Hepatitis C Update

Luis S. Marsano, MD

Professor of Medicine
Director of Clinical and Transplant Hepatology
University of Louisville & Louisville VAMC

Objectives

- To understand prevalence & risk factors for HCV infection
- To recognize groups of patients who need to be screened for HCV
- To understand repercussions of HCV to society and individual patients
- To understand treatment options.

Hepatitis C

- 50 nm enveloped, positive-sense, singlestranded RNA hepacivirus.
 Six genotypes and > 100 subtypes.
- 170 million infected worldwide; 4 million in USA (1.8%); due to "uncounted populations", CDC estimates true number is 7 million infected.
- 38,000 new infections/year.
- Highest prevalence in 30 to 54 year-olds.

US Prevalence by Race/Ethnicity

Estimated Average Prevalence of HCV Infection in US

Transmission Factor

Risk of HCV in IVDU

(% infected)

HCV Prevalence Hemodialysis Patients

•	Egypt	general=	18.1%	HD= 80%
•	Moldavia		4.9%	75%
•	Bulgaria		1.1%	66%
•	Saudi Arabia		1.8%	57%
•	Turkey		1.5%	31%
•	Italy		0.5%	22%
•	France		1.1%	16%
•	Belgium		0.9%	9%
•	USA		1.8%	9%
•	Peru		0.8%	60-84%
•	Netherlands		0.1%	3%

HCV Transmission Dialysis Unit

- Sharing medications (heparin)
- Poor hand washing / not changing gloves
- Reuse of dialyzer after disinfection (rare)
- Internal contamination of HD machine (very rare)
- Must use "Universal Precautions"; consider room, machine & staff separation and separate dialyzer disinfection-room

Source and Risk HCV infection in ESRD

SOURCE	Degree of RISK
Breakdown of "Universal Precautions" in Dialysis Unit	Very High
Contaminated HD equipment	High
Blood Tx before 1992	Moderate
Peritoneal Dialysis	Low
Blood Tx after 1992	Very low
Illicit drug use	As general population

Vertical Transmission of HCV

(Obstet Gynecol Surv 2006; 61:666-72)

- In HCV(+)/HIV(-):
 - transmission risk is approximately 2%;
 - if mother is HCV-RNA (+), risk is 4-5%,
 - route of delivery does not influence vertical transmission,
 - scalp electrodes increase risk of transmission,
 - no need to discourage breast feeding.
- Up to 30% of infected neonates may have acquired HCV "in utero" (Arch Dis Child Fetal Neonatal Ed 2005;90:F156-60)
- Data are conflicting about duration of ruptured membranes and risk of HCV transmission (increased after 6 h?)

Vertical Transmission of HCV

(Obstet Gynecol Surv 2006; 61:666-72)

- No association between vertical transmission of HCV and
 - gestational age at delivery, nor
 - presence of chorioamnionitis.
- In HCV/HIV co-infection:
 - transmission risk is higher (15-18%),
 - mode of delivery should be based in HIV status,
 - HAART may decrease transmission risk,
 - breast feeding should be discouraged.

Identifying the Patients

HCV, HBV, and HIV: Prevalence vs Undiagnosed Cases

■ Infected Persons (US) ■ Undiagnosed Persons (US)

- *Extrapolated from small population study.
- 1. American Liver Foundation. Hepatitis C Factsheet. Available at: www.liverfoundation.org. Accessed March 14, 2005.
- 2. NIAID. HIV/AIDS Statistics. Available at: www.niaid.nih.gov.
- 3. Lok et al. *Hepatology*. 2004;39:1-5.
- 4. Thompson et al. J Cancer Educ. 2002;17(4):222-226.

2004 AASLD Practice Guidelines: Who Should Be Tested

- Persons who have injected illicit drugs in the recent or remote past, including those who have injected only once and do not consider themselves drug users
- Persons with conditions associated with high prevalence of infection
 - Persons with HIV
 - Hemophiliacs who received clotting factor concentrates prior to 1987
 - Persons who ever received hemodialysis
 - Persons with unexplained ALT elevations

2004 AASLD Practice Guidelines: Who Should Be Tested

- Prior recipients of transfusions or organ transplants including:
 - Persons notified that they received blood from an HCV+ donor
 - Persons who received transfusions prior to 1992
 - Persons who received organ transplants prior to 1992.
- Children born to HCV+ mothers
 - Should not be tested until at least 18 months of age due to viral clearance of HCV
- Health care/emergency/public healthcare personnel who have had a needle-stick injury or mucosal exposure to HCV+ blood
- Current sexual partners of HCV-infected persons
 - Although prevalence of infection is low, a negative test in the partner provides reassurance, making testing of sexual partners beneficial in clinical practice

Clinical & Sub-clinical Hepatitis C

Clinical Manifestations of HCV Infection

Acute infection	Majority asymptomatic but jaundice may occur	
Chronic infection	No symptoms or fatigue, depression, abdominal discomfort, others	
Advanced chronic infection	Portal hypertension with ascites, encephalopathy, gastrointestinal bleeding, jaundice and decompensation	

CDC. MMWR. 1998;47(RR-19):1-38.

Acute HCV

- Incubation: 2-26 weeks (usually 7-8)
- Symptoms: present in < 30%, mild & < 1month:
 - Common: anorexia, arthralgia, myalgia, fatigue;
 - Rare: jaundice, fever or skin rash.
 - Extremely rare: FHF.
- DX: HCV-RNA (+) days to weeks after acquisition; anti-HCV (+) in 4 weeks (74%).
- Spontaneous HCV clearance:
 - Children < 2 y.o. & young women = 45%;
 - Others = 23%

Acute HCV Treatment

- If HCV-RNA(+) 3 months after inoculation, spontaneous clearance is rare.
- Best regimen is unknown: starting 3 months after inoculation, IFN 5 MU QD x 4 wks + 3 MU TIW x 20 wks gave 98% clearance; The mildest & shortest effective therapy is unknown.
- Patients should be abstinent from alcohol and drugs (anti-HCV is not protective).

