

2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines

Clyde W. Yancy, Mariell Jessup, Biykem Bozkurt, Javed Butler, Donald E. Casey, Jr, Mark H. Drazner, Gregg C. Fonarow, Stephen A. Geraci, Tamara Horwich, James L. Januzzi, Maryl R. Johnson, Edward K. Kasper, Wayne C. Levy, Frederick A. Masoudi, Patrick E. McBride, John J.V. McMurray, Judith E. Mitchell, Pamela N. Peterson, Barbara Riegel, Flora Sam, Lynne W. Stevenson, W.H. Wilson Tang, Emily J. Tsai and Bruce L. Wilkoff

Circulation. 2013;128:1810-1852; originally published online June 5, 2013; doi: 10.1161/CIR.0b013e31829e8807 Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2013 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circ.ahajournals.org/content/128/16/1810

Data Supplement (unedited) at:

http://circ.ahajournals.org/content/suppl/2013/06/04/CIR.0b013e31829e8807.DC1.html http://circ.ahajournals.org/content/suppl/2013/06/04/CIR.0b013e31829e8807.DC2.html

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at: http://circ.ahajournals.org//subscriptions/

2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines

Developed in Collaboration With the American College of Chest Physicians, Heart Rhythm Society, and International Society for Heart and Lung Transplantation

Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation

WRITING COMMITTEE MEMBERS

Clyde W. Yancy, MD, MSc, FACC, FAHA, Chair†‡; Mariell Jessup, MD, FACC, FAHA, Vice Chair*†; Biykem Bozkurt, MD, PhD, FACC, FAHA†; Javed Butler, MBBS, FACC, FAHA*†;
Donald E. Casey, Jr, MD, MPH, MBA, FACP, FAHA§; Mark H. Drazner, MD, MSc, FACC, FAHA*†;
Gregg C. Fonarow, MD, FACC, FAHA*†; Stephen A. Geraci, MD, FACC, FAHA, FCCPI; Tamara Horwich, MD, FACC†; James L. Januzzi, MD, FACC, FAHA, FCCPI; Maryl R. Johnson, MD, FACC, FAHA¶; Edward K. Kasper, MD, FACC, FAHA†;
Wayne C. Levy, MD, FACC*†; Frederick A. Masoudi, MD, MSPH, FACC, FAHA†; Patrick E. McBride, MD, MPH, FACC**; John J.V. McMurray, MD, FACC*†; Judith E. Mitchell, MD, FACC, FAHA†; Pamela N. Peterson, MD, MSPH, FACC, FAHA†; Barbara Riegel, DNSc, RN, FAHA†; Flora Sam, MD, FACC, FAHA†;
Lynne W. Stevenson, MD, FACC*†; W.H. Wilson Tang, MD, FACC*†; Emily J. Tsai, MD, FACC†; Bruce L. Wilkoff, MD, FACC, FHRS*††

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply; see Appendix 1 for recusal information.

†ACCF/AHA representative.

[‡]ACCF/AHA Task Force on Practice Guidelines liaison.

[§]American College of Physicians representative.

American College of Chest Physicians representative.

[¶]International Society for Heart and Lung Transplantation representative.

[#]ACCF/AHA Task Force on Performance Measures liaison.

^{**}American Academy of Family Physicians representative.

^{††}Heart Rhythm Society representative.

^{‡‡}Former Task Force member during this writing effort.

Full-text guideline available at: http://circ.ahajournals.org/lookup/doi/10.1161/CIR.0b013e31829e8776.

This document was approved by the American College of Cardiology Foundation Board of Trustees and the American Heart Association Science Advisory and Coordinating Committee in May 2013.

The online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0b013e31829e8807/-/DC1. The online-only Comprehensive Relationships Table is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0b013e31829e8807/-/DC2.

The American Heart Association requests that this document be cited as follows: Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJV, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WHW, Tsai EJ, Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *Circulation*. 2013;128:1810–1852. This article has been copublished in the *Journal of the American College of Cardiology*.

