Hepatocellular Carcinoma

Luis S. Marsano, MD Professor of Medicine Division of Gastroenterology, Hepatology, & Nutrition University of Louisville & Louisville VAMC 2010

Magnitude of the Problem

- 95% of world-cases in cirrhotics.
- Incidence in cirrhotics: 2-9% per year.
- 3rd cause of cancer death in the world (500,000 per year).
- In USA, 50% due to HCV.
- In USA, 10,000 new cases/ year; 500 million hospital charges/ year.

Recommended Surveillance Groups (Risk > 1.5% / year)

Hepatitis B

- All HBV cirrhotics
- Africans > 20 y.o.
- 1st degree w HCC & > 20 y.o.
- Asian males > 40 y.o.
- Asian females > 50 y.o.
- Caucasians w. high HBV-DNA / activity & > 40 y.o.

Other Cirrhosis

- Hepatitis C (F3 ?)
- Alcoholic
- Genetic Hemochromatosis
- Primary Biliary Cirrhosis
- +/- Alpha-1 antitrypsin
- +/- NASH
- +/- Autoimmune hepatitis

Surveillance Test

• <u>SEROLOGY</u>

- AFP > 20 ng/mL: sens=60%, PPV=41%
- AFP > 200 ng/mL: sens=22%, PPV=60%
- AFP should be used only if U/S is not available
- Des-gamma-carboxy prothrombin (PIVKA II), AFP L3 fraction, Alpha fucosidase, Glypican 3

• <u>ULTRASOUND</u>

- Sensitivity: 65-80%
- Specificity > 90%
- False (+) Rate: U/S=2.9%; AFP=5%; AFP+U/S=7.5%
- Classic is hypoechoic; can be isoechoic w halo, hyperechoic, or mixed.
- Interval: 6-12 months
- Positive Result: nodule
 1 cm

Risk of HCC

- HBV cirrhosis in European: 6% at 5 years.
- HBV cirrhosis in Asian: 2.5% per year.
- HCV cirrhosis: 2 to 8% per year.
- Hemochromatosis cirrhosis: 3 to 4% per year.

Diagnostic Algorithm for HCC in Lesion < 1 cm for Cirrhosis or Chronic HBV

- Low likelihood of HCC
- Repeat U/S at 3-6 month intervals
- If remains stable > 24 months: return to U/S at 6 month intervals.
- If lesion grows to 1 cm or larger, follow corresponding protocol.

Evaluation of Liver lesions 1-2 cm Cirrhosis or Chronic HBV

- High likelihood of HCC, but biopsy more difficult to sample (30% false (-)) and read; HCC of this size does not progress rapidly (no additional MELD points). Seeding risk 0.5-2%.
- Forner et al. used contrast ultrasound and MRI to evaluate lesions smaller than 2 cm found on surveillance. The PPV for HCC was 100%, although the NPV was only about 42%. This means that:
 - if both tests were positive the lesion was always HCC.
 - if one or both tests were not conclusive, then the false-negative detection rate of HCC was greater than 50%.
- The algorithm requires that if one or both test were not conclusive, a biopsy be performed. In this study, up to three biopsies were performed in an attempt to come to the correct diagnosis.
- Contrast enhanced ultrasound is not available in the USA, so these results are not entirely applicable to a North American population.

Evaluation of Liver lesions 1-2 cm Cirrhosis or Chronic HBV

- Leoni S et al. came to very similar conclusions providing external validation of the algorithm.
- Khalili K et al in a study, presented so far only in abstract form, used CT scanning as well as contrast ultrasound and MRI and has also validated the algorithm.
- These analyses showed that using a single contrast enhanced modality had a lower positive predictive value than using two studies, although the positive predictive value was still better than 90%.

Evaluation of Liver lesions 1-2 cm Cirrhosis or Chronic HBV

- Other studies have provided external validation of these algorithms, but have also shown that typical appearances of arterial hypervascularity and venous washout are so highly specific that only a single study is necessary if these appearances are present.
 - The sensitivity of using dual imaging for diagnosis was between 21% and 37% and specificity was 100%.
- Sangiovanni A, and Khalili K in two different studies have shown that sequential imaging can be used to decrease the need for biopsy.
 - Using sequential studies rather than requiring two studies to be typical improved the sensitivity to about 74-80%, but the specificity fell to 89-97%.
 - However, if atypical lesions were biopsied, the specificity was restored to100%.