Treatment of Acute HCV @ 8,12, & 20 wks, Peg-IFN alpha 2a vs IFN+RBV x 12 wks

Kamal et al Abst # 37 AASLD, 2004

Chronic Hepatitis C

Impact of HCV Infection: Clinical Consequences

Chronic hepatitis

Hepatic fibrosis

Cirrhosis

Hepatocellular carcinoma

End-stage liver disease necessitating liver transplantation

Extrahepatic manifestations

Extrahepatic Manifestations Associated With HCV

Hematologic

- Mixed cryoglobulinemia¹
- Aplastic anemia²
- Thrombocytopenia²

Non-Hodgkin's b-cell lymphoma²

Dermatologic

- Porphyria cutanea tarda¹
- Lichen planus²
- Cutaneous necrotizing vasculitis²

Renal

- Glomerulonephritis¹
- Nephrotic syndrome²

Endocrine

- Hypothyroidism²
- Diabetes mellitus²

Ocular

- Corneal ulcer²
- Uveitis²

Vascular

- Necrotizing vasculitis²
- Polyarteritis nodosa²

Neuromuscular²

- Weakness/myalgia
- Peripheral neuropathy
- Arthritis/arthralgia

Autoimmune Phenomena²

CREST syndrome

Neuropsychiatric

Depression¹

¹NIH. *NIH Consens State Sci Statements*. 2002;19(3):1-46. ²Sene et al. *Metab Brain Dis*. 2004;19(3-4):357-381.

Diagnostic Tests

Pattern of ALT Elevation in Chronic HCV

Pattern of ALT Elevation

Degree of Fibrosis in Chronic HCV

Normal ALT

Elevated ALT

HEPATITIS C VIRUS

Chronic Hepatitis

Markers of Viral Hepatitis C: Anti-HCV

- Usually ELISA-3
- In patients with risk factors, almost all (+) are "true positives"
- False (+) frequent in low prevalence population without risk factors (40%) and hypergammaglobulinemia
- Rare false (-) [HIV(+), hemodialysis, transplant]

Markers of Viral Hepatitis C: Anti-HCV, continued

- Acute HCV: anti-HCV turns (+) in
 - 74% at week 4;
 - 98% at week 20. (average "window" is 8 weeks)
- Not a protective antibody
- May remain (+) up to 10 years post-acute infection
- Almost all patients with chronic HCV are anti-HCV (+)

Markers of HCV infection: HCV-RNA Quantitation

- Uses Real-time PCR, Transcription mediated amplification (TMA), or TaqMan
- Positive test confirms current infection.
- Appears 1-2 weeks after infection
- In perinatal infection 70% (+) @ 3 months; many clear spontaneously. Better test @ 18 months if anti-HCV is (+).
- Variations of up to 0.5 log (3-fold) have no clinical meaning.

Markers of Viral Hepatitis C: HCV-RNA Quantitation

- Fall of < 2-log at week 12 of therapy predicts lack of response (PEG-interferon + Ribavirin)
- Low viral load (≤ 400,000 IU/ml) respond better to therapy
- Infrequent false (+) or false (-)
- Viral load does not correlate with severity of disease.

Natural History

Outcome of HCV 25-30 year Follow-up

Histologic Progression of HCV on Biopsy

Normal

Moderate Chronic Hepatitis

Mild Chronic Hepatitis

Cirrhosis

Factors Associated With Disease Progression

Associated with disease progression ¹	Not Associated with disease progression ¹	
Alcohol consumption	Alanine aminotransferase level	
30 g/day for males \ ~2*	Viral load	
20 g/day for females drinks/day	Transmission mode	
Disease acquisition at >40 years	Genotype	
Male gender		
Coinfection: HIV or HBV ²		
Immunosuppression ²		

*(1 drink = 12 oz beer = 1.5 oz liquor = 5 oz wine = 13.3g)

¹Poynard et al. *Lancet*. 1997;349:825-832.

²NIH. NIH Consens State Sci Statements. 2002;19(3):1-46.

Liver Fibrosis After 17 Years of Infection in Nonalcoholic Young Women

N = 363

- Young women at infection
- Nonalcoholic
- Not immunosuppressed
- Not coinfected
 - HIV or HBV

Profile of Patients at Higher Risk for Disease Progression

N=160

- 73% male overall
- Coinfected with HIV
- Immunocompromised
- Alcohol abuse

HCV Cirrhosis Survival

(Fattovich G, et al. Gastroenterology 1997; 112:463-472)

HCV Cirrhosis Decompensation & Hepatocellular CA

(Fattovich G, et al. Gastroenterology 1997; 112:463-472)

Effects of HCV in Society

Future Disease Burden: Estimated Increases from 2000-2020

(Davis GL Liver Transpl 2003:9:331-338)

Projected HCV Mortality

Adapted from Davis et al. Liver Transpl. 2003;9:331-338.

Treatment

Histologic Scoring of Fibrosis

FIBROSIS	METAVIR or Knodell	Ishak
None	0	0
Portal fibrosis (some p. areas)	1	1
Portal Fibrosis (most p. areas)	1	2
Bridging fibrosis (occasional)	2	3
Bridging fibrosis (marked)	3	4
Incomplete cirrhosis	4	5
Cirrhosis	4	6

Treat METAVIR/Knodell =/> 2, or Ishak =/> 3

Degree of Fibrosis in Chronic HCV With Normal ALT

(Schiffman et al. J Infect Dis. 2000; 182:1595-1601)

Degree of Fibrosis

38% qualify for therapy (METAVIR >/= 2)

Degree of Fibrosis in Chronic HCV With Elevated ALT

Degree of Fibrosis

68% qualify for therapy (METAVIR >/= 2)

STANDARD TREATMENT

- Peg-Interferon dose
 - Alpha-2a 180 mcg per week SQ
 - Alpha-2b 1.5 mcg per kg per week SQ
- Ribavirin dose
 - Genotypes 1,4,5, and 6
 - Less than 75 kg 1000 mg per day, divided BID
 - More than 75 kg 1200 mg per day, divided BID
 - Genotypes 2 and 3 800 mg per day divided BID

