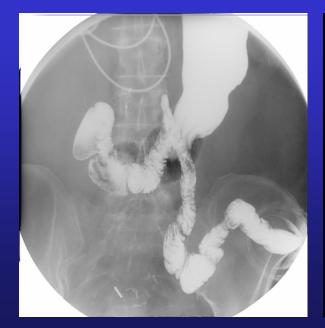

╢

Intestinal Failure Diet, Drugs and the Knife

John K. DiBaise, MD
Professor of Medicine
Division of Gastroenterology
Mayo Clinic Arizona


Relevant Disclosures

Commercial Interest
None

Off Label Usage
None

Intestinal Failure

Condition in which inadequate digestion and/or absorption of nutrients/fluids leads to malnutrition and/or dehydration

Intestinal Failure Etiology

Acute

- Mechanical obstruction
- Ileus
- Intestinal fistulae
- Severe colitis
- Intra-abdominal sepsis

Chronic

- Short Bowel Syndrome
- Pseudo-obstruction (CIPO)
- Radiation enteritis
- Nonresponsive sprue
- Microvillus atrophy
- Autoimmune enteropathy

Learning Objectives

- Review the management of short bowel syndrome
- Describe the diagnosis and treatment of chronic intestinal pseudo-obstruction
- Discuss the current status of intestinal transplantation

Case (1)

- 48 year old male
- Recurrent dehydration, weight loss and electrolyte deficiencies
- Massive intestinal resection 8 months previously
 - SMA thrombosis
 - Negativehypercoagulable stateevaluation

- Bowel anatomy unclear
 - ? Half colon and 5 feet of small bowel removed
- 6-12 loose-watery, foulsmelling stools/day
- Poor appetite
- Nausea/dyspepsia
- Constantly thirsty with poor urine output

Case (2)

- Medications
 - Pepcid prn, potassium
 20 mEq TID, tincture of
 opium 10 drops TID
 - Biweekly IV fluid w/magnesium
 - No longer on home PN
- No dietary changes
- Drinks a lot of gatorade and water

- Examination
 - BMI 19.1 kg/m2 (lost 30% of normal body wt)
 - Orthostatic BP
 - Dry skin/mucus membranes,
 eczematous rash on hands/feet
- Stool output -2.5 L/day
- Urine output 600 mL/day
- Labs Increased
 BUN/creatinine, borderline
 low albumin/calcium,
 decreased magnesium, zinc,
 vitamin D, EFA

What Defines Short Bowel Syndrome?

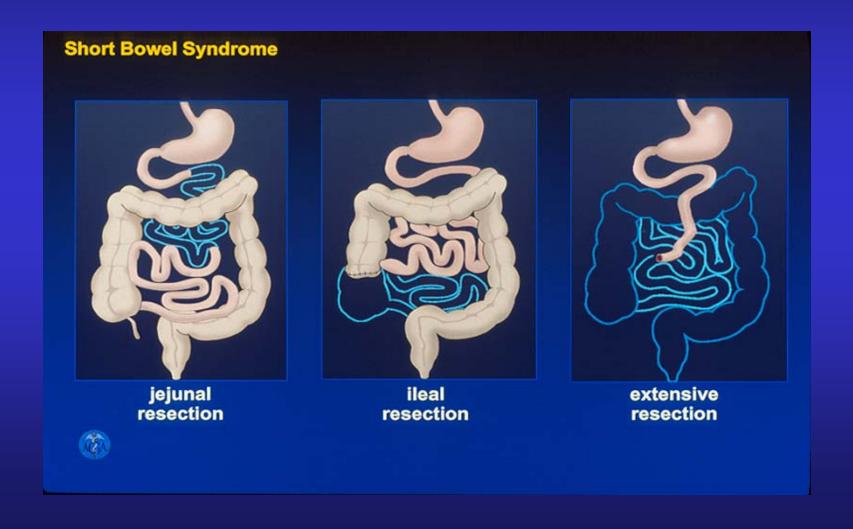
- Wide ranging length
 - -300 to 650 cm

"It is not how long it is, but what you do with it, my friend..." Anonymous, about 500 BC