Diagnostic Algorithm for HCC in Lesion > 1 cm for Cirrhosis or Chronic HBV

- Nodules larger than 1 cm found on ultrasound screening of a cirrhotic liver should be investigated further with either 4-phase multidetector CT scan or dynamic contrast enhanced MRI.
- If the appearances are typical of HCC (i.e., hypervascular in the arterial phase with washout in the portal venous or delayed phase), the lesion should be treated as HCC.
- If the findings are not characteristic or the vascular profile is not typical, a second contrast enhanced study with the other imaging modality should be performed, or the lesion should be biopsied (level II).

Evaluation and Follow-up of Bx of Liver Nodule in Cirrhosis

- Biopsies of small lesions should be evaluated by expert pathologists. Tissue that is not clearly HCC should be stained with all the available markers including CD34, CK7, glypican 3, HSP-70, and glutamine synthetase to improve diagnostic accuracy (level III).
- If the biopsy is negative for patients with HCC, the lesion should be followed by imaging at 3-6 monthly intervals until the nodule either disappears, enlarges, or displays diagnostic characteristics of HCC. If the lesion enlarges but remains atypical for HCC a repeat biopsy is recommended (level III).

Diagnostic Algorithm for HCC in Lesion > 2 cm Cirrhosis or Chronic HBV

- Very high likelihood of HCC.
- With AFP > 200 ng/mL: treat as HCC (99.4% confidence)
- False (-) Biopsy in 10%
- Sequential 4-phase multidetector CT scan or dynamic contrast enhanced MRI
- With non-characteristic pattern in 4-phase MDCT & dynamic MRI: biopsy
 - Non diagnostic Bx: repeat 4-hase imaging/Bx in 3 months
 - Diagnostic Bx: treat as HCC

Treatment of HCC

Several slides were modified from CCO Oncology; made by Dr. Luigi Bolondi, Dr. Adrian Di Bisceglie, and Dr. J-F Geschwind

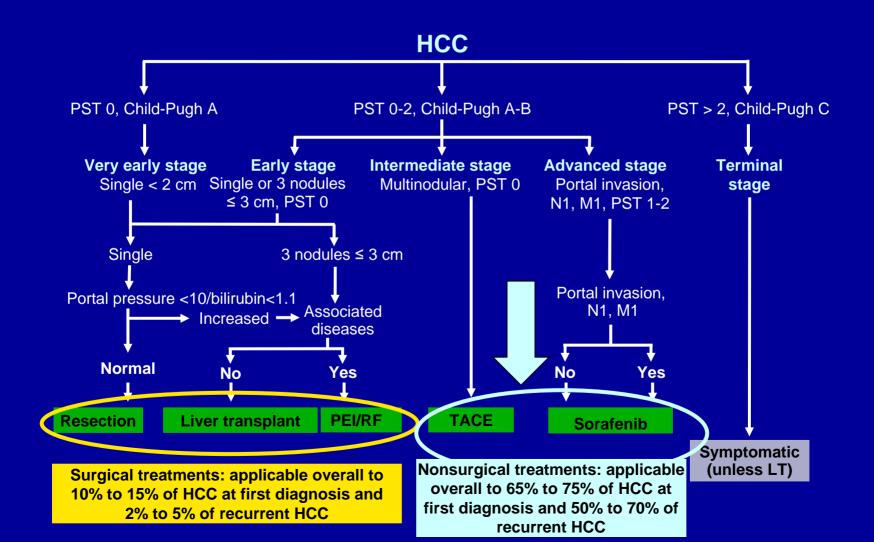
Management of HCC

- Liver transplantation
- Resection
- Tumor ablation
 - Radiofrequency thermal ablation
 - Alcohol injection
 - Chemoembolization
- Targeted molecular therapy
- Chemotherapy
 - Regional/systemic

Potentially curative

Evidence of Benefit in Treatment of HCC

Treatment	Benefit	Evidence		
Surgical treatments				
Resection	Increased survival	Case series		
 Adjuvant therapies 	Uncertain	Randomized trial, meta-analysis, nonblinded		
Liver transplantation	Increased survival	Case series		
Neoadjuvant therapies	Treatment response	Nonrandomized trials		
Locoregional treatment				
Percutaneous treatment	Increased survival	Case series		
RFA vs PEI	Better local control	Randomized trial, meta-analysis, nonblinded		
Chemoembolization	Increased survival	Randomized trial, meta-analysis, nonblinded		
Arterial chemotherapy	Treatment response	Case series		
Internal radiation	Treatment response	Case series		


Llovet JM, et al. J Natl Cancer Inst. 2008;100:698-711.