Genotype-1 chronic HCV SVR by Treatment Regimen

PEG-IFN alpha 2a + Ribavirin Sustained Virologic Response

Genotype and Viral Load in US Patients

Dose Reduction or Discontinuation AASLD

HEMATOLOGIC THRESHOLD	DOSE MODIFICATION
ANC 500-750	Reduce Peg-IFN; ? Neupogen
ANC < 500	D/C Peg-IFN
Platelets 25K to 50 K	Reduce Peg-IFN
Platelets < 25 K	D/C Peg-IFN
Hemoglobin =/< 10	Reduce Ribavirin; ? Epo
Hemoglobin =/< 8.5	D/C Ribavirin

Effect of Fibrosis

HCV Cirrhosis vs No-Cirrhosis

Peg-Ifn alpha 2a + Ribavirin 1/1200 x 48 wks

Patients with pre-cirrhosis & cirrhosis (F3/F4) will remain at risk of HCC even if they eliminate the infection (SVR); they should be under HCC surveillance.

Classification of Treatment Response By time to be HCV-RNA negative

Type of Treatment Response Time to HCV-RNA < 50 IU/mL (-)

	4 weeks	12 weeks	24 weeks
RVR	(-)	(-)	(-)
cEVR	(+)	(-)	(-)
pEVR Slow Responder	(+)	> 2 log drop	(-)
pEVR Partial Responder	(+)	> 2 log drop	(+)
Null Responder	(+)	< 1 log drop	

Breakthrough: from (-) to (+) during treatment

Relapse: from (-) to (+) after treatment

Non-Responder: HCV-RNA (+) @ week 24

Rate of Viral Decline Determines Period of HCV RNA Negativity

Darling JM, et al. *Clin Liver Dis.* 2006;10:835-850. Adapted from http://www.hepatitis.va.gov/vahep?page=prtop04-wp-03. Accessed January 4, 2008.

Predictors of Response to Therapy

Predicting SVR by HCV-RNA fall Peg-IFN alpha 2a + RBV

Ferenci P, et al. J Hepatol 2005; 43:425-433

Effect of RVR & cEVR in SVR among Different HCV Genotypes

Rapidity of Response by Genotype

Fried MW, EASL 2008; Abstr #7

Genotype-4 N: 24

Genotype-2 N: 395 Genotype-3 N: 426

SVR by Response Type & Genotype Fried MW, EASL 2008; Abstr #7

RVR Important Predictor of SVR: Conclusion

Subanalysis of 3 Phase III trials

- Patients achieving RVR at week 4 have a high probability of SVR (> 86%) regardless of HCV genotype
- RVR is a better predictor of SVR than other pre-treatment factors including genotype
- This information may allow treatment to be tailored to the individual, regardless of genotype

Effect of Ethnicity

Effect of Ethnicity in SVR – Genotype 1

Virahep C Study

Latino Study

Virahep-C Trial: Baseline Characteristics

Characteristic	AA (n = 196)	CA (n = 205)	<i>P</i> value
% Male	65	65	0.99
Median Age (years)	49.0	48.0	0.08
Median BMI (kg/m²)	29.3	27.6	0.0003
% History of Diabetes	15	4	0.0004
% History of Hypertension	43	21	< 0.0001
Median ALT (IU/L)	59	74	< 0.0001
Median Hemoglobin (g/dL)	14.3	15.0	< 0.0001
Median WBC (10 ³ cells/mm ³)	5.8	6.2	0.08
Median Platelet Count (10 ³ cells/mm³)	214.5	207.0	0.11

LATINO Study: Baseline Characteristics

	Latinos	Non-Latinos
Age ≤ 40 years	27.9%	16.3%
ВМІ		
> 27 kg/m ²	65.1%	50.7%
> 30 kg/m ²	40.1%	25%
ALT > 3x ULN	24.5%	16.7%
Cirrhotic	13.4%	9.7%

Other baseline characteristics were similar

Effect of Weight, Steatosis & Insulin Resistance

EFFECT OF BODY WEIGHT

SVR Rates in Lighter vs Heavier Patients: Pegasys

Pegasys + Copegus

Pegasys (Peginterferon alfa-2a) [package insert]. Hoffmann-La Roche Inc. Nutley, NJ. FDA Briefing Paper. Pegasys. November 14, 2002. http://www.fda.gov/ohrms/dockets/ac/02/transcripts/3909T1.pdf

SVR Rates in Lighter vs Heavier Patients: PEG-Intron

Adapted from FDA Antiviral Drugs Advisory Committee Proceedings. Peginterferon alfa-2b. December 12, 2001. http://www.fda.gov/ohrms/dockets/ac/01/briefing/3819b1_03_FDA-Clinical%20review.PDF

Obesity and Impaired IFN Response

Larrea E, et al. Hepatology.1996;23(2):210-217.
 Lin W. Gastroenterology. 2005;128:1034-1041.

EFFECT OF STEATOSIS

Proposed Mechanisms for Co-Existent HCV and Steatosis

HCV

Genotype 3
Insulin Resistance

Host
Obesity
Diabetes Mellitus
Insulin Resistance
Alcohol Intake
Medications

HCV + Steatosis

(50% of all HCV+ patients)

Association of Hepatic Steatosis and Fibrosis

Impact of Steatosis on SVR

Genotypes 1, 4, 5, and 6, High Viral Load

Impact of Coexisting NAFLD on Virologic Response to Anti-HCV Therapy

EFFECT OF INSULIN RESISTANCE

Decreased Response to Antiviral Therapy in HCV Patients With Coexistent Steatosis

Harrison SA. Gastroenterol Hepatol. 2005;3:604-609

Impact of Insulin Resistance on HCV Viral Load

Insulin Resistance and Severity of Fibrosis: Study Results

*P = 0.0006; **P = 0.034; †P = 0.0001

Impact of Insulin Resistance on Virologic Response in Genotype 1

159 consecutive patients treated with either Pegasys/Ribavirin or PEG-Intron/Ribavirin

(HOMA < 2, 2-4, and > 4: odds ratio, 2.43; 95% CI, 1.41-4.20; P = 0.004)

HOMA = homeostasis model assessment

HOMA-IR = fasting insulin (mIU/L) x fasting glucose (mmol/L)

22.5

Romero-Gomez M, et al. Gastroenterology. 2005;128:636-641

Once the Patient has RVR, cEVR, or pEVR:

Does Ethnicity, Fibrosis, or pre-Treatment Viral Load effect SVR?