- Tremendous functional reserve
 - Problems when > 75% removed

• < 200 cm small bowel <u>remaining</u>

Causes of SBS

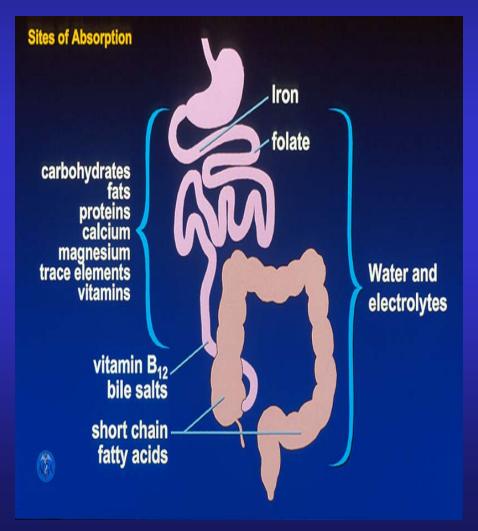

Infants

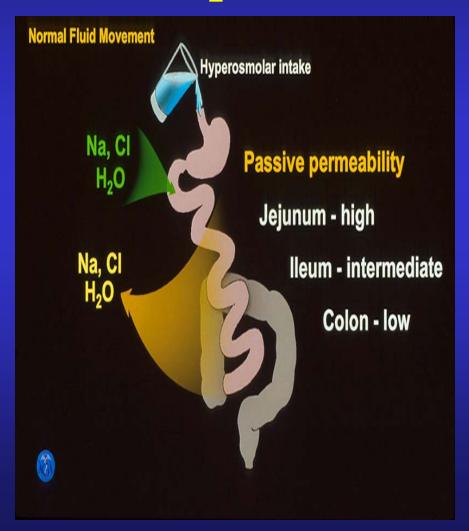
- Congenital anomalies
 - Midgut volvulus
 - Gastroschisis
 - Atresia
 - Aganglionosis
- Necrotizing enterocolitis

Adults

- Postoperative (24%)
- Radiation enteritis/Tumors (24%)
- Mesenteric ischemic events (22%)
- Crohn's disease (17%)
- Trauma (8%)
- Other (7%)

Bowel Anatomy Types in SBS


Complications of SBS


- Central line-related
 - Infection
 - Occlusion
 - Breakage
 - Central vein thrombosis
- PN-related
 - Hepatic
 - Biliary

- Altered bowel anatomyrelated
 - Fluid/electrolyte disturbances
 - Micronutrient deficiency/excess
 - Oxalate nephropathy
 - Bacterial overgrowth
 - D-lactic acidosis
 - Renal dysfunction
 - Metabolic bone disease
 - Peptic ulcer disease

GI Tract Anatomy/Physiology Nutrient and Fluid Absorption

Case (3)

- Initial management
 - Education and counseling
 - − High CHO − low fat, low oxalate diet
 - Restrict hyperosmolar fluids
 - Oral rehydration solution
 - PPI bid
 - Imodium 2 tablets ac/hs
 - MVI, zinc, oral mag oxide, calcium w/vit D, essential fatty acid supplement
 - Changed B12 injection to monthly

Treatment Options in SBS

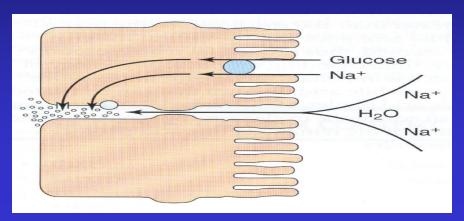
- Diet
- Fluids
- Medications
 - Antimotility
 - Antisecretory
 - Bile acids
 - Antibiotics
 - Trophic factors

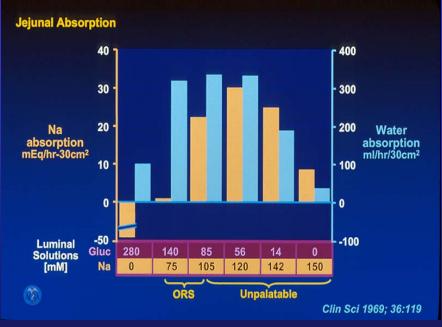
- Nutrition support
 - Parenteral
 - Enteral
 - Combination
- Surgery
 - Autologous GI reconstruction
 - Transplantation

Dietary Modification

COLON PRESENT

- Encourage hyperphagia
- CHO 50-60%
- PRO 20%
- FAT 20-30%
- Meals 5-6 daily
- Avoid oxalates
- Isotonic/hypoosmolar fluids
- Soluble fiber 5-10 g/day
- Lactose as tolerated


COLON ABSENT


- Encourage hyperphagia
- CHO 40-50%
- PRO 20%
- FAT 30-40%
- Meals 4-6 daily
- Oxalates: no restriction
- Isotonic, high Na fluids
- Soluble fiber 5-10 g/day
- Lactose as tolerated

Byrne et al. NCP 15:306, 2000 Norgaard et al. Lancet 1994 Jeppesen et al. Gut 1998

Fluids in SBS – Importance of ORS

- End-jejunostomy require glucose-electrolyte solution (ORS)
 - 90 mEq/L sodium
- Fluid composition less important to those with a colon
- All should avoid hyperosmolar fluids

Antisecretory Agents in SBS

• Massive enterectomy associated with transient (6-12 mo) hypergastrinemia and hypersecretion

