Hepatocellular Carcinoma

- Luis S. Marsano, MD, FACG
- Professor of Medicine
- Director of Hepatology
- University of Louisville & Robley Rex VAMC

Hepatocellular Carcinoma

Epidemiology

Screening

Diagnosis

Staging

Treatment

Epidemiology

Liver Cancer Incidence and Death Rates in the US

Since 1980, the incidence of liver and intrahepatic bile duct cancer has more than tripled².

1. National Cancer Institute. Available at: http://seer.cancer.gov/statfacts/html/livibd.html. Accessed February 7, 2016;

2. American Cancer Society. Available at: http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-047079.pdf. Accessed February 7, 2016.

HCC Epidemiology in USA

Fifth most common Cancer and second cause of Cancer-Related Death in the World 236,960 cases of HCC diagnosed in the US between 2000 and 2012

Diabetes and HCC Risk

Diabetes significantly increases HCC Risk; OR, 2.5 [95% CI, 1.9-3.2]

- Independent of alcohol use ¹
- Independent of viral hepatitis ¹

1. El-Serag HB, et al. Clin Gastroenterol Hepatol. 2006;4:369-380 2. El-Serag HB, et al. Gastroenterology. 2004;126:460-468

Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort

Setiawan VW et al. Gastroenterology. 2015 Jan;148(1):118-25

- Large Prospective study: Multi-ethnic Cohort (MEC): >215,000 participants
 - Designed to assess diet, lifestyle and genetic risks for cancer and chronic disease.
 - CA and Hawaii: established 1993-1996
- Looked at CLD, HCC and coffee consumption
- Equal for decaf and caffeinated
- Equal among all ethnic groups and gender
- Results were also independent of BMI, smoking status, alcohol intake and Diabetes status.

Obesity and Risk of Death from HCC

Calle EE, et al. N Engl J Med. 2003;348:1625-1638

Screening for HCC

HCC: Prognosis

5-year survival is substantially worse when liver cancer is diagnosed at a late stage²:

1. Llovet J.M. et al. Lancet 2003;362:1907-1917

2. National Cancer Institute. Available at: http://seer.cancer.gov/statfacts/html/livibd.html. Accessed February 7, 2016.

Surveillance reduces HCC-related mortality in chronic hepatitis B

ACG 2021 October 22-27

CHARGE IN

Las Vegas, NV

Variable	Screen Group (n=9373)	Control Group (n=9443)		
HCC cases	86	67		
% Stage I	60.5%	0%		
% Curative treatment	46.5%	7.5%		
# HCC death	32	54		
Mortality (per 100,000)	83.2	131.5		
Rate Ratio	0.63 (0.4-0.9)			

Zhang et al, J Cancer Res Oncol 2004

Screening and Surveillance of HCC

HCC Surveillance is Associated With Improved Survival in Patients With Cirrhosis

Singal AG et al. PLoS Med. 2014;11:e1001624.

Patients with SVR have decreased albeit continued risk of HCC

Kanwal et al. Gastroenterology 2017

Groups with Surveillance Benefit for HCC

Population group	Threshold for Surveillance Efficacy	HCC Incidence
Asian male hepatitis B carriers over age 40	0.2	0.4%-0.6% per year
Asian female hepatitis B carriers over age 50	0.2	0.3%-0.6% per year
Hepatitis B carrier with family history of HCC	0.2	Incidence higher than without family history
African and/or North American blacks with hepatitis B	0.2	HCC occurs at a younger age
Hepatitis B carriers with cirrhosis	0.2-1.5	3%-8% per year
Hepatitis C cirrhosis	1.5	3%-5% per year
PBC Stage 4 (cirrhosis)	1.5	3%-5% per year
Genetic hemochromatosis and cirrhosis	1.5	Unknown, but probably >1.5% per year
Alpha-1 antitrypsin deficiency and cirrhosis	1.5	Unknown, but probably >1.5% per year
Other cirrhosis	1.5	Unknown