Time to HCV RNA Undetectability as Predictor for SVR in Genotype 1

- Methods: Data from 1,243 genotype 1 patients in the following four clinical trials: Fried, Hadziyannis, Virahep-C, and LATINO, treated with Pegasys 180 mcg plus RBV 1,000/1,200 mg
- Retrospective analysis includes African American and Latino patients

SVR (%)

HCV RNA Undetectability

	Week 4	Week 12	Week 24
	(n = 195)	(n = 505)	(n = 194)
All (N = 1,243)	146 (74.9%)	320 (63.4%)	64 (33%)
Race/Ethnicity			
White	106 (75.7%)	239 (66.8%)	40 (33.6%)
Latino	28 (73.7%)	51 (48.6%)	17 (32.1%)
African American	4 (66.7%)	19 (73.1%)	5 (27.8%)
Cirrhosis Classification			
Non-Cirrhotic	131 (74.9%)	286 (64.6%)	52 (32.7%)
Cirrhotic	15 (75%)	34 (54.8%)	12 (34.3%)
Baseline HCV RNA, IU/mL			
≤ 400,000	76 (78.4%)	63 (72.4%)	7 (41.2%)
> 400,000	70 (71.4%)	257 (61.5%)	57 (32.2%)

Shiffman ML, et al. Presented at EASL 2008. April 23-27, 2008; Milan, Italy. Poster #835.

Type of Response, Ethnicity and SVR in G-1 Shiffman ML. ESLD 2008; Poster 835

1243 pts G-1 infection (Fried, Hadziyannis, Virahep-C, LATINO studies)

Effect of Fibrosis & Viral Load in G-1 SVR Shiffman ML. ESLD 2008; Poster 835

Conclusion

Most of the effects of:

- Viral Genotype,
- Ethnicity,
- Severity of Fibrosis, and
- Baseline Viral Load

are explained by how they affect the time to reach a negative HCV-RNA (% of RVR, cEVR, & pEVR).

Effect of Treatment Prolongation

Peginterferon-alfa2a plus ribavirin 800 mg for 48 versus 72 weeks in patients with detectable hepatitis C virus RNA at week 4 of treatment.

Sanchez-Tapias et al. Gastroenterology. 2006 Aug;131(2):451-60

- Population: 510 treatment naïve patients
- Treatment: 180 mcg Pegasys + RBV 800 mg
- Groups randomized at week 4:
 - A) HCV-RNA > 50 IU/mL treated 48 wks (165),
 - B) HCV-RNA > 50 IU/mL treated 72 wks (161),
 - C) HCV-RNA < 50 IU/mL treated 24 wks (148), > RVR
 - D) HCV-RNA < 50 IU/mL treated 48 wks (36)

Peginterferon-alfa2a plus ribavirin 800 mg for 48 versus 72 weeks in patients with detectable hepatitis C virus RNA at week 4 of treatment.

Sanchez-Tapias et al. Gastroenterology. 2006 Aug;131(2):451-60

Treatment of Chronic HCV in Chronic Kidney Disease, and ESRD on Dialysis

Chronic Kidney Disease Suggested RBV dose by Creatinine Clearance Kamar N et al. Am J Kidney Dis. 2004;43:140-146 & Bruchfeld A et al. Drug Monit. 2002;24:701-708

Creatinine Clearance	120	100	80	60	40	20
(Cockcroft -Gault)	mL/ min	mL/ min	mL/ min	mL/ min	mL/ min	mL/ min
RBV						
(mg/day)	1400	1200	1000	800	600	400

HCV in ESRD & post-KTx Treatment Considerations

- Risk of Interferon use post-KTx is high: 15-64% vascular rejection / tubulo-interstitial lesion. (not recommended)
- Difficult to use Ribavirin in ESRD b/o toxicity (dose is 150-300 mg/d); severe hemolysis.
- Lower efficacy of Interferon (18-27% SVR) in ESRD.
- Dose: PEG-Intron 1 mcg/kg/week; PEGASYS 135-180 mcg/week.
- Erythropoietin is usually needed

Peg-IFN-a2a in ESRD Pharmacokinetics

- Peg-Ifn-a2a is not significantly cleared by dialysis (hemodialysis or peritoneodialysis).
- In a 12 weeks study, Peg-Ifn-a2a 135 or 180 mcg once weekly gave safe and constant concentration on patients with ESRD on hemodialysis.
- The dose of 135 mcg/wk in ESRD gives levels similar to those of patients with normal renal function receiving 180 mcg/wk (13000 pg/mL).
- Safety of 135 vs 180 mcg per week in ESRD is similar.

Chronic HCV in ESRD Natural History

- Indolent & asymptomatic; normal liver enzymes
- Advanced fibrosis (F3-F4) in 22-32%
- Death rate 35% higher in HCV cirrhosis
- Risk of Liver Ca 50% higher in HCV (+)
- Mortality of HCV (+) kidney Tx is 40% higher than HCV (-) kidney Tx.
- Mortality of HCV (+) who receive kidney Tx is 50% lower than those who continue in hemodialysis.

