# Iron Overload

Matt McCollough, M.D.

GI Grand Rounds

March 20, 2008

- 77 year-old white female
- Referred to Hepatology Clinic for asymptomatic elevation of transferrin saturation level

- Past Medical Hx:
  - HLD
  - HTN
  - OA
  - Schatzki's ring s/p dilt for dysphagia
  - Bilateral Breast CA s/p bil mastectomy
  - s/p complete hysterectomy
  - cataracts

- Medications:
  - Lipitor 10mg daily
  - Avalide 150/125mg daily
  - Calcium + D daily
  - Glucosamine/Chondroitin daily
  - Ibuprofen 400-800mg daily
- Allergies PCN

- Social Hx:
  - Retired secretary
  - Widowed
  - Three 12 oz cans of beer daily
  - Denies tobacco, IVDU, tattoos
- Family Hx:
  - M Cerebral hemorrhage, deceased 67
  - F- CVA, deceased 72
  - B -Oat cell lung Ca, deceased 52

- ROS:
  - Positives: moderate knee pain bilaterally
  - Denies: jaundice, diabetes, darkening of skin, dyspnea, orthopnea, swelling, abdominal pain

- Physical Exam:
  - BP 173/86, P 77, R, 19, T 97.5, Ht 5'6", Wgt 178
  - ++Crepitis in knees bilaterally
  - Normal heart and lungs
  - No icterus, jaundice, spiders, hepatomegaly, splenomegaly or skin discoloration

- Laboratories:
  - WBC 5.9
  - Hgb 13.8
  - MCV 97
  - Plt 203
  - AlkP 120
  - AST 27
  - ALT 33
  - TB o.7
  - DB 0.17
  - TP 6.9
  - Alb 4.4

- BUN 12
- Cr o.7
- Glu 98
- TG 77
- IBC 226
- Fe 187
- % sat 83
- Ferritin 380

• A diagnostic test was performed...

# Objectives

- Review the pathophysiology of iron overload and hemochromatosis
- Identify non-HFE iron overload mutations and causes of secondary iron overload
- Review AASLD Guidelines for Diagnosis and Management of Hereditary Hemochromatosis (HH)

# What is normal anyway?

- Normal total body iron content is 3-4 grams
  - Hemoglobin 2.5 g
  - Ferritin and hemosiderin 1 g (men)
  - Proteins (myoglobin, cytochromes, catalase) 400 mg
  - Transferrin bound 3-7 mg

### Pluses and Minuses

- Absorption
  - Dietary absorption is regulated so that it matches daily iron loss (Increased absorption in deficient states)
  - Mostly through the duodenum
  - Western diet 10-20mg/day
  - About 10% absorbed
- Losses
  - Sweat, shed skin cells, ?gi (1mg/day)
  - Premenopausal adult women (0.5 1.omg/day)

# Pathophysiology of Hemochromatosis

- Mechanisms
  - Alterations in HFE protein function
  - Increased intestinal absorption of dietary iron
  - Iron induced tissue injury and fibrosis

## HFE protein

- Structure is similar to major histocompatibility complex (MHC) class I molecules but does not present antigen
- The HFE protein forms a complex with the transferrin receptor (TfR1) which effects cellular Fe uptake
- It may also participate with transferrin receptor (TfF2) to regulate hepcidin which acts to reduce dietary iron absorption and inhibit iron release by macrophages

# Hepcidin

- Produced in the liver
- Possible iron storage regulator
- Inhibits iron absorption in the small intestine and prevents release of iron from macrophages
- Levels are low in HH
- Is an acute phase reactant and plays a central role in anemia of chronic disease (levels are high)

## Duodenal absorption



Feldman: Sleisenger & Fordtran's Gastrointestinal and Liver Disease, 8th ed

# Duodenal iron absorption

- Regulated by:
  - Demands of erythropoesis independent of iron stores
  - Storage regulator (i.e. hepcidin) that prevents iron overload when needs are met

# Iron Toxicity

- Increased iron causes saturation of circulating transferrin which leads to more "non-transferrinbond" iron
- Iron tends to deposit in cells with high levels of transferrin receptors (i.e. heart, liver, thyroid, gonads, pancreatic islets)
- Reactive oxygen species attack lipids, proteins,
   RNA and DNA causing tissue damage and fibrosis