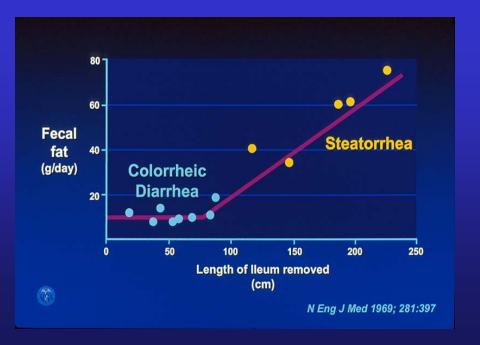
• H₂RA or PPI may be beneficial

Somatostatin Use in SBS

- Decreases a variety of GI secretions and slows gastric and jejunal transit
- No clear effect on improving nutrient/fluid absorption
 - Short-lasting, expensive, requires injection
 - Increases risk of gallstones
 - May inhibit bowel adaptation
- May be useful in high stool output conditions

Antimotility Agents in SBS

- Decrease motility and reduce secretion
 - Loperamide: minimal side effects; OTC
 - 2 to 4 mg ac/hs
 - Diphenoxylate with atropine
 - 2.5 to 5 mg ac/hs
 - Codeine phosphate
 - 30 to 60 mg ac/hs
 - Opium tincture
 - 5 to 20 drops ac/hs
 - (5 drops=0.25 mL=2.5 mg morphine)

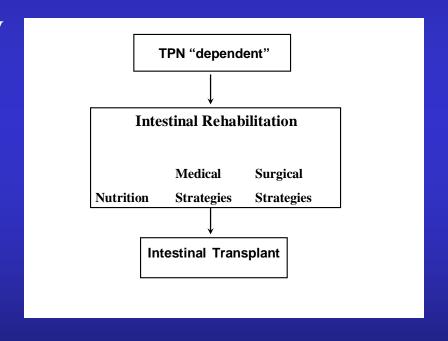

Antimicrobial Use in SBS Bacterial Overgrowth

- Multifactorial pathophysiology
- Variety of potential clinical consequences
 - May interfere with PN weaning and predispose to bacterial translocation
 - May be beneficial in CHO salvage
- Unique diagnostic challenge
 - Small bowel aspirate best test (?)
- Antibiotic therapy first line
 - Improved gas-related symptoms, reduction in stool output and/or weight gain

Bile Salt and Pancreatic Enzyme Replacement in SBS

- Bile salt depleted when > 100 cm distal ileum resected
- Ox bile supplements and cholylsarcosine
 - Open-label case reports
- Use of bile acid binders (e.g., cholestyramine) to be avoided
 - Worsen fat malabsorption
 - Only use when < 100 cm
 terminal ileum removed

- No evidence of reduced pancreatic secretion in SBS
- Potential for mismatch of food and enzyme mixing



Case (4)

- Further course (3 months later)
 - -BMI 22 kg/m2
 - Good appetite, no longer thirsty
 - Stool volume < 1 L/d
 - Urine output > 1 L/day
 - Labs normal including magnesium

Problem with Current Approaches

- PN still frequently necessary
 - Does not enhance bowel function
 - Costly (>\$100K/yr)
 - Reduced quality of life
 - 1–2 hospitalizations annually/patient

Howard et al. Gastroenterology 1995 Tokars et al. Ann Int Med 1999 Cavicchi et al. Ann Int Med 2000

Risk Factors for Permanent Intestinal Failure

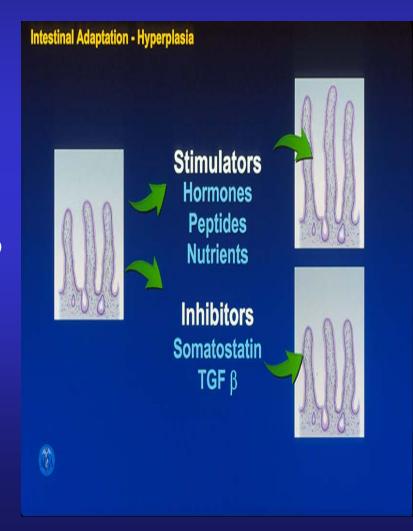
- Remnant bowel length
 - ≤ 100 cm end-jejunostomy
 - ≤ 65 cm jejunocolic anastomosis
 - ≤ 30 cm jejunoileocolic anastomosis
- Residual disease in remnant bowel
- Absence of colon
- Time on PN
 - 2 yrs adults; ≥ 4 yrschildren

- Degree to which adaptation has occurred
- Age
- Nutritional status
- Fasting plasma citrulline level < 20 μmol/L
- Wet weight absorption <
 1.41 kg/d
- Energy absorption < 84%/d