Bruix J et al. HEPATOLOGY, Vol. 53, No. 3;1020-1022, March 2011, and Bruix J et al. HEPATOLOGY, July: 1-35, 2010

Groups with Uncertain Surveillance Benefit for HCC

Population group	Threshold for Surveillance Efficacy	HCC Incidence
Hepatitis B carriers younger than 40 (males) or 50 (females), without family history of HCC	0.2	< 0.2% per year
Hepatitis C with stage 3 fibrosis	1.5	< 1.5% per year
NAFLD without cirrhosis	1.5	< 1.5% per year

Bruix J et al. HEPATOLOGY, Vol. 53, No. 3;1020-1022, March 2011 and Bruix J et al. HEPATOLOGY, July: 1-35, 2010

Surveillance does not appear to be cost effective in those with advanced fibrosis but without cirrhosis

Zangneh et al. Clin Gastro Hep 2019

Many NASH HCC patients do not have cirrhosis

Very high probability non-cirrhotic: Histology and no features on imaging High probability non-cirrhotic : APRI <1; no features on imaging; NL albumin, plt, INR

Mittal et al. Clin Gastro Hep 2015

HCC risk in patients with NASH restricted to those with cirrhosis

N= 4235 cirrhosis; 292,366 no cirrhosis

HCC Surveillance Practices

Even Very High-Risk Patients Rarely Receive Routine Surveillance

Annual HCC Surveillance With Either US or AFP in Patients With HCV and Cirrhosis (N=9369)

Routine testing = tests done during at least 2 consecutive years in the 4 years after diagnosis of cirrhosis; inconsistent testing = \geq 1 test during the same timeframe but not routine. AFP=alpha-fetoprotein; US=ultrasound; Davila JA et al. Ann Intern Med. 2011;154:85-93.

HCC screening is underused in clinical practice

Study	Surveillance Utilization
Studies from U.S.	
Davila (2010) + I	9.2 (8.0 - 10.6)
Sanyal (2010) +	20.9 (19.1 - 22.8)
Davila (2011)	12.0 (11.3 - 12.7)
Patwardhan (2011)	51.3 (43.2 - 59.4)
Yang (2011)	22.0 (17.9 - 26.6)
Singal (2012)	6.0 (2.8 - 11.2)
Palmer (2013)	10.4 (9.5 - 11.2)
Singal (2013)	67.6 (62.9 - 72.2)
Singal (2015)	1,7 (0.9 - 2.8)
Mittal (2016)	50.0 (45.8 - 54.2)
Wang (2016)	38.4 (30.9 - 46.3)
Aby (2017)	6.9 (2.8 - 13.8)
Goldberg (2017)	2.1 (1.9 - 2.3)
Robinson (2017)	35.7 (29.6 - 42.2)
Singal (2017)	21(13-31)
Tran (2018)	24 4 (22 7 - 26 2)
Yeo (2018)	11 5 (11.2 - 11.8)
Choi (2019)	68/64-73)
US Pooled Surveillance	17.8 (13.3 - 22.7)
	11.0 (10.0 - 22.1)
Studies from Europe	
Strottolini (2011)	
Fenoglio (2013)	23.8 (18.7 - 29.5)
Hasani (2014)	64.8 (52.5 - 75.8)
Edenvik (2015) +	8.0 (5.9 - 10.4)
Van Meer (2015)	37.8 (34.4 - 41.4)
Bucci (2017)	✤ 50.8 (49.1 - 52.4)
Mancebo (2017)	
Europe Pooled Surveillance	43.2 (26.4 - 61.0)
Studies from Asia	00 4 /00 0 04 4
Kuo (2010)	22.1 (20.0 - 24.4)
Nam (2017)	
Asia Pooled Surveillance	34,6 (32,4 - 36,8)
Overall Pooled Surveillance	26.1 (20.1 - 32.6)
· · · · · · · · · · · · · · · · · · ·	
000000 000 2021	
G 2021 ACG 2021	
October 22-27	
~	

Eas Vegas, NV

Identified 29 studies between Jan 2010 - Aug 2018

Pooled surveillance estimate was only 26.1%

- Lower surveillance in US studies vs. Europe and Asia (17.8% vs. 43.2% and 34.6%)
- Higher surveillance in GI/Hepatology clinics vs. academic primary care clinics and population-based cohorts (73.7% vs. 29.5% and 8.8%)

Consistent correlates included higher surveillance with GI/Hepatology subspecialty care and increased number of clinic visits and lower surveillance in patients with NASH or alcohol-related cirrhosis.