HCV in Renal Transplant

- Survival: same 5-year but lower @ 10-years
- Survival better than if continue on HD
- Liver damage accelerated by Azathioprine and anti-lymphocyte globulin
- Higher risk of membranous and membranoproliferative glomerulonephritis.
- Decreased renal graft function

HCV in Renal Tx Natural History (10 years)

Algorithm for ESRD & Liver Disease

Am J. Transplant 2008;8:2243-2251

Peg-Ifn-a2a Monotherapy in ESRD (hemo- or peritoneo- dialysis)

Author	Treatment	Result
Kokoglu (J Gastroenterol Hepatol 2006;21:575-580)	Rp(12): Peg 135 x 48w C(13): no therapy	Rp: EOT(-) 84%, SVR 75% C: EOT(-) 8%, SVR 8%
Sporea (World J Gastroenterol 2006;12(26):4191-4194)	Rp(10): Peg 180 x 48w	SVR: ITT 30%, PP 50%
Chan (Nephrology 2007;12:11-17)	Rp(6): Peg 135 x 48 w	EOT(-) 83%, SVR 33%
Teta (Nephrol Dial Transplant 2005;20:991-993)	Rp(3): Peg 90-180 x 24-48 w	SVR 66%
Peck-Radosavljevic (EASLD Abstr. April 2007)	Rp(38): Peg 135 x 48 w Rp(43): peg 90 x 48 w	Interim wk 24: HCV-RNA(-) 58% vs 49%
Ionita-Radu (EASLD Abstr. April 2007)	Rp(29): Peg 135	SVR 41%

Peg-Inf-a2a + RBV in ESRD (hemo- or peritoneo- dialysis)

Author	Treatment	Result
Rendina (Journal of Hepatology 2007:768-774)	Rp(35): Peg 135/RBV 200qd x 48 w(g-1) or 24 w (g-no- 1)+EPO C(35): no therapy	Rp: SVR 97% (93% g-1, 100% g-non-1)
Hakim (DDW Abstr. May 2006)	Rp(20): Peg 135/RBV 200 TIW x 48 w	Interim 12 w: HCV-RNA(-) 45%
Deltenre (AASLD Abstr. Oct 2006)	Rp(14): Peg 180/RBV 800 per w x 24-48 w + EPO	OET(-): 79%, SVR 63%
Carriero (AASLD Abstr. Oct 2006)	Rp(15): Peg 135-180/RBV 200 qd x 4-76 w + EPO	SVR 31%
Bruchfeld (J Viral Hepatitis 2006;13:316-321)	Rp(2): Peg 135/RBV 1400-2000 mg per w + EPO	SVR 100%

Indications for Simultaneous Liver-Kidney Transplant (SLK)

Am J. Transplant 2008;8:2243-2251

- Automatic approval
 - CKD stage IV or V + cirrhosis + symptomatic portal HTN or HVWPG
 >/= 10 mm Hg
 - Liver failure + CKD with eGFR </= 30 mL/min for > 90 days
 - Liver failure + AKI or HRS with creat > 2 mg/dL + dialysis >/= 8 weeks
 - Liver failure + CKD + Kidney Bx with > 30% glomerulosclerosis or > 30% interstitial fibrosis.
- MELD exception by Regional Review Board
 - All other cases; comorbidities like DM, HTN, other pre-existing kidney disease, age > 65 will increase potential benefit for SLK.

Treatment Pre-Liver Transplantation

Pre-LTx Treatment Candidates

- Best Candidates:
 - Child-Turcotte score = / < 7
 - MELD =/< 18
- Best response:
 - genotype 2 & 3 (47% SVR) vs g-1 (13% SVR)
- Patients with Child-Turcotte 8 to 10, or MELD 18 to 24 are controversial.
- Patients with Child-Turcotte =/> 11, or
 MELD =/> 25 are not treatment candidates.

Effect of pre-LT Therapy on Post-OLTx Outcome in Cirrhotics listed for LT

Everson et al. Rev. Gastrointest Disord 2004;4 Suppl 1:S31-38

Post OLTx HCV-Recurrence in Listed Cirrhotics Treated with Daily IFN **Monotherapy**Thomas et al. Liver Transpl 2003;9:905-915

Treatment Post-Transplantation

Treatment of Recurrent HCV Preemptive

- Starts therapy shortly post LTx.
- Treatment is poorly tolerated.
- Discontinuation rate: 33%
- Reported SVR: 10-25%

Treatment of Recurrent HCV After METAVIR Stage 2 (occasional bridging)

- Interferon or RBV monotherapy have not improved fibrosis nor induced SVR.
- With Peg-IFN + RBV, SVR has been 26-45%
- 60% of patients with SVR improve histology; 20 % remain stable.
- 30-60% require RBV dose reduction; 30% need discontinuation of therapy.
- There is no increase in rate of Acute nor Chronic Rejection.

Peg-IFN + RBV for HCV Recurrence in OLTx Recipients

Berenguer M et al. Liver Transpl 12:1067-1076, 2006

- 36 patients
- Median time OLTx-Rp = 513 d
- Cirrhosis 15%, cholestatic HCV 9%
- 88% off steroids
- Premature D/C 40%
- ADEs 57%
- Rejection 14%
- EPO increased SVR
- HCV-RNA drop < 2 log @ 12 wks = non-response

Is SVR "Cure"?

Patients With a Durable SVR at Mean 4.1 (0.4 to 7) Years Follow-up

SVR: HCV RNA negative 24 weeks after end of treatment

herabion de pornos Hivios

Evolving New Concepts Peg-Interferon + RBV Therapy

- Genotype 1 (and 4, 5, & 6)
 - Higher dose of RBV (15.3 mg/Kg) improves SVR by decreasing relapses.
 - If HCV-RNA has fallen > 2 log but is still (+) by week 12, SVR can be improved by prolonging therapy, from standard 48 weeks to 72 weeks.
- Genotype 2 & 3
 - RBV dose of 11.2 mg/Kg or higher improves SVR.
 - If HCV-RNA is still (+) at week 4, SVR will improve by prolonging therapy, from standard 24 weeks to 48 weeks.