# HH

| Stages of iron overload         | Years | Parenchymal iron storage (grams) |
|---------------------------------|-------|----------------------------------|
| Insignificant                   | 0-20  | 0-5                              |
| Iron overload without disease   | 20-40 | 10-20                            |
| Iron overload with organ damage | >40   | >20                              |



### Causes of Iron Overload

- There is NO mechanism for increasing iron excretion, therefore, overload will ensue if there is excess absorption
  - Genetic (Increased iron absorption with normal intake)
  - Chronic liver diseases
  - Iatrogenic (Surely, it wasn't my fault?)

# Secondary Iron overload (Acquired)

#### **Iron-loading anemias**

- Thalassemia major
- Sideroblastic anemia
- Chronic hemolytic anemia
- Aplastic anemia
- Pyruvate kinase deficiency
- Pyridoxine-responsive anemia

#### Parenteral Iron overload

- RBC transfusion
- IV iron
- Long-term hemodialysis

# Secondary Iron overload (Acquired)

#### Chronic liver disease

- HCV
- HBV
- Alcoholic liver disease
- NASH
- Porphyria cutanea tarda
- Portacaval shunt

#### Other

- Dietary iron overload
- Dysmetabolic iron overload syndrome

# Iron overload diseases affect 1.5 million people in the U.S.



### **Clinical Presentation**

- Symptomatic iron overload usually occurs after the 5<sup>th</sup> decade
- Expression is influenced by age, sex, dietary iron, blood loss and unknown factors
- Women express the disease less frequently than men
- Alcohol and Hepatitis C may accelerate the disease expression

| Symptoms                          | Occurrence, % |  |
|-----------------------------------|---------------|--|
| Weakness, lethargy, fatigue       | 40–85         |  |
| Apathy, lack of interest          | 40–85         |  |
| Abdominal pain                    | 30–60         |  |
| Weight loss                       | 30–60         |  |
| Arthralgias                       | 40–60         |  |
| Loss of libido, impotence         | 30–60         |  |
| Amenorrhea                        | 20–60         |  |
| Congestive heart failure symptoms | 0–40          |  |

Bacon BR, Powell LW, Adams PC, *et al.* Molecular medicine and hemochromatosis: at the crossroads. *Gastroenterology*. 1999. 116:193-207. Edwards CQ, Cartwright GE, Skolnick MH, *et al.* Homozygosity for hemochromatosis: Clinical manifestations. *Ann Intern Med.* 1980. 93:511-525.

# Hereditary Hemochromatosis

## Hereditary Hemochromatosis (HH)

 "Several inherited disorders of iron homeostasis characterized by increased intestinal iron absorption resulting in tissue iron deposition"

Feldman: Sleisenger & Fordtran's Gastrointestinal and Liver Disease, 8th ed.

### HH

- HFE-related
  - C282Y homozygosity
  - C282Y/H63D compound heterozygosity
  - Other HFE mutations
- Non-HFE-related
  - Hemojuvelin (HJV) mutations
  - Hepcidin (HAMP) mutations
  - Transferrin receptor 2 (TfR2) mutations
  - Ferroportin 1 (SLC40A1) mutations

# HH (alternate nomenclature)

- Type 1 (HFE)
- Type 2 (Hemojuvelin/Hepcidin)
- Type 3 (Transferrin Receptor 2)
- Type 4 (Ferroportin)

### **HFE-related HH**

- The most common genetic disorder in the Caucasian population, especially northern European (Nordic, Celtic)
- Autosomal recessive
- Prevalence for homozygotic mutation in U.S. whites is
   1:200-250
- 1:10 are heterozygous carriers

### HFE Gene

- The clinically significant gene mutations are C282Y and H63D
- C282Y
  - Described in 1996
  - G to A missense mutation
  - Substitutes tyrosine for cysteine
- 60-93% of patients with iron overload are C282Y homozygous

### **HFE Gene**

- Prevalence of compound heterozygotes (C282Y/H63D) is 1-2 %
- Only a small percentage of compound heterozygotes will develop iron overload
- A negative HFE gene test does not exclude iron overload