Surveillance Testing Method

Modified from: Marrero JA et al. Hepatology, VOL. 68, NO. 2, 723-750, 2018

<u>Ultrasound</u> + <u>Alpha-Fetoprotein</u>, every 6 months.

- Not recommended in cirrhosis with Child's class C unless on the transplant waiting list (low anticipated survival).
- AFP not recommended in uncontrolled HBV or HCV (too many false (+))
- Multiphase CT and MRI are not recommended as the primary modality for surveillance. **May be utilized in**:
 - Select patients with a high likelihood of having an inadequate Ultrasound
 - If Ultrasound is attempted but inadequate.

<u>RECALL</u>: US lesions 1 cm or larger, or AFP higher than 20 ng/mL (or raise > 5 ng/mL/month) should be followed with Multi-phase CT Scan or Four-phase MRI, "liver mass" protocol.

 Lesions < 1 cm should be followed with U/S +/- AFP in 3-6 months.

HCC Surveillance AASLD Practice Guidance 2018

Marrero JA et al. Hepatology, VOL. 68, NO. 2, 723-750, 2018

Accuracy of Ultrasound +/- AFP for Early HCC

Author, Year		Risk Ratio (95% CI)	
Pateron 1994 —	*	0.60 (0.18 - 2.04)	Sensitivity Ultrase
Henrion 2000		0.69 (0.38 - 1.25)	US + A
Lok 2010		0.70 (0.42 - 1.18)	
Qian 2010		0.88 (0.61 - 1.27)	Specificity Ultraso
Trinchet 2011		0.87 (0.74 - 1.03)	US + A
Singal 2012	+	0.50 (0.30 - 0.83)	
Kim 2016		0.79 (0.40 - 1.53)	Diagnostic
Pooled Risk Ratio I-squared 0%	$\langle \cdot \rangle$	0.81 (0.71 - 0.93)	US + A
0.17	7 1	5.67	

Ultrasound: 45% (30-62%) US + AFP: 63% (48-75%) Specificity Ultrasound: 92% (85-96%) US + AFP: 84% (77-89%)

Diagnostic odds ratio Ultrasound: 7 (3-15) US + AFP: 8 (3-23)

Singal et al, ILCA 2018

AFP appears to be of benefit for early HCC detection

Sensitivity of US with vs without AFP for early-stage HCC: 63% vs. 45% (p=.002)

Tzartzeva et al. Gastroenterology 2018 Parikh and Singal et al. Am J Gastro 2020

Progressive Rise of AFP over Time

αFP	HCC Prevalence (%)	PPV (%)	NPV (%)
≥200 ng/ml	10	97.58	93-4
	5	95.03	96.7
≥400 ng/ml	10	95.7	91.86
	5	91.4	95-97
Elevation ≥7 ng/ml/month	10	98.7	96.92
	5	97.4	98.52

AFP is NOT very useful in Uncontrolled HCV and/or HBV

Arrieta et al, BMC Cancer 2007, Lee et al, Clin Gastro Hep 2013

Diagnosis of HCC

HCC Surveillance every 6 months AASLD Practice Guidance 2018

Marrero JA et al. Hepatology, VOL. 68, NO. 2, 723-750, 2018

Four Phase Imaging of Hepatocellular Carcinoma

Li-RADS Criteria for HCC Diagnosis 2018

https://www.acoorg/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS/CT-MRI-D-RADS-v2018 (accessed 9/7/2019)