Question Being Investigated

- Can we improve SVR by adding to [Peg-Ifn/RBV] either a protease inhibitor, RNA-polymerase inhibitor, NS5A inhibitor, or cyclophilin inhibitor, and making most patients HCV-RNA negative by week 4 or earlier?
- Can we improve SVR by decreasing insulin resistance and/or hepatic steatosis?

Emerging Therapy in HCV

- NS5B RNA-dependent RNApolymerase inhibitor: Non-nucleoside
 - BILB-1941
 - A-837093
 - GS-9190
- NS5B RNA-dependent RNApolymerase inhibitor: Nucleoside analogue
 - R1626 (phase-2)
 - MK-608
 - R1656
 - R7128

- NS3/4 serine protease inhibitors
 - Telaprevir (phase-2)
 - Boceprevir (phase-2)
 - GS9132/ACH-806
 - ITMN-191
- NS5A inhibitors
 - A-831
 - A-689
- Cyclophilin inhibitors
 - DEBIO-25
 - NIM-811

4-week lead-in Nitazoxanide + (Peg-Ifn alfa-2a + Nitazoxanide) x 36 w in Chronic HCV (AASLD 2008, Abstr 1848)

- NTZ is a small molecule Thiazolide which inhibits HCV in Replicon system.
- NTZ enhances intracellular activity of IFN by inducing PKR and eIF2-alpha
- NTZ monotherapy for 24-weeks gives SVR of 17.4% in g-4 HCV.
- 12 w lead-in of NTZ + either (NTZ+Peg-Ifn+RBV) or (NTZ+Peg-Ifn) x 36 w were superior to 48 w Peg-Ifn+RBV in g-4 HCV (SVR = 79%, vs 61%, vs 50%)

- **STUDY:** open label, prospective.
- Population: 44 IFN-Naïve patients (Egypt)- (g-1 = 3, g-2 = 1, g-4 = 40 patients)
- Intervention: NTZ 500 mg BID with food x 4 weeks, followed by Peg-Ifn 180 mcg/week + NTZ 500 BID x 36 weeks
- Monitoring: monthly CBC, CMP
 & HCV-RNA (LLD 12 IU/mL)
- Analysis: SVR by ITT

4-week lead-in Nitazoxanide + (Peg-Ifn alfa-2a + Nitazoxanide) x 36 w in Genotype-4 HCV (Abstr 1848)

- AE: Those of Peg-Ifn. No ALT elevations, drug reductions nor discontinuations.
- Two of 3 patients with g-1 had RVR; all 3 had SVR.
- Patient with g-2 had cEVR & SVR.

CONCLUSIONS:

- 4-week lead-in NTZ followed by 36 wks of Peg-IFN, is adequate and very promising (80% SVR)
- Studies are ongoing in naïve and relapsed patients, with NTZ + [Peg-Ifn & Peg-Ifn + RBV]

Telaprevir (TVR) + Peg-Ifn/RBV in HCV G-1 Non-Responders & Relapsers: 24 week Interim Analysis (AASLD 2008, Abstr 1852)

 Population: Patients with g-1 HCV, who were "Peg-Ifn/RBV control" in previous Telaprevir studies, and have received at least 4 w of TVR + Peg-IFN + RBV therapy (104 of 107 pts)

Subgroups:

- Null-response (49),
- Partial Response (33),
- Breakthrough (1),
- Relapse (24)
- Trial: Open Label Treatment
- Analysis: ITT

• INTERVENTION:

- TVR 750 mg q 8h x 12wks together with:
- (Peg-Ifn 180 mcg/w + RBV 1000-1200 mg/d) x 24 or 48 wks

STOP RULE:

- Wk4 = HCV-RNA > 100 IU/mL,
- Wk 8 = > 25 IU/mL
- Anytime breakthrough = increase > 1 log, or titer > 100 after being (-)

Telaprevir (TVR) + Peg-Ifn/RBV in HCV G-1 Non-Responders & Relapsers: 24 week Interim Analysis (Abstr 1852)

 AEs: Rash (4 d/c), Anemia, pleuritis, Itching, fatigue, depression

Breakthrough:

- Relapsed = 0/24,
- Breakthrough = 1/1,
- Partial = 2/33 (6%),
- Null = 10/49 (20%)
- CONCLUSION: Results are promising during initial 24 weeks of therapy of Non-responders and Relapsers.

Telaprevir (TVR) q 8 or q 12, with Peg-Ifn Alfa 2a or 2b plus RBV, in Naïve G-1 HCV: 12 wk Interim Results (AASLD 2008, Abstr 1854)

- Study: Open label, multicenter, randomized, Phase 2
- Patients: 161 adult, treatment naïve, genotype-1, non-cirrhotic.

Intervention:

- TVR 750 mg (q 12, or q 8 h) x 12 wks +
- RBV 1-1.2 g +
- (Peg-Ifn a2a, or Peg-Ifn a2b)

Treatment duration:

- 24 wks if HCV-RNA (-) from wk 4 to 20;
- 48 weeks all others
- Analysis: ITT

Demographics:

- 50% male,
- mean age 44.3,
- 91% caucasian,
- median BMI 24 (18-46),
- HCV-RNA 6.41 log

AEs:

- itching 56%, nausea 56%,
- flu-like 51%, anemia 49%,
- headache 41%, rash 41%,
- anorexia 39%, fatigue 39%,
- asthenia 36%, diarrhea 33%
- vomiting 31%, fever 28%.

Telaprevir q 8 or q 12, with Peg-Ifn Alfa 2a or 2b plus RBV, in Naïve G-1 HCV: 12 wk Interim Results (Abstr 1854)

CONCLUSION:

- All 4 regimens were similar in efficacy.
- High proportion achieved HCV(-) at weeks 4 & 12.
- Viral breakthrough was low (5.6%)
- Further studies with TVR q 12 are warranted.
- Results from the first 12 weeks of therapy of Naïve patients are promising.