Copies: This document is available on the World Wide Web sites of the American College of Cardiology (www.cardiosource.org) and the American Heart Association (my.americanheart.org). A copy of the document is available at http://my.americanheart.org/statements by selecting either the "By Topic" link or the "By Publication Date" link. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://my.americanheart.org/statements and select the "Policies and Development" link.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the "Copyright Permissions Request Form" appears on the right side of the page.

⁽Circulation. 2013;128:1810-1852.)

^{© 2013} by the American College of Cardiology Foundation and the American Heart Association, Inc. *Circulation* is available at http://circ.ahajournals.org

ACCF/AHA TASK FORCE MEMBERS

Jeffrey L. Anderson, MD, FACC, FAHA, *Chair*; Alice K. Jacobs, MD, FACC, FAHA, *Immediate Past Chair*‡‡; Jonathan L. Halperin, MD, FACC, FAHA, *Chair-Elect*; Nancy M. Albert, PhD, CCNS, CCRN, FAHA; Biykem Bozkurt, MD, PhD, FACC, FAHA; Ralph G. Brindis, MD, MPH, MACC; Mark A. Creager, MD, FACC, FAHA‡‡; Lesley H. Curtis, PhD; David DeMets, PhD; Robert A. Guyton, MD, FACC; Judith S. Hochman, MD, FACC, FAHA; Richard J. Kovacs, MD, FACC, FAHA; Frederick G. Kushner, MD, FACC, FAHA‡‡; E. Magnus Ohman, MD, FACC; Susan J. Pressler, PhD, RN, FAAN, FAHA; Frank W. Sellke, MD, FACC, FAHA;

Win-Kuang Shen, MD, FACC, FAHA; William G. Stevenson, MD, FACC, FAHA‡‡;

Clyde W. Yancy, MD, MSc, FACC, FAHA‡‡

Table of Contents

Preamble	311
1. Introduction	
1.1. Methodology and Evidence Review	314
1.2. Organization of the Writing Committee18	314
1.3. Document Review and Approval	314
1.4. Scope of This Guideline With Reference to Other	
Relevant Guidelines or Statements	314
2. Definition of HF	314
3. HF Classifications	316
4. Epidemiology	316
5. Initial and Serial Evaluation of the HF Patient:	
Recommendations	
5.1. Clinical Evaluation	517
5.1.1. History and Physical Examination18	317
5.1.2. Risk Scoring	317
5.2. Diagnostic Tests	317
5.3. Biomarkers	318
5.4. Noninvasive Cardiac Imaging18	318
5.5. Invasive Evaluation	519
6. Treatment of Stages A to D: Recommendations 18	320
6.1. Stage A	320
6.2. Stage B	320
6.3. Stage C	321
6.3.1. Nonpharmacological Interventions18	321
6.3.2. Pharmacological Treatment for	
Stage C HFrEF	321
6.3.3. Pharmacological Treatment for	
Stage C HF $_p$ EF18	324
6.3.4. Device Therapy for Stage C HFrEF 18	326
6.4. Stage D	328
6.4.1. Water Restriction	329
6.4.2. Inotropic Support	
6.4.3. Mechanical Circulatory Support18	
6.4.4. Cardiac Transplantation	
7. The Hospitalized Patient: Recommendations18	
7.1. Precipitating Causes of Decompensated HF 18	
7.2. Maintenance of GDMT During Hospitalization .18	
7.3. Diuretics in Hospitalized Patients	
7.4. Renal Replacement Therapy—Ultrafiltration 18	
7.5. Parenteral Therapy in Hospitalized HF18	33
7.6. Venous Thromboembolism Prophylaxis in	
Hospitalized Patients18	
7.7. Arginine Vasopressin Antagonists	
7.8. Inpatient and Transitions of Care	
8. Important Comorbidities in HF	34

9. