Basic Transplant Immunology & Immunosuppressive Drugs

Luis S. Marsano, MD Professor of Medicine Division of Gastroenterology, Hepatology & Nutrition University of Louisville & Louisville VAMC

Immune System

• Immune system:

- protects against infectious invasion, and
 provides self-nonself discrimination.
- It has two sub-systems:
 - <u>Rapid response</u>: done by innate immunity system.
 - <u>Specific response</u>: classic T-cell response requiring days to weeks; this T-cells mediate graft rejection but also tolerance.
- Both sub-systems are coordinated and provide immunological memory.

Hyperacute Rejection

- Extremely rare.
- Occurs hours to days after transplantation,
- Target is vascular endothelium.
- Antibody-mediated, & complement dependent graft destruction by *coagulative necrosis*.
- Preformed antibodies specific to MHC.
- Lack of lymphocytic infiltration.

Acute Rejection

- Occurs in 45-70% of patients.
- Days to months after transplant (usually initial 3 months).
- Classical, cell-mediated rejection:
 - Predominantly CD4 & CD8 T-cells.
 - Directed against donor MHC antigens (cholangiocytes & vascular endothelium)
- Target of current immunosuppression.
- Diagnostic Triad:
 - Portal inflammation
 - Bile-duct damage
 - Venular endothelium inflammation.

Risk of Rejection in OLTx with Different Regimens

Regimen	Acute (ACR)	Chronic (Ductopenic)
Pred + Aza	85 %	25 %
Pred + CyA	70 %	15 %
Pred + Tacr	55 %	6 %
Pred + CNI + MMF	45 %	1 %
Tacr + Rapa	18 %	1 %

Chronic Rejection

- Occurs to 2-5% of patients.
- Slow, indolent process months to years after transplantation.
- Has immune & non-immune components; poorly defined.
- Causes ischemic injury and paucity of bile ducts.
- Characterized by arteriole thickening & interstitial fibrosis.
- Loss of small bile ducts +/- neo-intimal proliferation with obliterative vasculopathy.

T-cell Recognition of Alloantigen & T-cell Activation: Rejection

- Recipient T-lymphocytes recognize a donor alloantigen by:
 - a) <u>Direct Path</u> : native donor MHC molecule expressed in donor APCs ,
 - b) <u>Indirect Path</u>: donor alloantigen peptides (from damaged cells or soluble MHC class I) presented by recipient APCs.
- "Direct path" dominates in "acute" rejection, and
- "Indirect path" in chronic rejection and tolerance.

Costimulatory Pathways & Transplantation: Rejection

- Optimal T-lymphocyte activation need TWO coordinated signals:
 - <u>Signal 1</u>: T-cell Receptor (TCR) signal, which occurs after recognition of peptide/MHC on APC, and
 - <u>Signal 2</u>: occurs from interaction of "costimulatory T-cell molecule" with its "ligand" on the APC (eg: CD28/B7, CD40/CD154)
- If signal 1 & 2 occur, rejection develops.

Effector Pathways of Graft Injury Rejection

- There is not a single mediator or cell type that is absolutely required for allograft rejection; there are several redundant and compensatory mechanisms contributing to rejection.
- After [T-cell Receptor signal + costimulatory signal, + cytokines], there is proliferation and maturation of CD4⁺ or CD8⁺ T-cells capable of graft injury; this will lead to:
 - T-cell mediated cytotoxicity
 - Delayed hypersensitivity
 - Antibody-mediated damage

Effector Pathways of Graft Injury Rejection

• T-cell mediated cytotoxicity:

- A) CD8+ cytotoxic T-lymphocytes (CTLs) specific for donor class I, cause apoptosis through biochemical mechanisms (perforin/granzyme B in a Ca⁺⁺ dependent process, and Fas/FasL through caspase 8);
- B) NK cells, without need for activation or sensitization, which can cause apoptosis through FasL & granzyme B.

Effector Pathways of Graft Injury Rejection

- Delayed hypersensitivity:
 - CD4+ T-lymphocytes specific for donor class
 II, release IFN gamma activating
 macrophages and cellular mediators.
- Antibody-mediated damage:
 - Antibodies against liver sinusoidal endothelial cells (LSECs) indirectly promote acute rejection.

Immune System & Tolerance

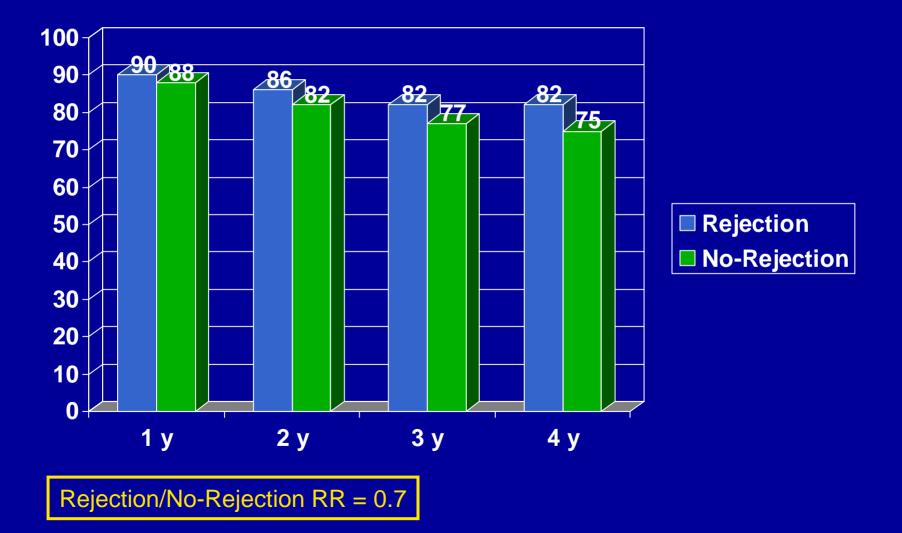
- **Tolerance**: Absence of destructive response to an allograft in immunocompetent host.
- Tolerance is accomplished by T-cell suppression mediated by :
 - a) cell-contact dependent mechanism: CD4+CD25+ cells,
 - b) cytokine mediated T-cell mechanism: T regulatory-1 & T helper-3 (Th3),
 - c) antigen presentation dependent mechanism: by liver-derived Dendritic Cells (DCs) and by Liver Sinusoidal Endothelial Cells (LSECs) which behave as immature DCs causing incomplete activation, inhibiting T-cell response.
 - d) NK cells which give a "death signal" to recipient derived T-cell passing through the graft.

Costimulatory Pathways & Transplantation: Tolerance

- Optimal T-lymphocyte activation needs coordinated "signal-1" and "signal-2" stimuli.
- If only "signal 1" occurs, tolerance develops;
- To prevent rejection and induce tolerance, you can disrupt "signal 2":
 - a) CTLA4 (cytotoxic T lymphocyte antigen 4) can compete with CD28 for B7, and gives "negative costimulation"; CTLA4-Ig fusion protein has been used for this goal,
 - b) anti-CD154 disrupts CD40/CD154 pathway.
- Programmed death-1 (PD-1) is a molecule induced upon T-cell activation and causes a "negative signal" similar to CTLA4, causing spontaneous tolerance. PD-1 binds to ligands PDL-1 & PDL-2.

Possible Mechanisms for Liver Tolerance

- 1) The liver produces large amounts of soluble MHC class I antigen, causing:
 - a) Passive blockade of alloantibodies & donor-specific effectors, or
 - b) Activation-induced apoptosis of allospecific CTLs.
- 2) Liver suppressor factor-1: is produced by spontaneously tolerant recipients and prolongs rat cardiac allograft survival.
- 3) Liver produces a soluble Fas "incomplete variant", which inhibits anti-Fas induced apoptosis and inhibits CTL function in vitro.


Possible Mechanisms for Liver Tolerance

- 4) Graft-derived Stem-cells migrate out of the liver and establish "microchimerism" with clonal exhaustion/deletion of host alloreactive T-cells.
- 5) Inmature "Dendritic Cells" (DCs) and "Liver Sinusoidal Endothelial Cells" (LSECs) do not express enough costimulatory molecules, hence facilitate tolerance.
- 6) Kupffer cells (APCs) express FasL which can induce apoptosis of host T-cells.

Costimulatory Pathways & Transplantation: Autoimmunity

 Deficiency in "Programmed death-1" (PD-1) molecule and/or PDL-1 causes autoimmune disorders and autoimmune hepatitis with large amounts of CD8 Tcells in the liver. Immunosuppression in Liver Transplantation

Survival vs Rejection in OLTx

Causes of Late Liver-Graft-Loss

Rejection	< 5 %
De-novo Malignancy	15 %
Infections	16 %
Cardiovascular Disease	20 %
Recurrent Disease	35 %