 Messing et al. Gastroenterology 1999

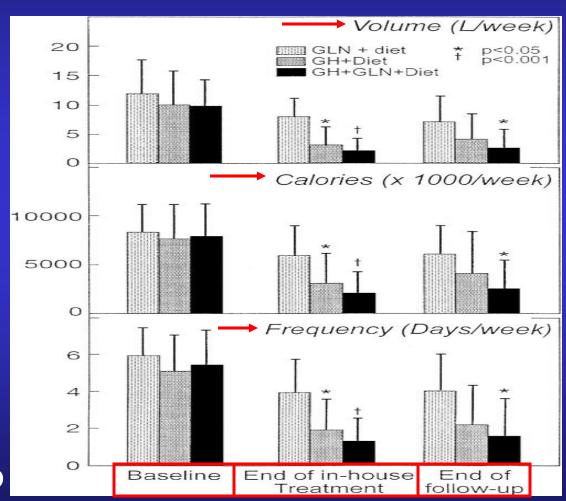
 Jeppesen and Mortensen 2003

Is there a Role for Enteral Nutrition in SBS?

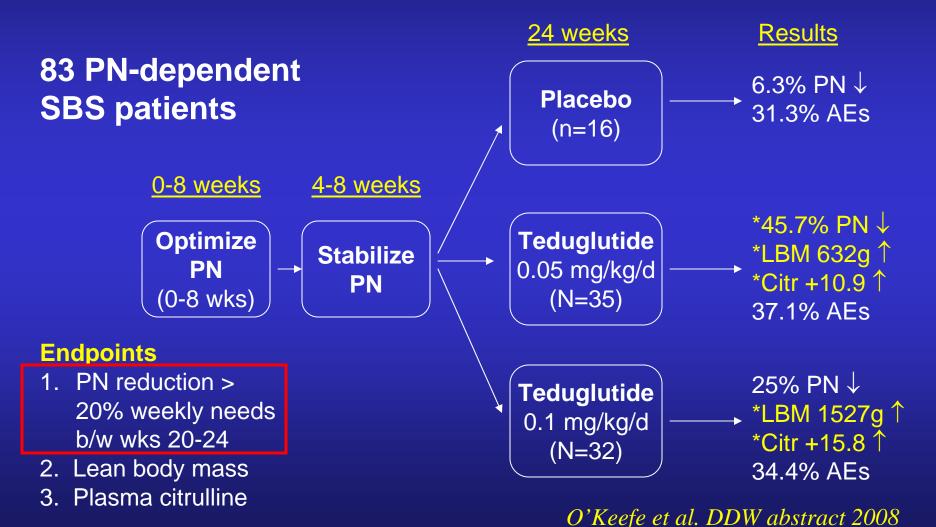

- Facilitate weaning from PN when oral intake insufficient
 - Gastric, continuous administration
 - Tube feeding improves intestinal absorption in SBS
 Joly F, et al. Gastro 2009
 DiBaise JK, et al. JCG 2006
- 61 adults with SBS (50 cm SB) who received EN + PN (+ GH, glutamine, optimized diet) 50 \pm 24 mo f/u
 - EN comprised about $53 \pm 13\%$ of total daily calories
 - 52/61 (85%) successfully weaned from PN
 - 5 remained on both PN + EN

Trophic Factors

• Facilitate intestinal adaptation


Intestinal adaptation

- Remaining bowel attempts to increase fluid/nutrient absorption to that occurring before resection
- Variety of stimulators of adaptation

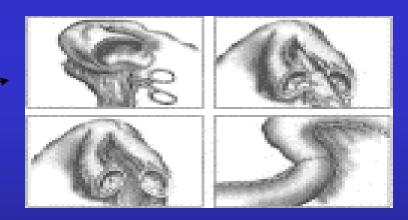


RCT of r-hGH, Glutamine and Specialized Oral Diet

- Patients receiving r-hGH + GLN (n=16)
- Patients receiving r-hGH w/o GLN (n=15)
- Controls received GLN + diet (n=9)
- 4 wks treatment
 w/12 wks follow-up



Randomized, Controlled Trial of GLP-2 Analogue in PN-dependent SBS


Surgery in SBS

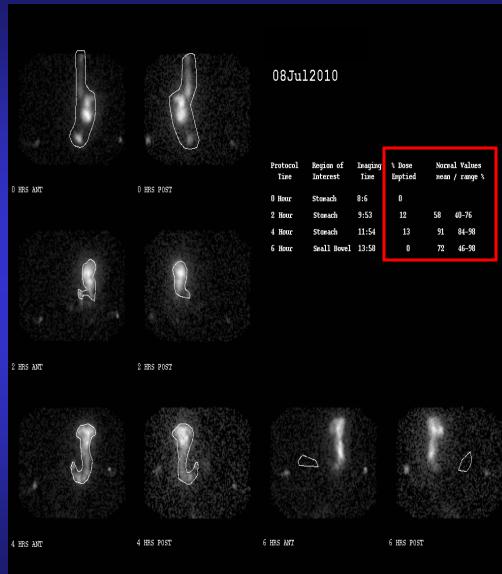

- Goal is to preserve as much bowel as possible
 - Restore continuity
 - Relieve obstruction
 - Repair fistulae
 - Recruitbypassed/unused bowel