### HFE-Gene

- All C282Y homozygotes had elevated transferrin saturation (100% positive predictive accuracy)
- C282Y homozygotes full expression with progressive tissue iron overload in 58%
- The rate of iron accumulation is variable

# Hemojuvelin and Hepcidin

- Hemojuvelin (HJV/1q) Mutation
- Hepcidin Antimicrobial Peptide (HAMP/19q13.1) Mutation
  - "Juvenile Hemochromatosis"
  - Autosomal recessive
  - HJV is a regulator of hepcidin
  - Very low hepcidin causes massive Fe influx.
  - High ferritin and transferrin saturation in 1st decade.
  - Hypogonadism before end of 2nd decade, cardiac disease & abdominal pain
  - Cirrhosis occurs later
  - Death during 3rd decade from heart failure

# Transferrin Receptor 2 (TfR2)

- Located on hepatocytes
- Autosomal recessive mutation
- TfR2 is regulator of hepcidin -> Low hepcidin ->causes increased Fe influx.
- High transferrin saturation in 2<sup>nd</sup> to 3<sup>rd</sup> decades
- HHC may develop from 2<sup>nd</sup> to 4<sup>th</sup> decades
- Mild to severe Fe overload in periportal hepatocytes
- Hypochromic anemia

## Ferroportin

- Missense mutation of ferroportin 1 gene
- Iron exporter located in enterocytes, macrophages, and hepatocytes
- Rare autosomal dominant mutations

## Ferroportin

- Worldwide distribution
  - Decreased Fe efflux
  - High ferritin in 1st decade
  - Fe deposit in RES with very high ferritin but low or normal transferrin saturation; high saturation late in life.
  - Mild hypochromic anemia.
  - Mild liver injury with sinusoidal fibrosis
  - May cause cirrhosis
  - Treatment: Phlebotomy q 2-3 weeks (not weekly)

### African Iron Overload

- Sub-Saharan Africa
- Non-HFE related genetic trait (? Ferroportin 1) exacerbated by dietary iron loading (maize beverage)
- Iron loaded Kupffer cells
- This contrasts HFE-related HH were Kupffer cells are spared

## Aceruloplasminemia

- Autosomal recessive
  - Decreased Fe efflux
  - Lack of ceruloplasmin, which has ferroxidase activity needed to release Fe from cells
  - Causes deposit in the:
    - basal ganglia, dentate nucleus (ataxia and dementia)
    - Pancreas (diabetes mellitus)
    - RES (hypochromic microcytic anemia)
  - Liver disease is mild
  - Treatment: Chelation, Exjade® (deferasirox) & desferoxamine

## Other

- Atransferrinemia/Hypotransferrinemia
  - Autosomal recessive
  - Increased Fe influx
  - Severe anemia
  - Onset in 1st & 2nd decade
- H-Ferritin associated hereditary Fe-Overload
  - Autosomal dominant
  - Increased Fe influx
  - Liver Fe overload in 4th-5th decade

## **AASLD Guidelines**

Diagnosis and Management of Hereditary Hemochromatosis 2001

## Management Objectives for HH

- Early diagnosis to prevent organ damage and dysfunction due to tissue iron toxicity
- Screening and early detection of asymptomatic HH cases to reduce mortality
- Recognition and diagnosis of symptomatic cases of HH, to minimize progression and complications of the disease
- Adequate treatment of HH to promote rapid, safe, and effective removal of iron
- Vigilant follow-up and maintenance treatment of all cases of HH

Tavill, A. Diagnosis and Management of Hemochromatosis. Hep May 2001.

# Who gets screened?

- Symptomatic patients
  - Unexplained liver disease or known liver disease with abnormal serum iron studies
  - Type 2 DM especially with hepatomegaly, abnormal lft's, atypical cardiac disease, and/or early onset sexual dysfunction
  - Early-onset atypical arthropathy, cardiac disease, male sexual dysfunction

## Who gets screened?

- Asymptomatic patients
  - First-degree relatives
  - Abnormal iron studies on routine testing
  - Unexplained elevated liver enzymes or hepatomegaly or enhancing of liver on CT
- General Population???