Evaluation of Cirrhosis with Liver Nodule >/= 1 cm or AFP > 20 ng/mL AASLD Practice Guidance 2018

Marrero JA et al. Hepatology, VOL. 68, NO. 2, 723-750, 2018

Footnotes

Probability of Malignancy and HCC by LiRADS

van der Pol CB et al. Gastroenterology 156; 976-986, 2019

Probability	LiRADS 1	LiRADS 2	LiRADS 3	LiRADS 4	LiRADS 5	LiRADS M
Malignancy (%)	0	14	40	80	97	93
HCC (%)	0	13	38	74	94	36

Staging and Treatment of HCC

Treatment Options for HCC

Surgical Therapy

- Tumor Resection
- Liver Transplantation

Loco-Regional Therapy

- RFA, MWA, PEI
- Embolization: TACE, TAE, Radio-embolization (Ytrium-90 beads)

Radiotherapy

• Stereotactic body radiation Therapy (SBRT)

Systemic Medical Therapy

Immunotherapy

Eastern Cooperative Oncology Group (ECOG) Performance Status & HCC Treatment Options

GRADE	ECOG PERFORMANCE STATUS	BCLC OPTIONS
PS 0	Fully active, able to carry on all pre-disease performance without restriction	Resection, or Ablation, TACE, or TARE, Systemic Therapy. Transplant, Downsize + Transplant
PS 1	Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature, e.g., light housework, office work	Resection, or Ablation TACE, or TARE Systemic Therapy, Transplant, Downsize + Transplant
PS 2	Ambulatory and capable of all selfcare but unable to carry out any work activities; up and about more than 50% of waking hours	TACE, or TARE, Systemic Therapy, Transplant, Downsize + Transplant
PS 3	Capable of only limited selfcare; confined to bed or chair more than 50% of waking hours	Best Supportive Care, Transplant (?)
PS 4	Completely disabled; cannot carry on any selfcare; totally confined to bed or chair	Best Supportive Care
PS 5	Dead	

* TUMOR INDUCED (Physician Opinion)

*

Management and Prognosis of HCC

Modified from: Journal of Hepatology 2018 vol.69; 182-236

Stages of HCC in the Cirrhotic Liver

Optimal Surgical Candidate Barcelona Clinic Liver Cancer

Modified from: Journal of Hepatology 2018, Vol. 69: 182-236

Management and Prognosis of HCC Very Early Stage

Modified from: Journal of Hepatology 2018 vol.69; 182-236

Management and Prognosis of HCC Early Stage

Modified from: Journal of Hepatology 2018 vol.69; 182-236

UNOS: Liver Transplantation for HCC: Milan Criteria

Single tumor, at least 2 cm and not > 5 cm

Up to 3 tumors, none > 3 cm

Plus: Absence of macroscopic vascular invasion, absence of extrahepatic spread

5-year survival with transplantation: ~70%
 5-year recurrence rates: <15%

Mazzaferro V. N Engl J Med. 1996;334:693-699; Llovet JM. J Gastroenterol Hepatol. 2002;17(suppl 3):S428.

UNOS Criteria for Liver Transplantation for HCC

Liver CT or MRI of abdomen showing tumor(s) that meet Li-RADS Class 5 criteria and either:

- One lesion greater than or equal to 2 cm and less than or equal to 5 cm in size.
- Two or three lesions each greater than or equal to 1 cm and less than or equal to 3 cm in size.