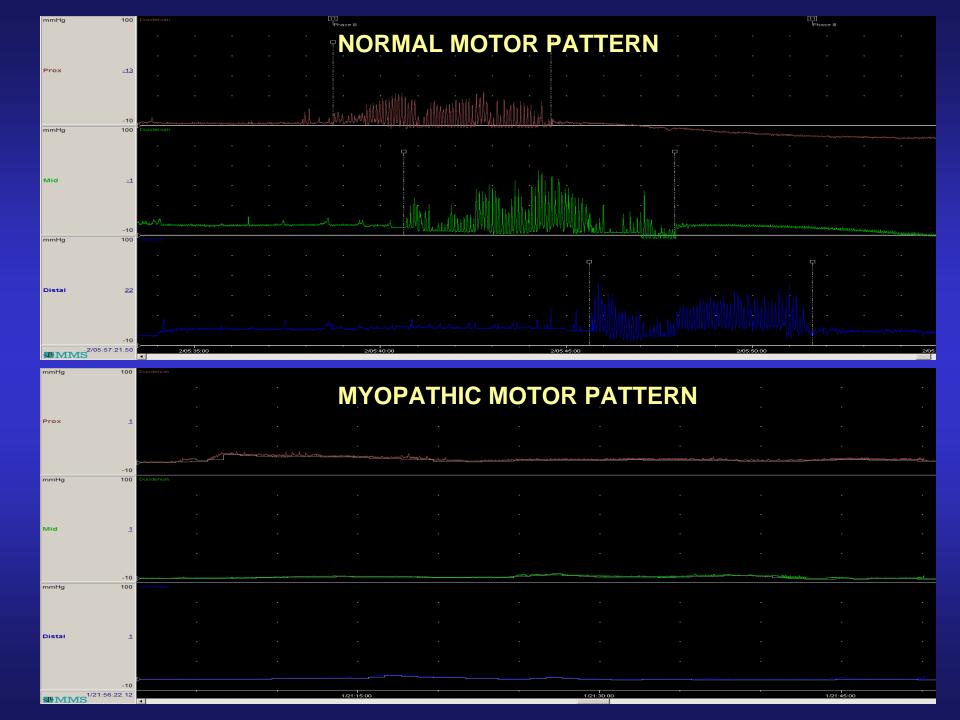
Autologous GI Reconstructionin SBS

- Choice of surgical therapy influenced by
 - Existing bowel length, function and caliber
 - Existing intestinal complications
- Optimize function
 - Increase length (Bianchi, STEP)
 - Taper dilated segment
- Slow transit
 - Reversed intestinal segment

Thompson JS. Surgery 2004 Sudan et al. JOGS 2005

Case (1)


- 56 year old woman
- GI problems began about 3 yrs ago
 - Episodic initially
 - Abdominal distension,pain, nausea, vomiting,100 # weight loss
- 2 explor. laps unrevealing
- SBS diffusely dilated SB
- Did not tolerate TF via G-tube
 - Using tube for venting
- On HPN


- PMH hypothyroid, recurrent UTI, osteoporosis, depression, recent CDI
- PE chronically ill appearing and thin, tinkling bowel sounds with G-tube

Labs

- albumin 2.3, mild microcytic anemia and thrombocytopenia, low vitamin D and selenium, normal electrolytes and liver tests, normal CRP and paraneopl Ab panel
- positive ANA and ENA screen with positive RNP and SSA; CPK, SCL70 Ab and anti-centromere Ab negative

Intestinal Pseudo-Obstruction

 Recurrent symptoms suggestive of intestinal obstruction without evidence of mechanical obstruction

Intestinal Pseudo-Obstruction

Acute

- Ileus
 - post-op
 - sepsis
 - drug/toxin-induced

Chronic

- Primary
 - neuropathy/myopathy
 - inherited/sporadic
- Secondary
 - muscle disorders
 - metabolic disorders
 - neurologic disorders
 - Iatrogenic
- Idiopathic

Causes of Secondary CIPO

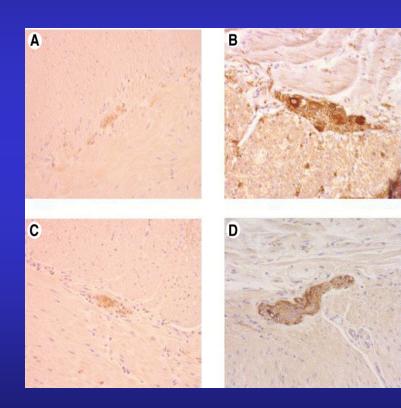
- Small bowel diverticulosis
- Metabolic disorder
- Mitochondrial disorders
- Medications
- Paraneoplastic
- Infections