## Screening

- Fasting Transferrin Saturation (TS)
  - Fasting Iron/Transferrin Iron Binding Capacity (TIBC)
  - Measured TIBC repeat iron measurement after adding exogenous iron to saturate the serum transferrin followed by removal of the nontransferrin-bound iron
  - Calculated TIBC (Fe +UIBC)
  - TS > 50% in women and >60% in men yield sensitivity of 92% and specificity of 93%
  - Cutoff of 45% increases the sensitivity for screening purposes (98% sensitive for homozygotes)1

## Screening

- Elevated serum ferritin plus elevated TS has a NPV of 97%. 1
- With confirmed HH, a ferritin >1000 ng/mL predicts cirrhosis.

- 1 Bassett ML, et al. Gastro 1984;87:628-633.
- 2 Guyader D, et al. Gastro 1998;115:929-936.

## Diagnosis

- 1. Liver Bx: Hepatic Iron Index  $(\mu mol/g \div age) > 1.9$
- 2. Induced Fe deficiency (phlebotomy q week)
  - a. > 20 g Fe after age 40
  - b. > 10 gm for age 20-40
  - c. (1 unit = 250 mg Fe)
- 3. HFE C282Y homozygote
- 4.  $C_{282}Y/H_{63}D + (1.)$  or (2.)

# Who gets a Liver biopsy?

- All homozygotes with:
  - Age >/= 40
  - Ferritin > 1000 ng/mL
  - Elevated ALT or AST
  - Other risk factors for liver disease
- Consider in compound heterozygotes with elevated TS and abnormal lft's

## Diagnostic Algorithm



## Liver Biopsy

- Prior to 1985 only qualitative measurements were used to assess the degree of iron deposition (Perl's Prussian blue stain)
  - Ludwig-Batts system (Grade o-4)
  - Grades 2 and 3 correlate poorly with quantitative iron levels





## Hepatic Iron Index (HII)

- Hepatic iron increases with age in most homozygotes
- HII Hepatic Iron Concentration (μ moles per gram dry weight ) divided by age in years
- A hepatic iron index (HII) in excess of 1.9 µmmol/g/yr was found to effectively distinguish homozygous hemochromatosis from heterozygotes and patients with alcohol-induced liver disease.
- 15% of homozygotes have an HII <1.9 μmol/g/yr (it is NOT required for diagnosis)

#### **Treatment**

- Hereditary hemochromatosis
  - One phlebotomy (removal of 500 mL of blood) weekly or biweekly
  - Check hematocrit prior to each phlebotomy; allow hematocrit to fall by no more than 20% of prior level
  - Check serum ferritin level every 10-12 phlebotomies
  - Stop frequent phlebotomy when serum ferritin falls below 50 ng/mL
  - Continue phlebotomy at intervals to keep serum ferritin to between 25 and 50 ng/mL
  - Avoid vitamin C supplements

Tavill, A. Diagnosis and Management of Hemochromatosis. Hep May 2001.

#### **Treatment**

- Secondary iron overload due to dyserythropoiesis
  - Deferoxamine (Desferal) at a dose of 20-40 mg/kg body weight per day
  - Consider follow-up liver biopsy to ascertain adequacy of iron removal
  - Avoid vitamin C supplements

## Am I going to feel better?

 YES! – malaise, fatigue, skin pigmentation, insulin requirements, abdominal pain

NO! – arthropathy, hypogonadism, cirrhosis

## Am I going to die?

- Patients with HH without evidence of cirrhosis have a normal life expectance if treated adequately
- Cirrhosis and HCC account for 50-75% of HH related deaths

# Major Causes of HH-related Death

- Hepatocellular carcinoma (30%)
- Decompensated cirrhosis (20%)
- Diabetes mellitus
- Cardiomyopathy
- 10 119 fold increase over normal population

## Are there things I should avoid?

- Official recommendation avoid vitamin C
- Other things to consider
  - Limit red meat
  - Avoid iron skillets
  - Alcohol in moderation
  - Drink tea or coffee (tannins inhibit absorption)

#### Case Resolution



## Summary

- Reviewed the pathophysiology of iron overload and hemochromatosis
- Identify non-HFE iron overload mutations and causes of secondary iron overload
- Review AASLD Guidelines for Diagnosis and Management of Hereditary Hemochromatosis