Evidence of Benefit in Treatment of HCC (cont'd)

Treatment	Benefit	Evidence
Systemic therapies		
Sorafenib	Increased survival	Randomized trial, meta- analysis, double blinded
Tamoxifen	No benefit	Randomized trial, meta- analysis, double blinded
Chemotherapy	No benefit	Randomized trial, meta- analysis, nonblinded
IFN	No benefit	Randomized trial, meta- analysis, nonblinded

Llovet JM, et al. J Natl Cancer Inst. 2008;100:698-711.

Staging Strategy and Treatment for Patients With HCC Barcelona Clinic Liver Cancer - BCLC

Performance Status ECOG/WHO/Zubrod score

- The ECOG score (published by Oken *et al* in 1982), also called the <u>WHO</u> or Zubrod score (after <u>C. Gordon Zubrod</u>)
 - O Asymptomatic (Fully active, able to carry on all predisease activities without restriction)
 - 1 Symptomatic but completely ambulatory (Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature. For example, light housework, office work)
 - 2 Symptomatic, <50% in bed during the day (Ambulatory and capable of all self care but unable to carry out any work activities. Up and about more than 50% of waking hours)
 - 3 Symptomatic, >50% in bed, but not bedbound (Capable of only limited self-care, confined to bed or chair 50% or more of waking hours)
 - 4 Bedbound (Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair)
 - 5 Death

Child-Pugh Score

Measure	1 Point Each	2 Points Each	3 Points Each
Bilirubin (mg/dL)	< 2.0	2.0-3.0	> 3.0
Albumin (g/dL)	> 3.5	2.8-3.5	< 2.8
Prothrombin time (sec)	1.0-3.0	4.0-6.0	> 6.0
Ascites	None	Slight	Moderate
Encephalopathy (grade)	None	I-II	III-IV

Grade	Total Points	Surgical Risk
Α	5-6	Good
В	7-9	Moderate
С	10-15	Poor

Pugh RN, et al. Br J Surg. 1973;60:646-649.

Very Early Stage

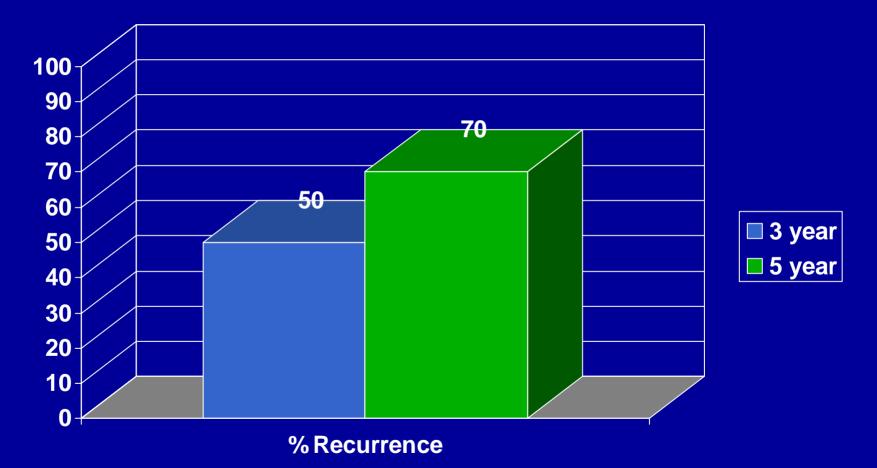
Treatment of HCC Very Early Stage

• **REQUIREMENTS**:

- Performance Status 0 (fully active & asymptomatic)
- Child-Pugh A
- Single lesion < 2 cm
- Management:
 - A) Portal P gradient < 10 mmHg & normal bilirubin =/< 1.1 mg/dL:
 Resection.
 - B) Elevated Portal P or bili but OLTx candidate:
 - OLTx
 - C) Elevated Portal P or bili and no OLTx candidate:
 RFA or PEI
- Pre-, or Post-Resection adjuvant therapy is not recommended.

