (R.S.: 1-4)	2 (R.S.: 5-9)	3 (R.S.: 10-14)	4 (R.S.: ≥ 15)							
N (patients)	18	394	340	99							
N (complications)	5	183	181	165							
(complications per patient)	0.278	0.464	0.532	1.667							
Complications											
Yes	6 (33.33%)	149 (37.82%)	152 (44.71%)	57 (57.58%)							
No	12 (66.67%)	245 (62.18%)	188 (55.29%)	42 (42.42%)							
ncision											
Hockey Stick	2 (11.11%)	84 (21.32%)	101 (29.71%)	22 (22.22%)							
Midline	8 (44.44%)	90 (22.84%)	63 (18.53%)	23 (23.23%)							
Subcostal	3 (16.67%)	107 (27.16%)	54 (15.88%)	19 (19.19%)							
Laparoscopic	3 (16.67%)	67 (17.01%)	70 (20.59%)	18 (18.18%)							
Mercedes/Chevron	0 (0.00%)	17 (4.31%)	38 (11.18%)	11 (11.11%)							
Unknown	2 (11.11%)	29 (7.36%)	14 (4.12%)	6 (6.06%)							
Liver Procedure											
Ablation/Enucleation	10 (55.56%)	205 (52.03%)	73 (21.47%)	19 (19.19%)							
Caudate or Central Liver Resection	0 (0.00%)	24 (6.09%)	10 (2.94%)	1 (1.01%)							
Atypical Resection	5 (27.78%)	17 (4.31%)	6 (1.76%)	0 (0.00%)							
Left Lateral Seamentectomy	2 (11.11%)	58 (14.72%)	12 (3.53%)	3 (3.03%)							
Right Posterior Sectorectomy	0 (0.00%)	23 (5.84%)	5 (1.47%)	1 (1.01%)							
Lobectomy	1 (5 56%)	46 (11 68%)	154 (45 29%)	49 (49 49%)							
Triseamentectomy		16 (4 06%)	59 (17 35%)	23 (23 23%)							
Orthotonic transplantation		5 (1 27%)	21 (6 18%)	3 (3 03%)							
Major/Minor	0 (0.0070)	5 (1.2770)	21 (0.1070)	3 (3.0370)							
Major	1 (5 56%)	56 (14 21%)	186 (54 71%)	57 (57 58%)							
Minor	17(94.44%)	338 (95 70%)	150(34.71%)	J7 (J7.38%)							
	17 (94.44%)	330 (03.79%)	154 (45.29%)	42 (42.42%)							
Mean: BIVII	26.25	27.71	27.37	27.67							
Mean: Highest complication grade	2.50	2.46	2.79	2.80							
Mean: Sum of complication grades	1.17	1.34	1.69	2.52							

Hypothesis and Aims

Hypothesis: Preoperative nomograms and perioperative risk scores for mortality in the surgical management of liver malignancy also have significant clinical utility in predicting morbidity. Aims:

- To validate the published calculations as acceptable measures of postoperative mortality following hepatectomy.
- To asses the value of these published measures in predicting postoperative morbidity following hepatectomy.

Results

Both the *Dhir et al.* nomogram (p=0.0004) and *Simons et al.* risk score (p=0.0017) were acceptable predictors of postoperative

• The ordinal risk score published by *Simons et al.* was predictive of complications (p=0.0029), the number of complications

Type of incision was also a predictor of post-operative morbidity (p < 0.0001), although this is not a preoperative variable.

Methods

- Data was collected from a prospectively managed dataset of 1059 hepatectomies performed in Louisville, Kentucky from December 20, 1990 to April 11, 2014. After patient exclusion (shown in Figure 1), 851 procedures were analyzed.
- Exclusion criteria included lack of data, management of benign lesions, or any periampullary malignancy.
- Preoperative data was used to assign scores for each published measure and the scores were sorted into clinically relevant groups with corresponding ordinal scores, according to the previously published literature.

Clinical Utility in Assessing Morbidity

Table 3. Components of the perioperative risk score as previousl

Factor	Loval	Deint Value							
ructor	Levei	Liver Metastases	Liver Drimany						
		Liver metastases	Liver Primary						
Age group	≤ 55	0	0						
	56—64	1	1						
	65—74	2	1						
	> 75	6	4						
Charlson score	0	0	0						
	1	2	3						
	2	4	4						
	≥ 3	10	8						
Procedure type	RFA/enucleation	3	2						
	Wedge resection	3	2						
	Lobectomy	6	6						
Sex	Female	1	0						
	Male	0	1						
Hospital Type	Teaching	0	0						
	Non-teaching	2	3						
	Acknowledgements								
		90110110							
National Cancer Institute—Grant R25-CA134283									

sly	published	by	Simons	et	al.