CT of chest that rules out metastatic disease

AFP < 1000

 If patient has history of AFP > 1000, then the AFP needs to fall below 500 after LRT to be eligible for transplantation

Management and Prognosis of HCC Intermediate and Advanced Stage

Modified from: Journal of Hepatology 2018 vol.69; 182-236

Stages of HCC in the Cirrhotic Liver

Patients within UNOS-DS criteria can achieve good survival

Multicenter study of patients undergoing LT from 2012-2015 comparing downstaged patients (n=422) vs. within Milan (n=3276) vs. beyond Milan (n=121)

UNOS-DS: One HCC >5 and ≤8 cm, two to three HCC >3 cm and ≤5 cm and diameter ≤8 cm, or four to five lesions each ≤3 cm and diameter ≤8 cm

Las Vegas, NV

Mehta et al. Hepatology 2020

Management of Hepatocellular Carcinoma Requires a Multidisciplinary Approach

Multidisciplinary Care Is Associated with Improved Outcomes

Chang, et al. HPB. 2008;
Zhang, et al. Curr Oncol. 2013;
Yopp, et al. Ann Surg Oncol.
2014; Stark, et al. ILCA. 2012;
Charriere, et al. J Surg Oncol.
2017; Gaba, et al. Ann
Hepatol. 2013; Dyson, et al. J
Hepatol. 2014

Study # Patients		Description	Outcomes	
Yopp 2014	355	Single day MDT clinic and conference	Improved early detection, curative treatment, time to treatment, and survival	
Zhang 2013	343	Single day MDT clinic	Changed imaging/pathology interpretation and therapy plan	
Chang 2008	183	Fluid referrals and joint conference	Improved early detection, curative treatment, and survival	
Stark 2012	122	Single day MDT clinic and conference	Improved rates of any treatment	
Charriere 2017	387	MDT conference	Improved survival	
Gaba 2013	167	MDT conference	Increased access to curative therapies and transplantation, improved survival	
Dyson 2014	632	Centralized team	Improved referral to specialty care, improved early detection	

Treatment Recommendation for HCC AASLD Practice Guidance 2018

Marrero JA et al. Hepatology, VOL. 68, NO. 2, 723-750, 2018

Systemic Medical Therapy for HCC

Current Therapeutic Options in Advanced HCC

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

1

'Esophageal varices screening and treatment prior to starting treatment is recommended. Although no prior studies compared atezolizumab/bevacizumab versus lenvatinib, the results of the REFLECT trial suggest that sorafenib and lenvatinib are comparable.

^{2a}Patients who place a higher value on delayed radiologic disease progression and lower value on the increase in adverse events (both serious and leading to discontinuation of the drug) may reasonably choose lenvatinib.

^{2b}Patients who place a higher value on blood pressure control and a lower value on the adverse skin reactions would reasonably select sorafenib.

⁹Patients who place a higher value on adverse effects associated with any of the second-line therapies (regorafenib, cabozantinib, pembrolizumab, or ramucirumab) and lower value on the reduction in mortality (1.2 to 2.8 months) may reasonably decline second-line therapies.

Gastroenterology 2022 162DOI: (10.1053/S0016-5085(22)00065-8) Copyright © 2022 Terms and Conditions

IMBrave150: Atezolizumab/Bevacizumab vs. Sorafenib

Key eligibility criteria Locally advanced or metastatic and/or unresectable HCC No prior systemic therapy for HCC ≥1 measurable untreated lesion ECOG PS 0 or 1 Adequate hematologic and end-organ function Child–Pugh class A

Primary endpoints: PFS and OS

All patients were required to have recent EGD to risk stratify risk of bleeding

Atezolizumab and bevacizumab is new standard of care for patients with advanced-stage HCC

Finn et al New Eng J Med 2020 Finn et al. ASCO GI 2021 Immunotherapy Related Adverse Effects (irAEs) Menzies et al. Ann Oncol 2016 PD-1 blockade associated with less irAEs than CTLA-4 antibodies

In melanoma trials of nivolumab, 24% required immunosuppressive therapy for management of irAEs

• Need for immunosuppression did not affect response to drug

Immune Related Adverse Events (irAEs)

Infusion-related reactions in 6.4%

Immunotherapy Adverse Effects

Patients should be monitored closely during treatment for immune-mediated Endocrinopathies, Pneumonitis, **Colitis, Hepatitis**, nephritis, etc.