Milan Criteria for OLTx

- No vascular invasion, and
- No extrahepatic disease (CT Chest (-)), and
 - -1 lesion =/< 5 cm, or
 - -3 lesions =/< 3 cm each


Early Stage

Treatment of HCC Early Stage

• **REQUIREMENTS**:

- Performance status 0 (fully active & asymptomatic) to 2 (Symptomatic, <50% in bed during the day)
- Child-Pugh A-B
- 1 to 3 nodules </= 3 cm</p>
- Management:
 - A) Single nodule < 3 cm, Portal P gradient < 10 mmHg & normal bili =/< 1.1mg/dL:</p>
 - Resection
 - B) Single nodule with high Portal P or bili, or 2-3 nodules </= 3 cm, OLTx candidate:</p>
 - OLTx (4 year survival = 85%; 4 y disease free = 92%)
 - C) As on "B" but **No** OLTx candidate:
 - RF if </= 3 cm, or PEI if </= 2 cm (5 year survival 50-60%)

Tumor Recurrence after Resection or Ablation

Approved Curative Treatments for Unresectable HCC: Percutaneous Ablation

- Local ablation: safe and effective therapy for patients who cannot undergo resection or as a bridge to transplantation (level II)
- Alcohol injection and radiofrequency are equally effective for tumors < 2 cm
 - However, necrotic effect of radiofrequency is more predictable in all tumor sizes
 - In addition, efficacy is clearly superior to that of alcohol injection in larger tumors (level I)

Transplant Option MELD Score in HCC

- Lesion < 2 cm = given by cirrhosis score
- Milan criteria but > 2cm =

- 22 points (15% 3-month death-risk);

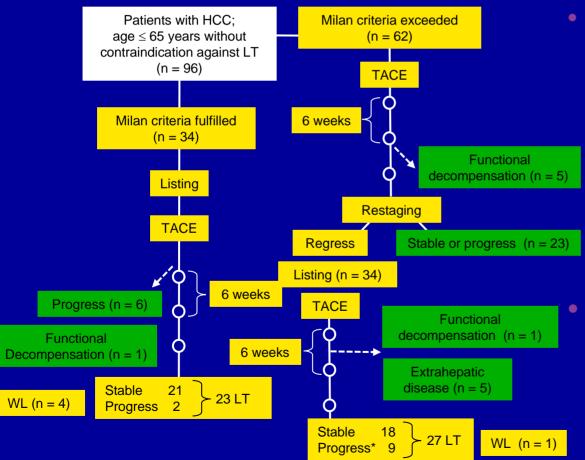
- Every 3 months add 10% death risk (MELD = 25, 28, 29, 31, 33)
- Cirrhosis + AFP > 500 without lesion seen =

-8% (MELD= 19-20) 3-month death-risk

Down-Staging Chemo-embolization for Transplantation UCSF Criteria

- No vascular invasion, and
- No extrahepatic disease (CT Chest (-)), and
 - -1 lesion =/< 6.5 cm, or
 - -2-3 lesions,
 - largest =/< 4.5 cm, and
 - total < 8 cm

Down-Staging Chemoembolization: Efficacy Before Transplantation

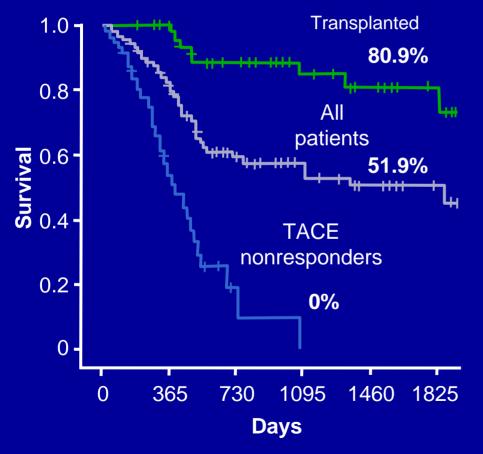

- Major issue: dropout rate (~ 20%)
 Lower in US since adoption of MELD criteria
- Role of TACE
 - Control tumor and prevent progression
 - Should be considered if waiting time > 6 months
- Complications from TACE: rare (no increased rate of hepatic artery complications)

Richard HM 3rd, et al. Radiology. 2000;214:775-779. Graziadei IW, et al. Liver Transpl. 2003;9:557-563. Alba E, et al. Am J Roentgenol. 2008;190:1341-1348.