Discussion

- Mortality was effectively predicted by the nomogram and risk score, validating published research, indicating that this study's sample and those of previous studies do not significantly vary in their surgical outcomes.
- For the *Simons et al.* risk score, values were not predictive of morbidity (or mortality) unless they were sorted into groups based on clinical likelihood of a mortality.
- Future directions:
- Quantifying risk for postoperative morbidity based on easy-to-measure factors (smoking, drinking, etc.)
- Discover role of incision in patient morbidity. Which favors better outcomes?

Targeting cytosolic aspartate aminotransferase in human pancreatic and lung carcinoma using a novel inhibitor in vitro

Govind Warrier, Yoannis Imbert-Fernandez, Rob Spaulding, Jordan Noe, Brian Clem, John Trent, Jason Chesney

Abstract

Increased glycolytic metabolism is a hallmark of neoplastic cells that allows self-promotion of growth and survival. The malate-aspartate shuttle (MAS) plays a significant role in optimizing energy output from glycolysis by facilitating the transfer of electrons from cytosolic NADH for use in mitochondrial electron transport. A key enzyme in the MAS pathway is aspartate aminotransferase (AAT/GOT1), of which there are cytosolic (cAAT) and mitochondrial (mAAT) variants. Recently, AAT has also been found to be integral in proliferation of human pancreatic ductal adenocarcinoma (PDAC) through its role in increasing the NADPH/NADP⁺ ratio allowing maintenance of the cellular redox state (2). Studies show inhibition of AAT with aminooxyacetate (AOA), a known inhibitor of transaminases, decreases proliferation of PDAC and breast adenocarcinoma cells (1).

Based on the overexpression of AAT in carcinoma containing Ras oncogene mutations, along with the critical role of AAT in the aforementioned metabolic pathways, we hypothesize that AAT may be a suitable target for future cancer therapeutics. Through an active site binding screen of cAAT, novel inhibitors 117 and 4-47 were discovered. 117 and 4-47 were both found to decrease cell growth in pancreatic adenocarcinoma, alveolar adenocarcinoma, and large cell lung cancer, in tissue culture. Treatment with 4-47, in particular, displayed drastic reductions in growth. An in vitro AAT assay revealed inhibition of cAAT activity by 4-47. These findings demonstrate 4-47 to be an inhibitor of cAAT warranting further investigation as a potential therapeutic.

Methods

In-vitro AAT Activity Assay

• AAT activity was measured in the presence of various concentrations $(1\mu M, 10\mu M, 25\mu M)$ of 4-47. The assay mix contained L-aspartate (2mM, 10mM, 20mM, or 100mM), 120mM α -ketoglutarate, Malate DH, and 1mg/mL NADH in 50mM Tris buffer. Whole cell lysate of H460 cells was then added to the reaction mixture and the decrease in absorbance at 340nm was measured using a 96-well plate reader with a kinetics protocol.

Cell Viability Assay

• MiaPaca2, A549, and H460 cells were plated in a 24-well plate at a density of 20,000 cells/well. Cells were treated with DMSO vehicle control or 1μ M, 5μ M, 10μ M, 30μ M, 50μ M, 100μ M of 117or 4-47. 48 hours after treatment, viable cells were counted.

Figure 3: MIAPaCa-2 inhibition by 48h treatment with various concentrations of 117 and 4-47

Figure 5: H460 inhibition by 48h treatment with various concentrations of 117 and 4-47

Background

Figure 4: A549 inhibition by 48h treatment with various concentrations of 117 and 4-47

4-47 Inhibition of AAT in H460 Cells

Figure 6: Lineweaver-Burke plot of AAT inhibition in H460 whole cell lysate by 4-47

Conclusions

- Growth of human pancreatic adenocarcinoma, alveolar adenocarcinoma, and large cell lung cancer were reduced by treatment with drugs 117 and 4-47, in vitro
- Treatment with 4-47 showed an especially drastic decrease in cell proliferation and AAT activity assay revealed some specificity for AAT enzyme
- Findings warrant further investigation into 4-47 as a potential inhibitor of AAT

Future Studies

- Cell viability assay in Panc-1 cell line
- In-vitro AAT activity assay in MiaPaCa-2, A549, and H460 cell lines
- Pure in vitro AAT activity assay

References

- Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A, Eaton JW, Telang S, Chesney J. Targeting aspartate aminotransferase in breast cancer. 2008;10(5)
- 2. Son J, Lyssiotis CA, Ying H, Wang, X, Hua S, Ligorio, M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, Fleming JB, Bardeesy N, Asara JM, Haigis MC, DePinho RA, Cantley LC, Kimmelman AC. Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway. Nature 2013; 499(7459)