Hormone replacement may be necessary

Ē,

-

Â

ğ

orticosteroids are the mainstay of therapy for immune related side effects

Dose delay may be required in up to 1/3 of patients

11% discontinue therapy due to AEs

Some fatal reactions have been reported

AIH vs Checkpoint Inhibitor (ICI) Hepatitis

	Autoimmune Hepatitis	ICI Hepatotoxicity
Gender	Female predominant	Equal sex incidence
Symptoms	Malaise, jaundice	Fever, rash
Antibody-ANA, ASMA	Positive	Negative or low titer
Gamma globulin level	Increased	Normal range
Histology	Interface hepatitis, fibrosis	Hepatitis (lobular, pan-lobular, centrilobular, granulomatous). Portal fibrosis.
Cell infiltration	Plasma cell: CD4+ CD8+	Histiocyte: CD4+ CD8+
Recurrence after ICI withdrawal	Yes	No

ANA—antinuclear antibody, ASMA—anti-smooth-muscle antibody.

Histology

Anti-PD-1/PD-L1: acute hepatitis with lobular inflammation, acidophilic bodies and centrilobular necrosis. CTLA-4 inhibitors: central vein endotheliosis and granulomatous hepatitis. Immune Mediated Cholangitis: bile duct injury (100%), portal inflammation (87.5%), ductular reaction (54.2%), bile duct loss (16.7%), cholestasis (29.2%) and lobular injury (45.8%)

ICI Immune-Mediated Cholangitis

Pi, Borui et al. European Journal of Gastroenterology & Hepatology: September 1, 2021

- Patients: 53 patients; gender 35M/18W; age 43-89.
- Injury Type: 12 with small-ducts type, 29 with large-ducts type and 12 with mixed type cholangitis.
- **Drug Type:** 47 anti-PD-1 therapy, 3 anti-PD-L1 therapy, 1 anti-CLTA-4 and 2 anti-PD-1/PD-L1 + anti-CLTA-4 therapy.
- Number of ICIs cycles until IMC onset: five (range, 1–27).
- **Biochemistry:** Median Alkaline Phosphatase 1328 (237-4635) being higher in large duct disease; Median ALT 156 (31-1536).
- **Histology:** bile duct injury (100%), portal inflammation (87.5%), ductular reaction (54.2%), bile duct loss (16.7%), cholestasis (29.2%) and lobular injury (45.8%)

Immunotherapy-Related Hepatitis

	Immunotherapy Recommendations and monitoring	Treatment
AST/ALT <3x ULN Total bilirubin <1.5x ULN	 Continue therapy Monitor labs 1-2x/week 	• None
AST/ALT 3-5x ULN Total bilirubin 1.5-3x ULN	 Hold therapy until recovered Monitor labs every 3 days 	 Prednisone 0.5-1 mg/kg/d if persists more than 3-5 days Taper over at least 1 month
AST/ALT 5-20x ULN Total bilirubin 3-10x ULN	 Permanently discontinue Monitor labs every 1-2 days 	 Methylprednisolone 1-2 mg/kg If no improvement after 3 days, consider mycophenolate mofetil or azathioprine (test for TPMT deficiency) Taper steroids around 4-6 weeks
AST/ALT >20x ULN Total bilirubin >10x ULN Decompensated liver function	 Permanently discontinue Inpatient monitoring Consider transfer to tertiary care facility 	 Methylprednisolone 2 mg/kg If no improvement after 3 days, consider mycophenolate mofetil Taper steroids around 4-6 weeks

In Immune-Mediated Cholangitis the treatment is longer (4-6 months or longer); Pred 60 mg/d + UDCA; tapper steroids after resolution of inflammation in F/U Liver biopsy)

- SORAFENIB, is a oral multikinase inhibitor
- It is active against:
 - Serine/threonine kinases c-Raf and B-Raf
 - Receptor tyrosine kinases: e.g. VEGFR 2 (Vascular Endothelial Growth Factor Receptor), PDGFR (Platelet Derived Growth Factor Receptor), c-Kit receptor

Sorafenib

Phase 3 SHARP Trial Overall Survival (Intention-to-treat)