Definitions of Response to TACE for Down-Staging Response Evaluation Criteria in Solid Tumors (RECIST)

- **Progression:** at least 20% increase in the sum of the largest diameter of target lesions or the appearance of new non-target lesions and/or non-measurable lesions.
 - No Transplant.
- Stable: No Progression nor Regression.
 - A) Pre-down-staging: No transplant.
 - B) After down-staging + Listing: Transplant.
- Partial Response (Regression): at least 30% decrease in the sum of the largest diameter of 5 target lesions, taking as reference the baseline sum of the largest diameter.
 - Transplant.
- Progression during Liver Transplant waiting time: any increase in size or number of tumor nodules.
 - No Transplant.
- Functional Decompensation: Child-Pugh C plus any of the following: increase in bili > 2 mg/dL, Encephalopathy, or worsening of ascites.
 - No Transplant.

Can TACE Be Used as a Determinant of Tumor Biology?

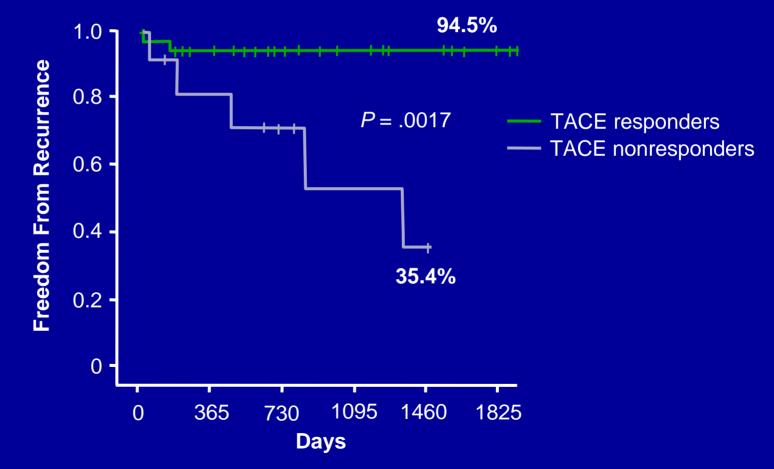


 96 consecutive patients treated with TACE

- 62 exceeded Milan criteria
- 34 meeting Milan criteria listed immediately
- TACE q 6 weeks
- Restaging q 12 weeks
- 50 patients transplanted
 - 27 exceeded Milan criteria

Otto G, et al. Liver Transpl. 2006;12:1260-1267.

Response to TACE as a Biological Selection Criterion for LT in HCC



Overall 5-year survival: 51.9%

- Highly significant difference in 5-year survival between downstaged (transplanted) patients and patients not responding to TACE (*P* < .0001)
- Survival calculated from the beginning of TACE treatment

Otto G, et al. Liver Transpl. 2006;12:1260-1267.

Response to TACE as a Biological Selection Criterion for LT in HCC

Otto G, et al. Liver Transpl. 2006;12:1260-1267.

Chemoembolization: Ineligibility Criteria

- Absolute contraindications
 - Child-Pugh class C disease
 - Poor performance status (ECOG PS > 2)
- Relative contraindication
 - Extrahepatic disease (benefit unclear)
- Former contraindication
 - -PVT
 - Minimize embolization and be more selective

Safety & Efficacy of TACE in Patients With Unresectable HCC & PVT

- 32 patients with HCC and PVT
- Median Overall Survival: 10 months
- Child-Pugh score: best prognostic factor (ie, most strongly related to survival)
- 30-day mortality: 0%
- No evidence of TACE-related hepatic infarction or acute liver failure

Intermediate Stage

Staging of HCC Intermediate Stage

REQUIREMENTS:

- Performance status 0 (fully active & asymptomatic) to 2 (Symptomatic, <50% in bed during the day)
- Child-Pugh A-B
- More than 3 nodules, or > 3 cm
- Management:
 - A) Chemoembolization (TACE)
 - B) Randomized controlled trials

Approved & Investigational Noncurative Agents for Unresectable HCC

AASLD 2005 recommendations

- Chemoembolization (TACE) (with doxorubicin, cisplatin, or mitomycin) is recommended as first-line, noncurative therapy for nonsurgical patients with large/multifocal HCC who do not have vascular invasion or extrahepatic spread (and are not eligible for percutaneous ablation) (level I)
- Tamoxifen, octreotide, antiandrogens, and hepatic artery ligation/embolization are not recommended (level I);
- Clinical trials only: drug-eluting beads, radiolabelled yttrium glass beads, radiolabelled lipiodol, or immunotherapy for advanced HCC.