Excessive Immunosuppression causes more problems than rejection

Impact of ACR Therapy on Survival

Patient	Therapy	RR Mortality
Non-HCV	Steroids	0.5
HCV	Steroids	2.9
HCV	OKT3	5.4

DO NOT TREAT MILD REJECTION IN HCV

Long-Term Complications of Immunosuppression

Renal Dysfunction	80 %
Hypertension*	70 %
Hyperlipidemia*	50 %
Diabetes Mellitus*	20 %
Bone Disease*	20 %
Skin Cancer	40 %
Lymphoma	4 %

* Less if Steroids are withdrawn shortly after 3 months

Cyclosporin A

- From *Tolypocladium inflatum*; approved in 1983. Is calcineurin inhibitor.
- Selective immunosuppression by inhibition of T-cell activation.
- CyA forms complex with cytoplasmic receptor "cyclophilin" and inhibits calcium- & calmodulindependent phosphatase calcineurin.
 - Calcineurin is vital for the transcriptional process by which IL-2 and other cytokines are activated, which is needed for T-helper cell mediated graft rejection.

Cyclosporin A

- Currently CyA comes as a microemulsion in lipophilic solvent which is less dependent in bile flow (Neoral, Gengraf).
- CyA is metabolized in the liver by P450-3A pathway.

Cyclosporin A Toxicity

- Nephrotoxicity: can be acute or long term; renal failure in up to 20%; can cause hyperkalemia and hypomagnesemia.
- Hyperlipidemia, hyperglycemia, hypertension, gingival hyperplasia, hirsutism.
- 10-28% may have tremor, peripheral neuropathy, psychoses, hallucinations, motor weakness, or seizures.
- May cause Hemolytic Uremic Syndrome.

Cyclosporin A Dose & Target Levels

- Initial 10-15 mg/kg/d divided q 12h; check trough level after 24 h.
- New data indicates that level 2-h post dose represents better "total exposure".
- Week 0-2: trough 250-350 ng/mL
- Week 3-4:
- Week 5-24:

• Week 25-52:

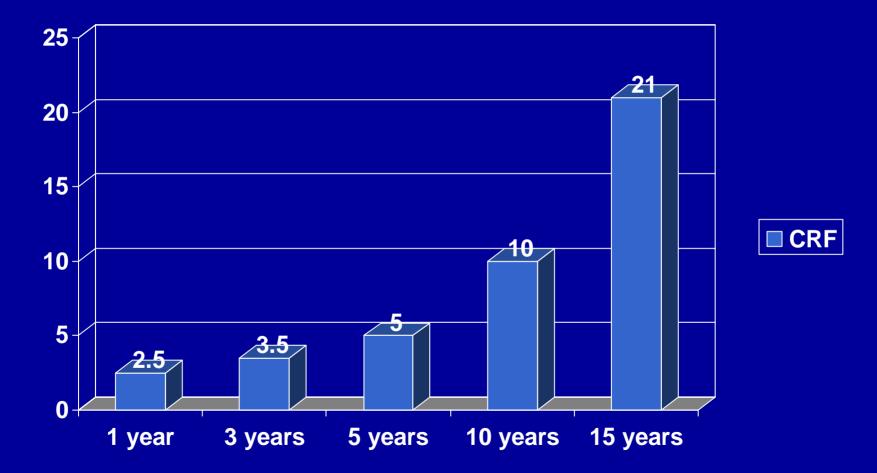
200-300 150-250 (850-1400 2h post) 100-200

Drugs that Increase Cyclosporin & Tacrolimus Levels

Calcium Channel Blockers	Antifungals	Macrolide antibiotics	Pro- kinetics	Miscellaneous
Diltiazem Nicardipine Nifedipine Verapamil	Fluconazole Itraconazole Ketoconazole Voriconazole Clotrimazole	Clarithromycin Erythromycin Troleandomycin Azithromycin Telithromycin	Cisapride Metoclo_ pramide	Amiodarone Cimetidine Methyl- prednisolone Omeprazole Protease inhibitors Nefazodone Ethinyl estradiol

Drugs that Decrease Cyclosporin & Tacrolimus Levels

Anticonvulsants	Antibiotics	Herbal Preparations	Miscellaneous
Carbamazepine	Rifabutin	St. John's Wort	Probucol
Phenobarbital	Rifampin		Terbinafine
Phenytoin	Rifapentin		
Fosphenytoin			


Tacrolimus

- From Streptomyces tsukubaensis.
- It is 100-times stronger than CyA.
- Binds to FKBP12 and the complex inhibits calcineurin; this prevents transcription of IL-2, IL-3, IL-4, IL-8, and various chemotactic factors.
- It is absorbed in duodenum & jejunum without need for bile.
- Food decrease bioavailability.
- Metabolized via P450-3A pathway.