Phase 3 SHARP Trial Adverse Effects

	Sorafenib		Placebo	
Adverse Reaction	Any Grade	Grade ¾	Any Grade	Grade 3/4
Fatigue	46%	10%	45%	14%
Weight loss	30%	2%	10%	1%
Hand Food Skin Rxn	21%	8%	3%	<1%
Hypertension	9%	4%	4%	1%
Alopecia	14%	0%	2%	0%
Diarrhea	55%	10%	25%	2%
Anorexia	29%	3%	18%	3%

Patients with grade 2 HFSR within one month of initiation had longer Overall Survival (28.9 months vs 16.8 months) Zhao et al. Internation Journal of Cancer 2016;139(4):928-37

Lenvatinib

Oral multiple tyrosine kinase inhibitor

Mainly active against VEGFR1, VEGFR2, and VEGFR3

Also inhibits FGFR1, 2, 3, and 4, PDGFR, KIT, RET

REFLECT: Lenvatinib 8 mg or 12 mg daily (based on body weight) vs Sorafenib

- 954 patients enrolled globally
- BCLC B or C, Child-Pugh A, ECOG PS ≤ 1
- No prior systemic therapy
- No portal vein invasion allowed
- Primary endpoint OS with target of non-inferiority

REFLECT: Primary Endpoint

Cheng AL et al. Presentation: ASCO 2017; Chicago IL

Regorafenib

- REGORAFENIB, is also an oral multikinase inhibitor
- It is active against:
 - Protein kinases involved in angiogenesis, oncogenesis, metastasis and tumor immunity
 - Very similar to sorafenib in structure and function.
 - More potent than sorafenib

RESORCE Trial Design Regorafenib for HCC patients who progressed on Sorafenib

RESORCE Trial - Results Overall Survival (OS)

Bruix J, et al. Lancet January 2017;389:56-66

HFSR May Mean Improved OS with Regorafenib

Bruix et al, ASCO GI 2018 Abstract 412

Cabozantinib

- Oral multiple tyrosine kinase inhibitor
- Active against VEGFR1, VEGFR2, and VEGFR3
- Also inhibits MET and AXL which play a role in invasion and metastases and resistance to anti-angiogenic therapy
- High expression of MET and AXL may be associated with poor prognosis in HCC
- CELESTIAL: Cabozantinib 60 mg daily vs Placebo randomized 2:1
 - 773 patients enrolled
 - Patients must have progressed after systemic treatment, up to 2 prior systemic treatments allowed
 - BCLC B or C, CTP A, ECOG PS ≤ 1
 - HBV 40%, HCV 22%, other 40%
 - 5 months median duration of sorafenib prior to enrollment

Abou-Alfa et al. N Engl J Med. 2018 Jul 5;379(1):54-63

Cabozantinib in Second Line Treatment

Slides are the property of the author. Permission required for reuse.

Presented By Ghassan Abou-Alfa at 2018 Gastrointestinal Cancers Symposium

Cabozantinib in Second Line Treatment

Overall Survival and Progression-free Survival Sorafenib as only prior therapy for HCC

Presented By Ghassan Abou-Alfa at 2018 Gastrointestinal Cancers Symposium
Nivolumab

Nivolumab is FDA approved for patients with HCC who have previously failed sorafenib (accelerated approval)

Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial

Anthony B El-Khoueiry, *Bruno Sangro, *Thomas Yau, Todd 5 Crocenzi, Masatoshi Kudo, Chiun Hsu, Tae-You Kim, Su-Pin Choo, Jörg Trojan, Theodore H Welling 3rd, Tim Meyer, Yoon-Koo Kang, Winnie Yeo, Akhil Chopra, Jeffrey Anderson, Christine dela Cruz, Lixin Lang, Jaclyn Neely, Hao Tang, Homa B Dastani, Ignacio Melero

Nivolumab in Patients Previously Treated with Sorafenib CheckMate 040 Study Design and Result