Bruix J, et al. Hepatology. 2005;42:1208-1236.

Chemoembolization: Randomized Trials (Nearly Identical Techniques)

Lo et al^[1]: N = 80 with newly diagnosed unresectable HCC, 80% HBV positive, 7-cm tumors (60% multifocal)

Taabaigua	Survival, %					
Technique	Year 1	Year 1 Year 2				
TACE	57	31	26			
Supportive care	32	11	3			

Llovet et al^[2]: N = 112 with unresectable HCC, 80% to 90% HCV positive, 5-cm tumors (~ 70% multifocal)

Taabaigua	Survival, %				
Technique	Year 1	Year 2			
TACE	82	63			
Supportive care	63	27			

1. Lo CM, et al. Hepatology. 2002;35:1164-1171. 2. Llovet JM, et al. Lancet. 2002;359:1734-1739.

Chemoembolization: Predictors of Survival

• Lo et al^[1]

- Absence of presenting symptoms (ECOG PS < 2)
- Absence of portal vein obstruction
- Tumor size (\leq 5 cm vs > 5 cm)
- Okuda stage (I vs II)
- Llovet et al^[2]
 - Absence of constitutional syndrome (ECOG PS < 2)
 - Low serum bilirubin
 - Treatment response (modified WHO criteria, > 6 months)

Largest Prospective Study of TACE for Unresectable HCC to Date

- N = 8510 patients
- Primary endpoint: Overall Survival (OS)
- Multivariate analysis conducted of factors affecting survival
- Overall Survival
 - Year 1: 82%; Year 3: 47%; Year 5: 26%; Year 7: 16%
 - Overall Survival better with lesser degree of liver damage
- Factors affecting survival
 - Child-Pugh stage
 - TNM stage (OS better with stage I, increasingly worse progressing toward stage IV)
 - Alpha-fetoprotein level

Takayasu K, et al. Gastroenterology. 2006;131:461-469.

Yttrium-90 Radiotherapy for HCC Patients With and Without PVT

- Phase II study: N = 108 (37 with PVT, 71 without PVT)
- Stratified by toxicity: Child-Pugh score (in cirrhotics), dose, location of PVT
- Median dose: 134 Gy
- Partial response rate: 42% (WHO), 70% (EASL)
- Adverse event rate highest in patients with main PVT and cirrhosis
- Median survival:
 - Main PVT: 260 days
 - Branch PVT: 370 days
 - No PVT: 460 days

Kulik LM, et al. Hepatology. 2008;47:5-7.

Intermediate/Advanced HCC: Future Directions

- 499 trials registered at clinicaltrials.gov for HCC as of August 21, 2008, including
 - Improving efficacy of RF and TACE (drug-eluting beads)
 - Exploring alternative treatments for intermediate HCC (yttrium-90)
 - Molecularly targeted agents in combination regimens (advanced HCC)
 - Molecularly targeted agents in combination with current modalities (early/intermediate HCC)
 - Improving tumor targeting of chemotherapeutic agents
 - New molecular targets and new molecularly targeted agents