Tacrolimus Toxicity & Dose

- More DM than CyA.
- Less HTN, dyslipidemia, hirsutism, gum hyperplasia than CyA.
- Similar hyperkalemia, tremor, hypomagnesemia, infection, malignancies, & renal dysfunction than CyA.
- Nausea, vomiting, diarrhea, headache.
- Less rejection in 1st year in all, less steroid-resistant rejection, and longer graft survival in Hepatitis C than CyA.
- Dose: 0.1-0.15 mg/kg/d divided q 12h p.o.; trough levels 10-15 ng/mL early; 8-10 later.

Calcineurin Inhibitors in OLTx Risk of Chronic Renal Failure

Risk Factors for CRF in Non-Renal Tx

	Relative Risk
Post-Op ARF	2.13
Diabetes Mellitus	1.42
Age (per each 10 years)	1.36
Hypertension	1.18
Hepatitis C	1.15

Corticosteroids

- Block T-cell-derived and antigen-presenting cell-derived cytokine expression, decreasing IL-1, IL-2, IL-3, and IL-6
- Are used in reversing acute rejection and in maintenance.
- **Side effects**: hypertension, mental status changes, dyslipidemia, poor wound healing, hyperglycemia, gastric ulcers, myopathy, osteoporosis, Cushing S., fungal/bacterial infections, pituitary axis suppression, fluid retention, cataracts.
- Dose: 500-1000 mg pre-op; then taper from 50 to minimal dose over a few months.

Beneficial Effect of Steroid-Withdrawal after 3 months post OLTx

	Steroids	No-Steroids	P-value
Hypertension	58 %	15 %	0.0002
Diabetes	25 %	6 %	0.007
Infection	17 %	2 %	0.05
Bone Disease	9 %	0 %	0.05
Mean Cholesterol	253 mg/dL	183 mg/dL	0.001

Adverse Effects of Steroid-Withdrawal

- Recurrent AIH & PBC
- Worsens HCV if done before 3rd month.
- Flare up of Ulcerative Colitis
- Arthralgias
- Depression

Azathioprine (AZA)

- Antimetabolite; antagonises purine metabolism. Inhibits synthesis of DNA, RNA, and proteins.
- Used in < 5% US transplant centers.
- Can cause myelosuppression and hepatotoxicity.
- Side effects: nausea, vomiting, diarrhea, pancreatitis, anemia, leukopenia, thrombocytopenia, and weight loss.
- Usual dose: 1-2 mg/kg/d

Mycophenolate Mofetil (MMF) Mycophenolic Acid (MPA)

- Inhibit de novo purine nucleotide synthesis by abrogation of inosine monophosphate dehydrogenase and production of guanosine nucleotides.
- Blocks DNA replication in T & B lymphocytes which are unable to use alternate salvage pathways.
- Liver dysfunction increase half life by decreasing conjugation; albumin levels change pharmacokinetics.
- More than 50% on transplant programs use them.
- Dose reduction and withdrawal are needed in 24-57%.

MMF & MPA Toxicity & Dose

- Nausea, vomiting, abdominal pain, diarrhea, anemia, leukopenia, thrombocytopenia, hypercholesterolemia, hypokalemia, tremor, hypertension, edema.
- MMF: 2-3 g/day, divide q 12h
- MPA: 720-1440 mg/d divided q 12h.

Drug-Drug Interaction Azathioprine & Mycophenolate

Increases AZA	Increases MMF	Decreases AZA & MMF
Allopurinol	Probenecid	Cholestiramine
Methotrexate	Tacrolimus	Antacids
ACE inhibitors		Iron preparations

Triple Therapy Prednisone + CNI + MMF

- Improves patient & graft survival in HCV & Non-HCV.
- Lower ACR rate in HCV & Non-HCV
- Less renal toxicity with lower level of CNI.
- Does not increase risk of infection nor malignancy.

Rapamycin

- Macrocyclic triene antibiotic with immunosuppressive, antitumor & antifungal properties
- Binds to immunophilin FKBP12 but has different action than TAC: blocks cell-cycle progression at the "G1 – S phase" junction.
- Increase risk of Hepatic Artery Thrombosis: "The safety and efficacy of Sirolimus...has not been established in liver transplant patients, and therefore such use is not recommended".

Rapamycin Toxicity & Dose

- Anemia, hypercholesterolemia, hypertrigliceridemia, hyperlipidemia, leukopenia, thrombocytopenia, interstitial lung disease, peripheral edema, wound dehiscence, lymphocele, oral ulcers.
- Dose: 2 mg/d, adjusted to maintain trough level of 4-10 ng/mL.