Acknowledgements

Research supported by the NIH/NCI R25-CA-134283 grant and the University of Louisville Cancer Education Program

Abstract

Investigation of ubiquitination and proteasome degradation pathways is essential to the field of cancer biology and therapeutics because of their role in cellular proliferation and apoptosis. Of particular interest is the targeting of UBR5 due to its potential role in solid tumor formation. Our previous data demonstrate that siRNA mediated loss of UBR5 is detrimental to lung cancer cell survival. Our objective in this study was to induce bacterial cultures to express and purify the UBR-box of UBR5 proteins. We hypothesize that knockout of UBR5 provides chemotherapeutic benefit in mouse models for lung cancer. Subsequently, the findings of this process would allow for future investigation into the biochemical mechanisms by which putative inhibitors of UBR5 act.

Background

Nearly 40% of cancers that include cervical, lung, breast, bladder, and ovarian carcinoma are linked to copy number variations or mutation in UBR-box genes. Study of the UBR-box genes is crucial to developing better prognoses and therapeutic approaches for cancer patients. Our prior data shows mutated or amplified UBR5 in human lung adenocarcinoma as well as other cancers. Our study of the UBR-box is especially concerned with the N-end rule ubiquitination pathway and if it plays a causal role in tumorigenesis. As reported by the National Cancer Institute, lung cancer has worldwide predominance as the leading cause of cancer mortality. The impact of further investigation to UBR5 entails greater understanding of the ubiquitin-proteasome degradation pathway as it relates to tumor suppression and oncogenic regulation.

To this end, using mouse models have proven instrumental in investigating the biologic effects of UBR5 knockout. Prior findings have shown the capability for siRNA- and shRNA-mediated loss of UBR5. Through further inquiry, there is also focus on viability of systemic UBR5 knockdown. Purifying UBR5 will allow for characterizing its interaction with substrate proteins to assess if this form of cytotoxic cancer therapy is an efficacious option for lung adenocarcinoma.

Expression and Analysis of GST-tagged UBR5 Protein Dexter Weeks, Kumar. Saurabh, Ph.D, Levi J. Beverly, Ph.D. Department of Medicine, James Graham Brown Cancer Center University of Louisville School of Medicine, Louisville, KY 40202

Induction

Cultures of recombinant E. coli were induced to express GST using the pGEX GST expression vector during bacterial transformation. The three cultures were respectively transformed to express GST, GST-tagged UBRbox with 35 amino acid of flanking sequences, and GST-tagged UBR-box with 100 amino acid of flanking sequences. Addition of flanking sequences to the protein increased the chances of obtaining a properly folding protein. After transformation, the bacteria were induced to express the proteins via introduction of 0.1 millimolar IPTG reagent.

<u>Lysis</u>

Each respective E. coli culture underwent lysis through administration of lysis buffer and subsequent sonication.

Western Blot analysis

Initially, the entirety of each bacterial lysate was analyzed via Western blot to confirm the expression of UBR-box. Afterwards, analysis of the soluble fraction from each culture was analyzed for presence of the desired protein.

Figure 1. Western blot showing expression of UBR-box proteins with GST tags from IPTGinduced E. coli

Methods

Results

Western Blot analysis of UBR-box with recombinant protein tags

Figure 2. Western blot showing soluble fraction of UBR-box proteins with GST expressed by induced E. coli

The findings revealed the E. coli cultures expressed their desired GST-tagged proteins, however only the GST-only culture produced protein found in the soluble fraction after lysis. Since GST is known to improve the solubility of proteins, we must reassess the flanking sequences or lysis methods to assure proper folding and solubility for peptide pulldown.

Since UBR5 has been proven to be overexpressed in approximately 40% of human cancers, experimentation on properly purified UBR5 protein will uncover the benefits of UBR5-specific inhibition as a cytotoxic therapeutic approach for lung cancer.

Peptide pull-downs with immobilized peptides known to bind to UBRbox and identify which compounds block the peptide/UBR5 interaction

Treating cells with UBR5 inhibitor compounds to look for loss of protein interactions

Inhibition of UBR5 in inducible shRNA mouse model and determine *in vivo* outcomes

Determine if systemic UBR5 loss is tolerable and if UBR5 loss exhibits a therapeutic benefit following cytotoxic treatment of lung cancer mouse models of cancer.

Research supported by grant R25-CA-134283 from the National Cancer Institute.

Conclusions

Future Directions

Acknowledgements

Many thanks to the members of the Beverly lab for assistance and guidance, with special thanks to Dr. Kumar Saurabh and Dr. Levi Beverly for their instruction and mentorship.