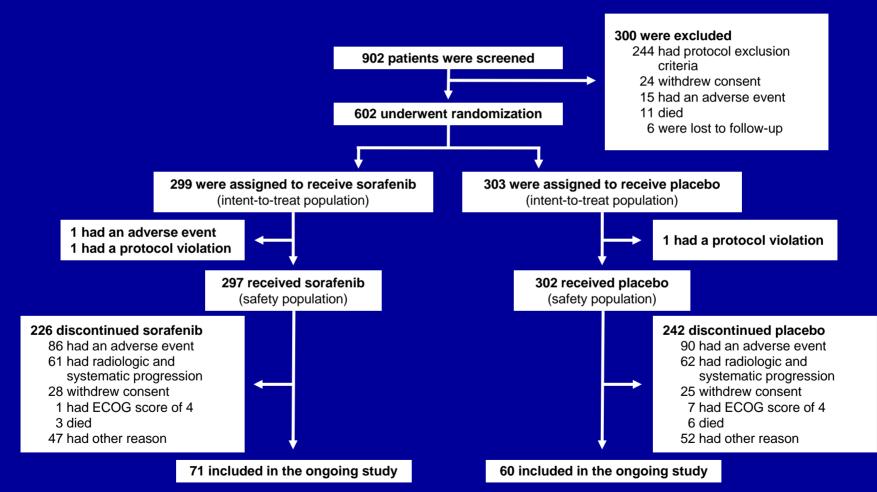
Advanced Stage

Staging of HCC Advanced Stage

- REQUIREMENTS:
 - Child-Pugh A or B
 - Portal invasion, or N1M1
 - Performance Status 1 or 2:
 - 1. Symptomatic but completely ambulatory
 - 2. Symptomatic, <50% in bed during the day
- Management:
 - Sorafenib

Treatment of Advanced HCC (BCLC Stage C)

- AASLD 2005 recommendation: no standard therapy; patients should enroll in a randomized clinical trial^[1]
- 2008 recommendation: sorafenib has become the standard of care for advanced HCC^[2]
 – Prolongs OS by 3 months^[3]
 - 1-year survival: 44%^[4]

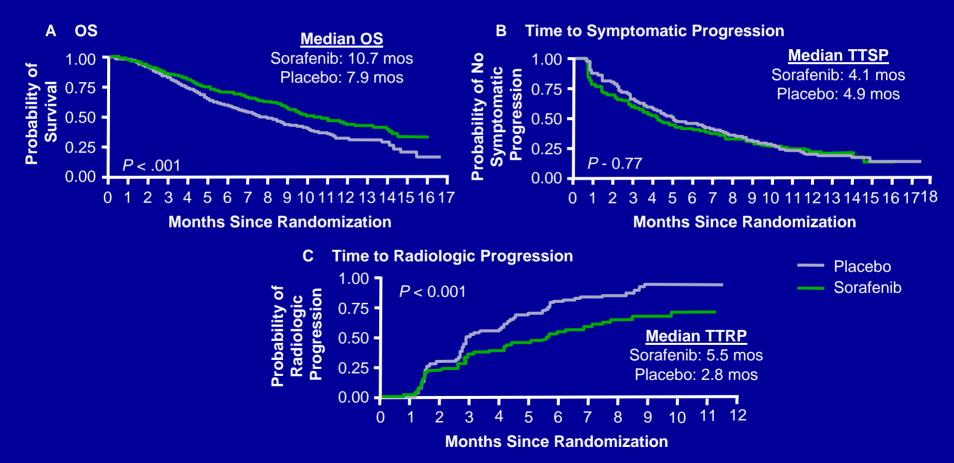

Bruix J, et al. Hepatology. 2005;42:1208-1236.
 Llovet JM, et al. J Hepatol. 2008;48:S20-S37.
 Llovet J, et al. ASCO 2007. Abstract LBA 1.
 Llovet J, et al. N Engl J Med. 2008;359:378-390.

Sorafenib in Advanced HCC: The SHARP Trial

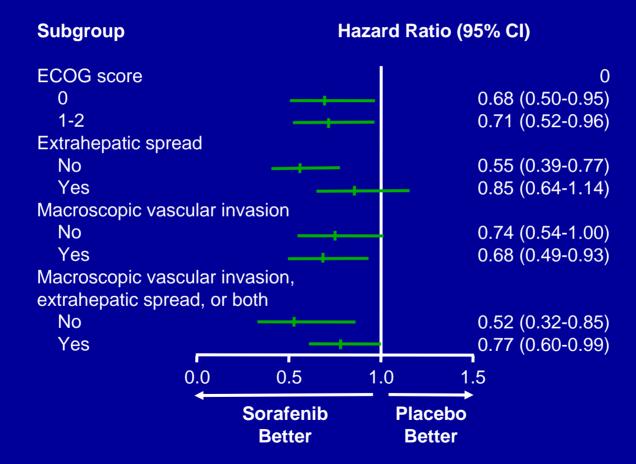
- Entry criteria
 - Advanced HCC
 - Not eligible for or failed surgical or locoregional therapies
 - Child-Pugh class A disease
 - At least 1 untreated target lesion
 - Exclusions
 - Previous chemotherapy
 - Previous molecularly targeted therapy

Llovet JM, et al. N Engl J Med. 2008;359:378-390.