- Included a phase 1/2, multicenter, open-label study conducted in patients with HCC who progressed on or were intolerant to sorafenib
- The trial excluded patients with infection with HIV and active co-infection with HBV/HCV or HBV/HDV
- Patients were required to have an AST and ALT of no more than five times the ULN and total bilirubin of less than 3 mg/dL
- RESULT: Disease control rate in all patients by BICR (RECIST v1.1) was 55.9%

Pembrolizumab for Second Line Treatment in HCC KEYNOTE 224 Study

Zhu et al, ASCO GI 2018

Study Design

Key eligibility criteria

- ≥18 y
- Pathologically confirmed HCC
- Progression on or intolerance to sorafenib treatment
- Child Pugh class A
- ECOG PS 0-1
- BCLC Stage C or B disease
- Predicted life expectancy >3 mo

Pembrolizumab 200 mg Q3W for 2y or until PD, intolerable toxicity, withdrawal of consent or investigator decision

Survival follow-up

- Response assessed Q9W
- Primary endpoint: ORR (RECIST v1.1, central review)
- Secondary endpoint: DOR, DCR, PFS, OS. and safetv and tolerabilitv

Pembrolizumab for Second Line Treatment in HCC KEYNOTE 224 Study

Zhu et al, ASCO GI 2018

Anti-tumor Activity

Response [†]	Total N=104 n (%)	95% CI‡
ORR (CR+PR)	17 (16.3)	9.8 - 24.9
Disease control (CR+PR+SD)	64 (61.5)	51.5 - 70.9
Best overall response		
CR	1 (1.0)	0.0 - 5.2
PR	16 (15.4)	9.1-23.8
SD	47 (45.2)	35.4 - 55.3
PD	34 (32.7)	23.8 - 42.6
No Assessment§	6 (5.8)	2.1-12.1

†Confirmed best response by independent central review per RECIST v1.1, #Based on binomial exact confidence interval method. §Subjects who had a baseline assessment by investigator review or central radiology but no post-baseline assessment on the data cutoff date including discontinuing or death before the first post-baseline scan. Data cutoff date: Aug 24, 2017.

Thank you for your attention

Major Guidelines Recognize the Importance of Routine Surveillance in High-Risk Populations

Society/Institution	Guidelines	
AASLD ¹ American Association for the Study of Liver Diseases	US +/- AFP every 6 months	
EASL ² European Association for the Study of the Liver	US +/- AFP every 6 months	
APASL ³ Asian-Pacific Association for the Study of the Liver	AFP + US every 6 months	
NCCN ⁴ National Comprehensive Cancer Network	AFP + US every 6-12 months	
VA ⁵ United States Department of Veterans Affairs	AFP + US every 6-12 months	
JSH-HCC ⁶ Japan Society of Hepatology	High-risk: US every 6 months + AFP/DCP/AFP-L3 every 6 months Very high risk: US every 6 months + AFP/DCP/AFP-L3 every 6 months + CT/MRI (optional) every 6-12 months	

AFP not useful in uncontrolled HCV or HBV

AFP=alpha-fetoprotein; AFP-L3=Lens culinaris agglutinin-reactive fraction of AFP; CT=computerized tomography; DCP=des-γ-carboxyprothrombin; MRI=magnetic resonance imaging.

1. Bruix J et al. Hepatology. 2011;53:1020-1022; Marrero JA et al Hepatology. 2018;68(2):723-750 2. EASL, EORTC. J Hepatol. 2012;56(4):908-943; 3. Omata M et al. Hepatol Int. 2010;4(2):439-474; 4. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Hepatobiliary Cancers v1.2016. © National Comprehensive Cancer Network, Inc. 2016. All rights reserved. Accessed February 10, 2016; 5. US Dept of Veterans Affairs. Available at: http://www.hepatitis.va.gov/pdf/2009HCC-guidelines.pdf. Accessed September 23, 2015; 6. Kokudo N et al. Hepatol Res. 2015;45.

Sensitivity of Ultrasound Alone for Early HCC

Singal et al, ILCA 2018

Thank you for your attention