- Radiation enteritis
- Celiac sprue
- Muscular Disorders
- Neuropathic disorders
- CNS lesion

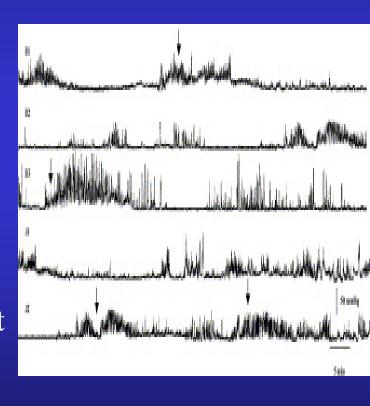
Clinical Presentation of CIPO

- Early satiety/postprandial bloating/distension (85%)
- Nausea/Vomiting (62%)
- Abdominal pain (96%)
- Constipation (45%)
- Diarrhea (40%)
- Weight loss (78%)
- Dysphagia (5%)
- Fecal incontinence

- Systemic complaints
- Insidious onset
- May be asymptomatic between episodes
- May have constant symptoms
- Spectrum of severity
- Narcotic dependence


Complications of CIPO

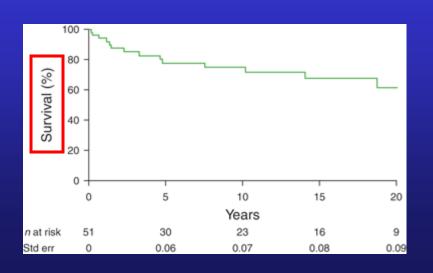
- Intestinal Failure
- Nutritional deficiencies
- Bacterial overgrowth
- Pneumatosis intestinalis
- Perforation
- Mechanical obstruction
- Extraintestinal (GU, autonomic dysfunction)
- Depression, anxiety, increased suicide risk

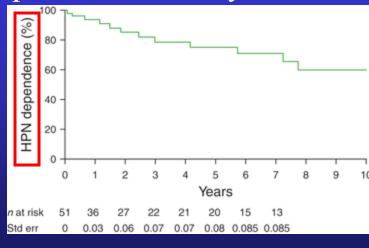

Pathophysiology of CIPO

- Neuropathy
 - Inflammatory
 - Degenerative
- Myopathy
- Mesenchymopathy
 (Interstitial cells of Cajal)

Diagnosis of CIPO

- Exclude mechanical obstruction
- Investigate motility
 - Transit (scintigraphy)
 - Manometry (neuropathy vs. myopathy vs. normal)
- Evaluate for secondary causes
 - Neuropathy: autonomic tests, fullthickness biopsy
 - Myopathy: CPK, SCL70, ANNA, Fat pad biopsy
- Role of intestinal neuropathology unclear

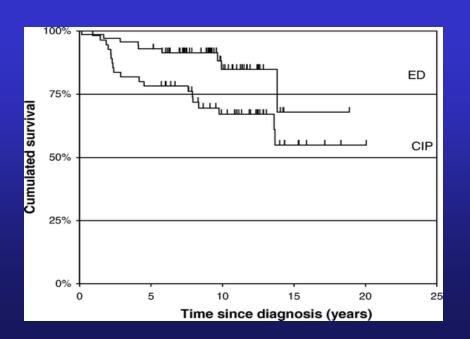


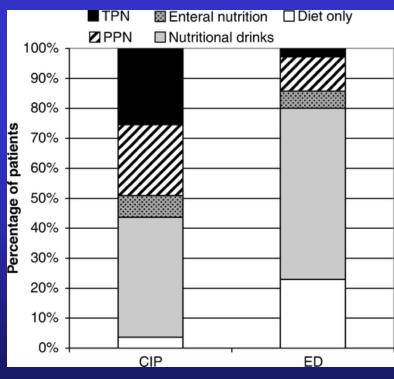

Natural History of CIPO

- Diagnosis often delayed (median, 8 yrs)
- Majority (52/59) underwent surgeries (mean, 3/patient)
- Long-term outcome generally poor (59 pts; median, 4.6 yr follow-up)
 - Majority experienced disabling complications
 - 4 died of disease-related complications
 - One-third required home PN
 - Two-thirds with nutritional limitations
 - 4 underwent intestinal transplantation

Natural History of CIPO in Patients on HPN

- 51 adults (18 male)
- Median age at symptom onset 20 yrs (0-74)
- Mean follow up -8.3 yrs (0-29)
- Mean # surgeries 3 (SBS in 37%)
- Decreased mortality
 - Able to resume PO intake and symptom onset < 20 yrs