Drugs that Increase Rapamycin Concentration

Calcium Channel Blockers	Antifungals	Macrolide antibiotics	Pro- kinetics	Miscellaneous
Diltiazem Nicardipine Nifedipine Verapamil	Fluconazole Itraconazole Ketoconazole Voriconazole Clotrimazole	Clarithromycin Erythromycin Troleandomycin Azithromycin Telithromycin	Cisapride Metoclo_ pramide	Amiodarone Cimetidine Omeprazole Methyl- prednisolone Protease inhibitors CyA

Drugs that Decrease Sirolimus Concentration

Anticonvulsants	Antibiotics	Herbal Preparations
Carbamazepine	Rifabutin Diferencie	St. John's Wort
Phenobarbital Phenytoin	Rifampin Rifapentin	
Fosphenytoin		

Special Conditions to use Rapamycin

HCC	Anti-tumor Effect
HCV & PSC	Anti-fibrotic Effect
Renal Insufficiency	Spares CNI

Antithymocyte Globulin (ATG)

- ATGAM (equine) and Thymoglobulin (rabbit)
- Polyclonal Ab against T-cells epitopes (CD2, CD3, CD4, CD8, CD28, & T-cell receptor), NK cells epitopes (CD16), and macrophages.
- Cause T-cell depletion by: apoptosis, antibody mediated cytolysis, and internalization of cell surface receptors.
- First dose can cause "cytokine release S": fever, chills, tachycardia, chest pain, bronchospasm, GI disturbances, blood pressure changes. Steroids + Benadryl + acetaminophen helps.
- Used in 6% of US transplant programs.
- Dose: 1.5-5 mg/kg/d over 4-6 h infusion, for 3-5 days.

Muramonab-CD3 (OKT3)

- Murine Ab against T-cell CD3 antigen; inactivates T-cell receptor.
- Cytokine release syndrome is very common 1-3 h after first dose. Sometimes life-threatening with pulmonary edema and shock.
- Re-exposure to OKT3 may decrease efficacy.
- Dose: 5 mg IV q day x 10-14 days for steroid resistant rejection.

IL-2 receptor antibodies Basiliximab & Daclizumab

- Basiliximab (Simulect) is chimeric, Daclizumab (Zenapax) is humanized;
- Bind to IL-2R alpha-chain present in activated Tlymphocytes. Causes competitive antagonism of IL-2 induced T-cell proliferation.
- Effect up to **3 weeks with Basiliximab**, and **10 weeks with Daclizumab**.
- Side effects are mild.
- Dose:
 - a) Basiliximab: 20 mg IV pre-op + 20 mg 4 d later.
 - b) Daclizumab: 1 mg/kg every 14 days x 5 doses.

Steroid Avoidance

- Reason: Minimize osteoporosis, hyperglycemia, hypertension, hyperlipidemia, infections, Cushingoid features, and HCV recurrence.
- TAC+MMF+Thymoglobulin vs. TAC+MMF+Steroids:
 - F/U 1.5 y, graft survival 89% in both, rejection (20 vs 32%, p<0.05), recurrent HCV (50 vs 71%, p=ns)
- TAC+daclizumab vs TAC+Steroids:
 - F/U 3 months, daclizumab group had less steroid resistant rejection, DM, and CMV infection
- Larger randomized studies with longer F/U are needed.

Renal Sparing Protocols

- Up to 21% of LTx patients develop CRF within 5 years.
- 18% of patients have severe renal dysfunction after 13 years.
- Adding MMF and reducing dose of calcineurin inhibitor (CNI) can improve GFR by 15% in 50% of patients; if CNI is D/C, rejection risk is increased.

Conversion from CNI to Sirolimus

- 28 patients with creatinine > 1.8 mg/dL were converted; mean time= 2y post-LTx.
- Dose: 2 mg/d, titrated to 4-10 ng/mL.
- 14 (50%) had improvement in GFR;
 7 progressed to ESRD, and
 6 did not tolerate the change.
- Large randomized trials are ongoing to evaluate proper time to change.

Effect of Steroid-Withdrawal after 3 months post OLTx

	Steroids	No-Steroids	P-value
Survival	82 %	83 %	NS
Hypertension	58 %	15 %	0.0002
Diabetes	25 %	6 %	0.007
Infections	17 %	2 %	0.05
Recurrent HCV	17 %	21 %	NS
Bone Disease	9 %	0 %	0.05
Acute Rejection	8 %	4 %	
Chronic Rejection	1 %	2 %	
Mean Cholesterol	253 mg/dL	183 mg/dL	0.001