Boceprevir + Peg-IFNa2b/RBV in Treatment Naïve g-1 chronic HCV (AASLD 2008, Abstr LB16)

- Boc is an oral HCV-NS3 protease inhibitor.
- Phase 2 study of Boc (with or without Peg/RBV lead in) + Peg/RBV for 24 vs 48 weeks, in naïve g-1 HCV.

Population:

- 595 patients,
- 77% US,
- 16% black,
- 7% cirrhotic,
- 89% > 600,000 IU/mL

Doses:

- Boc 800 mg p.o. TID
- Peg-IFNa2b 1.5 mcg/kg/week
- RBV 13.3 mg/kg (800-1400 mg/d)

Treatment arms:

- Peg/RBV x 4 weeks + Peg/RBV/Boc x 24 weeks (103)
- Peg/RBV x 4 weeks + Peg/RBV/Boc x 44 weeks (103)
- Peg/RBV/Boc x 28 weeks (107)
- Peg/RBV/Boc x 48 weeks (103)
- Peg/RBV x 48 weeks (104)

Outcomes:

- HCV-RNA (-) (LLD = 15 IU/mL)
- SVR

Boceprevir + Peg-IFNa2b/RBV in Treatment Naïve g-1 chronic HCV (Abstr LB16)

- Resistance: Lower viral breakthrough with P/R lead in (11 & 7% vs 4 & 5%).
- AEs: higher anemia, neutropenia, dysgeusia, myalgia & pruritus.

• **CONCLUSION:**

- Boc was safe up to 48 weeks.
- Lead-in with Peg/RBV x 4 weeks decreases viral breakthrough.
- Boc x 28 w improves SVR, and Boc x 48 weeks doubles SVR over Peg/RBV x 48 w.

Conclusions

- Hepatitis C is a common disorder with serious and costly effects to the individual and society.
- A directed history can identify patients at risk.
- Identification of infected patients, followed by appropriate staging, counseling and treatment, can decrease liver damage to the individual and cost to society.

Questions?

Annual Liver Symposium Saturday 12/7/07 – 8am

8:00-8:10 Welcome Craig McClain, M.D.

8:10-8:45 Hepatitis C Update

Guy Neff, M.D.

8:45-9:20 NASH/ASH Matthew Cave, M.D., Craig McClain, M.D.

9:20-9:55 HCC

Joseph Buell, M.D., F.A.C.S., Ashutosh Barve, M.D., Ph.D.

9:55-10:10 BREAK

10:10-10:35 Skin and Eye Problems in Liver Disease

Ann Neff, M.D.

10:35-11:10 Hepatitis B and Other Liver Disease

Luis Marsano, M.D.

Chronic HCV

- Most are asymptomatic; 6% symptomatic before diagnosis.
- **Symptoms**: fatigue, RUQ discomfort, anorexia, nausea, itching, arthralgia, myalgia.
- Extrahepatic: mixed cryoglobulinemia, purpura, mononeuritis multiplex, PCT, membrano-proliferative glomerulonephritis, xerostomy, low-grade B-cell lymphoma, corneal ulcers and idiopathic pulmonary fibrosis, lichen planus.

Prevalence of HCV

• GROUP	%	• GROUP %	
• Hemophilia <'87	82	 Infant of RNA(+) mother 	
• IVDA	80	5	
 Hemodialysis 	10	Homosexual menMonogamous partner	
Transfusion < '92	7	General population 1.8	
Person w STD	6	ocheral population 1.0	

.16

Volunteer blood donor

Prevalence of HCV Infection: US

- 3.9 million antibody positive (1.8% of US population)¹
 - CDC estimates may be as high as 7 million carriers¹
- 2.7 million are chronically infected with HCV²
- Highest prevalence in 30- to 54-year-olds³

Prediction of SVR (Naïve) PEG-Interferons + Ribavirin

HCV-RNA Status @ 12 wk	% Non- Responders	% SVR
HCV-RNA (-)	10	90
HCV-RNA (+) & drop > 2 log	74	26
HCV-RNA (+) & drop < 2 log	98.4	1.6

PEGASYS + Ribavirin 1-1200 x 48 weeks Genotype & Viral Load on SVR

Considerations for Initiating Copegus Therapy Related to Teratogenicity

- Copegus therapy should not be started unless a report of a negative pregnancy test has been obtained immediately prior to initiation of therapy
- Women of childbearing potential and men must use two forms of effective contraception during treatment and during the 6 months after treatment has concluded
- Routine monthly pregnancy tests must be performed during this time.
- If pregnancy should occur during treatment or during 6 months post-therapy the patient must be advised of the significant teratogenic risk of Copegus therapy to the fetus
- Healthcare providers and patients are strongly encouraged to immediately report any pregnancy in a patient or partner of a patient during treatment or during 6 months after treatment cessation to the Ribavirin Pregnancy Registry at (800) 593-2214

PEG-INTRON + Ribavirin 800 SVR Genotype-1 vs G-2/3 *Naive*

Sustained Viral Response (%)

PEG-INTRON + Ribavirin 800 **Effect of** Viral load **in** Genotype-1

Future Disease Burden Related to HCV: 2008

HCC = hepatocellular carcinoma.

<u>Davis</u> et al. *Hepatology*. 1998;28(4 pt 2):390A.

Predicting SVR in Patients Treated with Pegasys and Copegus

Vertical Transmission of HCV Cesarean Section vs Vaginal Delivery

- The "Cochrane Pregnancy and Childbirth Group's Trial Register", and the "Cochrane Central Register of Controlled Trials" were analyzed until April 2006.
- No randomized controlled trials were found (Cochrane Database Syst Rev 2006; Oct 18).
- Systematic review of observational studies (subject to biases) or RCT's are needed.