Amiot A et al. Am J Gastroenterol 2009

Natural History of CIPO vs. ED

- 55 pts with CIPO (41 F; 42 yrs) and 70 pts with ED (63 F; 39 yrs)
- 12 year follow-up (5.2 20.1 yrs)
- Mortality 35% CIPO vs. 13% ED
 - Sepsis d/t PN most common
 - Suicide in 3 ED and 2 CIPO

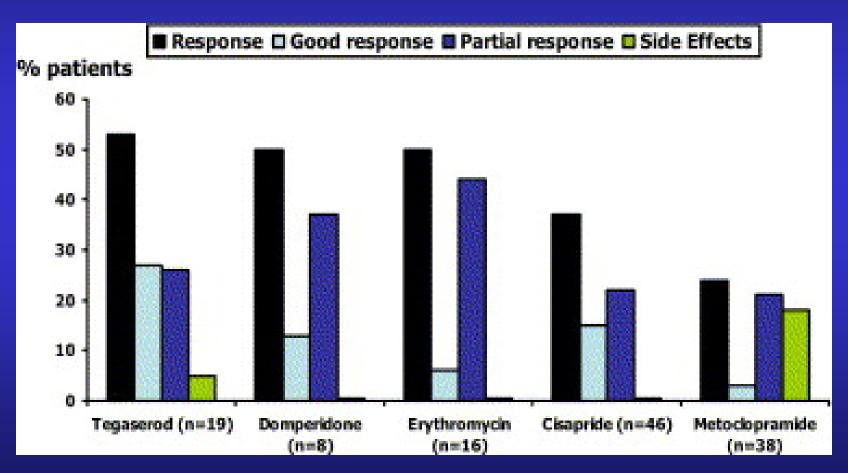
Lindberg G et al. Scand J Gastroenterol 2009

Summary of CIPO Treatments

- Dietary modifications
- Pharmacological
 - Prokinetics
 - Antiemetics
 - Antisecretory agents
 - Immunosuppressants
 - Treat constipation
 - Treat SIBO
 - Combination

- Surgical
 - Venting gastrostomy
 - Feeding jejunostomy
 - Segmental resection
 - Electrical stimulation
 - Transplantation
- Nutrition support
 - Parenteral
 - Enteral

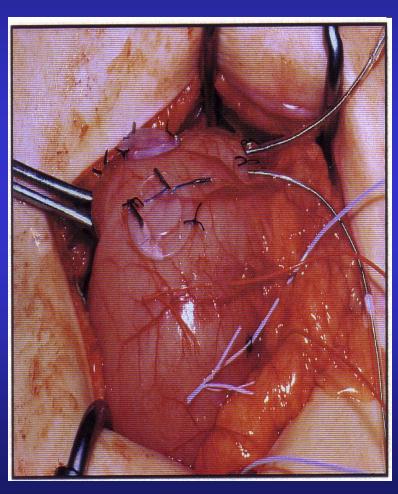
Dietary Modification

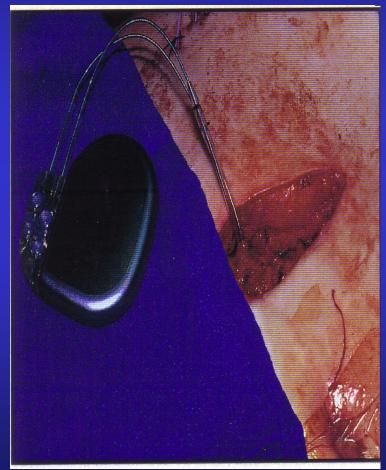

- Optimize nutrition and hydration
- Recommendations:
 - Small, frequent meals
 - More liquid calories
 - Restrict fat and residue
 - Be cognizant of vitamin deficiencies
 - Ensure proper hydration
 - Consider dietary counseling with R.D.

Prokinetic Agents

- Cholinergic agonists
 - Bethanechol
- Dopamine antagonists
 - Metoclopramide
 - Domperidone
- Macrolides
 - Erythromycin

- Others
 - Octreotide
 - Leuprolide
 - Misoprostol
 - Pyridostigmine

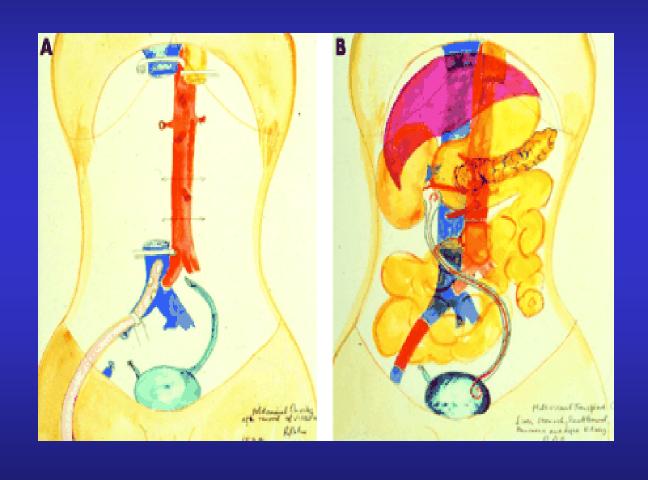

Response to Prokinetic Agents in CIPO



Surgical Options

- Jejunal feeding tube
 - Failed diet and drugs
 - Trial of nasojejunal feeding useful
- Venting gastrostomy, jejunostomy, cecostomy tubes
 - Severely symptomatic
 - Failed diet and drugs
 - Trial of NG suction useful