Sorafenib in Advanced HCC: The SHARP Trial



SHARP Trial: Baseline Characteristics


Characteristic	Sorafenib (n = 299)	Placebo (n = 303)
Median age, yrs	64.9	66.3
Male, %	87	87
BCLC stage, %		
 B (intermediate) 	18	17
 C (advanced) 	82	83
Vascular invasion, %	70	70

Llovet JM, et al. N Engl J Med. 2008;359:378-390.

The SHARP Trial: Overall Survival (OS) and Time to Progression

The SHARP Trial: OS and Baseline Prognostic Factors

The SHARP Trial: Drug-Related AEs

AEs, %	Sorafenib (N = 297)		Placebo (N = 302)			<i>P</i> Value		
	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3 or 4
Overall incidence	80			52				
Constitutional symptoms								
Fatigue	22	3	1	16	3	< 1	.07	1.00
Weight Loss	9	2	0	1	0	0	< .001	.03
Dermatologic events								
Alopecia	14	0	0	2	0	0	< .001	NA
Dry skin	8	0	0	4	0	0	.04	NA
Hand-foot skin reaction	21	8	0	3	< 1	0	< .001	< .001
Pruritus	8	0	0	7	< 1	0	.65	1.00
Rash or desquamation	16	1	0	11	0	0	.12	.12
Other	5	1	0	1	0	0	< .001	.12

The SHARP Trial: Drug-Related AEs (Cont'd)

AEs, %	Sorafenib (N = 297)			Placebo (N = 302)			<i>P</i> Value	
	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3 or 4
Gastrointestinal events								
Anorexia	14	< 1	0	3	1	0	< .001	1.0
Diarrhea	39	8	0	11	2	0	< .001	< .001
Nausea	11	< 1	0	8	1	0	.16	.62
Vomiting	5	1	0	3	1	0	.14	.68
Voice changes	6	0	0	1	0	0	< .001	NA
Hypertension	5	2	0	2	1	0	.05	.28
Liver dysfunction	< 1	< 1	0	0	0	0	.50	.50
Abdominal pain not otherwise specified	8	2	0	3	1	0	.007	.17
Bleeding	7	1	0	4	1	< 1	.07	1.00

Hand-Foot Syndrome

Scheithauer W, et al. Oncology (Williston Park) 2004; 18:1161.

Grading of Hand-Foot Syndrome

Grade	Symptom
1	Minimal skin changes or dermatitis (eg, erythema) without pain
2	Skin changes (eg, peeling, blisters, bleeding, edema) or pain, not interfering with function
3	Skin changes with pain, interfering with function

Common Terminology Criteria for Adverse Events, Version 3.0. Available at: http://ctep.cancer.gov. Accessed October 13, 2008.

Strategies for Managing AEs

- Hand-foot syndrome
 - Creams and lotions
 - Avoid tight footwear
 - May require dose reduction
- Diarrhea
 - Antidiarrheal agents if severe
- Fatigue
 - Consider modafinil or methylphenidate if severe
- Hypertension
 - Start or adjust antihypertensives

Sorafenib: Ongoing Studies in HCC

Europe

- 10 studies approved
 - 4 TACE + sorafenib (1 phase I, 1 phase II, 2 phase III)
 - Sorafenib + tegafur
 - Sorafenib + erlotinib
 - Sorafenib + temsirolimus
 - Sorafenib dose escalation
 - Sorafenib + gemcitabine/oxaliplatin
 - Biomarkers

Asia-Pacific

- 4 studies approved
 - Sorafenib + tegafur
 - Sorafenib + capecitabine/oxaliplatin
 - Sorafenib + bevacizumab
 - Sorafenib + gemcitabine

United States

- 4 studies (nonactivated)
 - 2 TACE + sorafenib
 - Sorafenib + erlotinib
 - Sorafenib + lapatinib

Terminal Stage

Staging of HCC Terminal Stage

- REQUIREMENTS:
 - Child-Pugh C
 - Performance Status
 - PS-3 (confined to bed or chair > 50% of waking hours; limited self care capability), or
 - PS-4 (bedbound, completely disabled, cannot carry on any self-care. Totally confined to bed or chair) due to tumor involvement.

Management:

- Symptomatic, or Liver Transplant.
- Median survival < 3 months.