Ribavirin and Teratogenicity

- Patients should be informed that Ribavirin is teratogenic.
- Ribavirin should not be started unless a pre-treatment pregnancy test has been negative.
- Women of childbearing potential and all males should use 2 methods of contraception during treatment and for 6 months after therapy.
- If pregnancy occurs, they should be advised of the significant teratogenic risk to the fetus.
- Physicians are strongly encouraged to report any pregnancy in a patient or partner, during treatment or 6 months after treatment to: Ribavirin Pregnancy Registry @ 1-800-593-2214

HCV Disease Progression in Patients With Normal ALT

Despite 'persistently normal' ALT levels, >75% have some degree of liver damage on biopsy, with 32% having portal and bridging fibrosis

38% qualify for therapy (METAVIR >/= 2)

Normal ALT

Natural History of HCV Infection

HCC = hepatocellular carcinoma

ESLD = end-stage liver disease

Di Bisceglie et al. Hepatology. 2000;31(4):1014-1018.

Treatment of Acute HCV @ 8,12, & 20 wks, Peg-IFN alpha-2a vs (IFN + RBV) x 12 wks

Kamal et al Abst # 37 AASLD, 2004

- 68 pts with Acute hepatitis C;
 7 had spontaneous clearance.
- Treatment started at:
 - A) Week 8 (21),
 - B) Week 12 (20),
 - C) Week 20 (20)
- IFN+RBV vs Peg-IFN alpha 2a x 12 wks; if HCV-RNA (+) at wk 12, treated 12 more wks.

Treatment of Acute HCV @ 8,12, & 20 wks, Peg-IFN alpha 2a vs IFN+RBV x 12 wks

Kamal et al Abst # 37 AASLD, 2004

- Starting therapy at week 12 gave best results.
- Peg-IFN alpha 2a 180 mcg/week monotherapy x 12 weeks, was superior to IFN+RBV treatment x 12 weeks, in all groups.

Luis S. Marsano, MD
Professor of Medicine
Director, Clinical & Transplant Hepatology
University of Louisville &
Louisville VAMC

Barriers to Screening

2 Out of 3 Patients With HCV Are Undiagnosed Because of Screening Barriers¹

- General population not aware of risk factors²
- Routine HCV risk factor assessment not current primary care physician (PCP) practice²
- Patient concerned about admitting risk factors⁴
 - No risk factor identified in 69% of cases
- Persons infected with HCV are often asymptomatic³
- Elevated ALT is current marker for ordering liver panel⁴

¹ALF. Hepatitis C Factsheet. Available at: www.liverfoundation.org. Accessed March 14, 2005. ²Shehab et al. *J Viral Hepat.* 2001;8(5):377-383.

³CDC. *MMWR*. 1998;47(RR-19):1-39.

*Rawls et al. J Clin Gastroenterol. 2005;39(2):144-151.

Should we test for Hepatitis C only if ALT is elevated?

Correlation of ALT and Detection of HCV

- Elevated ALT levels lead to workup and diagnosis of hepatitis C
- Many hepatitis C positive patients have persistently normal ALT levels¹
 - Caution should be used with over-reliance on abnormal ALT as the screening trigger
 - ALT often fluctuates
- Up to 46% of patients with CHC have ALT levels within the currently defined 'normal' range²

Summary: Barriers to Screening

- Lack of disease awareness in general US population
- Routine risk-factor screening not common practice for primary care physician
- Persons with HCV are often asymptomatic
- A biochemical marker, such as ALT, should not be the only indicator for further evaluation and/or treatment of HCV

Projecting Future Complications of CHC in the US

Identification and treatment of patients with CHC reduces the number of cases of decompensated cirrhosis

ACCELERATE Trial: Study Design

ACCELERATE Trial: Proportion of G2/3 Patients Who Achieved an RVR

- A total of 1,469 patients were included in ACCELERATE, with 1,455 patients having HCV RNA measurements at week 4 in the standard population analysis
- Among these 1,455 patients, 955 (67%) achieved an RVR

ACCELERATE Trial: Virologic Response by RVR and Genotype

Shiffman ML, et al. NEJM. 2007;357:124-134.

ACCELERATE Trial: Predictive Factors of SVR

Multiple Logistic Regression

New Definitions of Early Virologic Response to Antiviral Therapy for Hepatitis C¹⁻²

EVR Early Virologic Response	HCV RNA negative or > 2 log ₁₀ drop at week 12
- Complete EVR (cEVR)	No RVR but HCV RNA negative (< 50 IU/mL) at week 12
- Partial EVR (pEVR)	No RVR and detectable but ≥ 2 log ₁₀ drop in HCV RNA at week 12
• Slow responder	≥ 2 log ₁₀ drop in HCV RNA at week 12 and HCV RNA negative at week 24
• Partial responder	≥ 2 log ₁₀ drop in HCV RNA at week 12 but HCV RNA positive at week 24

- 1. Marcellin P, et al. Presented at AASLD 2007. Oct. 2-6, 2007; Boston, MA. Poster #1308.
- 2. Sánchez-Tapias JM, et al. Presented at EASL 2007. April 11-15, 2007; Barcelona, Spain. Poster #641.

Definitions of Virologic Response to Antiviral Therapy for Hepatitis C¹⁻⁴

Response	Definition
RVR Rapid Virologic Response	HCV RNA negative at 4 weeks as defined by HCV RNA < 50 IU/mL
EVR Early Virologic Response	HCV RNA negative or > 2 log ₁₀ drop at week 12
Relapse	HCV RNA negative at end of treatment but HCV RNA positive after treatment cessation
SVR Sustained Virologic Response	HCV RNA negative 24 weeks after end of treatment

- 1. Ferenci P, et al. Presented at EASL 2006. April 26-30, 2006; Vienna, Austria. Abstract #8.
- 2. Paulon E, et al. Eur J Gastroenterol Hepatol. 2006;18(4):321-325.
- 3. Pawlotsky JM. *Hepatology*. 2002;36(suppl 1):S65-S73.
- 4. Adapted from http://www.hepatitis.va.gov/vahep?page=prtop04-wp-03. Accessed January 4, 2008.

Virahep-C Trial: Virologic Response

*Negative or ≥ 2 log₁₀ drop at Week 12

LATINO Study: Results in Genotype 1 Patients