Electrical Stimulation



Case (2)

- Felt to have visceral myopathy due to a CTD ? MCTD vs. systemic sclerosis sine scleroderma
 - Rheumatology did not recommend any specific immunomodulator therapy
- Additional treatments
 - GI dysmotility diet as tolerated
 - Venting G-tube as needed
 - Low dose Octreotide at bedtime
 - PO erythromycin ac/hs
 - PPI daily
 - Home parenteral nutrition support

Intestinal Transplantation

History of Intestinal Transplantation

- Technical feasibility established over a century ago
- Introduction of cyclosporine (1978)
- First transplant with medium-term success (1988)
- Introduction of tacrolimus (1990s)
- Preoperative induction therapy with monoclonal lymphocyte depleting antibodies (2000s)

Intestinal Transplantation

Indications

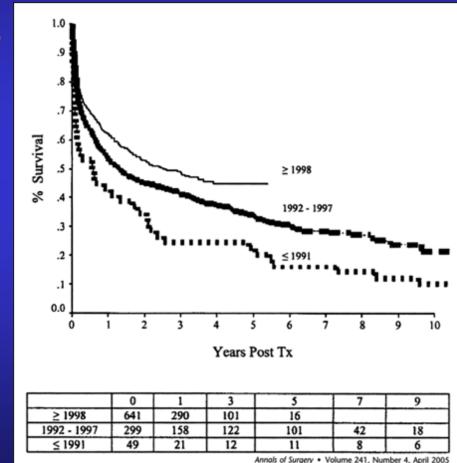
 Irreversible intestinal failure with need for life-long PN and complication of PN

Options

- Isolated intestinal transplant
- Combined with liver transplant
- Multivisceral transplant

Intestinal Transplantation Registry 1985-2003

- 61 programs; 19 countries; 989 grafts in 923 pts
 - Only 28 programs with transplants in last 2 yrs
 - 10 centers performed 83% of all transplants
 - 76% performed in U.S.
- $61\% \le 18$ yrs of age
- More isolated bowel transplants in adults
- More combined bowel/liver transplants in peds


Intestinal Transplant Registry *Indications*

- Pediatric
 - SBS
 - Gastroschisis (21%)
 - Volvulus (17%)
 - NEC (12%)
 - Other (5%)
 - CIPO (9%)
 - Hirschsprung's (7%)
 - Malabsorptive conditions (9%)

- Adult
 - SBS
 - Mesenteric ischemia (23%)
 - Crohn's (14%)
 - Trauma (10%)
 - Volvulus (7%)
 - Other (9%)
 - CIPO (8%)
 - Desmoid (9%)

Patient and Graft Survival Among Intestinal Transplantation Recipients

- 1-yr graft/patient survival: 58%/65%
 - Better since 1998:
 - *Graft*: up to 65%
 - •Patient: up to 77%
 - Better in home vs. hospitalized patients:
 - Graft: 70% vs. 51%
 - *Patient:* 78% vs. 72%

Intestinal Transplantation Registry Outcomes (1985-2003)

- 406 pts alive for > 6 mo at time of data collection
 - 81% off TPN
 - − 6.4% require partial TPN
 - 3.9% require IVF
 - 7.9% on full TPN (graft removal)

Mortality Related to Intestinal Transplantation

- Causes of death: 434/919 died (48%)
 - Sepsis (46%)
 - Graft rejection (11.2%)
 - PTLPD (6.2%)
 - Respiratory (6.6%)
 - Technical (6.2%)
 - MOFS (2.5%)
 - Graft thrombosis (3.2%)
 - Other (17.3%)

Indications for Referral to Intestinal Transplant Center

- Impaired venous access
 - ≤ 2 neck sites with loss of at least 1 groin site
 - ≤ 1 neck site with both groin sites available
- Line sepsis
 - Recurrent severe sepsis with ≥ 2 line changes in a year
 - Recurrent fungal sepsis
- PN-related liver disease
 - Impending or overt liver failure
- Requirement for extensive enterectomy

Take-Home Points

- Management requires multidisciplinary approach
- Specific dietary intervention combined with careful medical management and occasionally surgery represents standard of care
- Intestinal transplantation appears promising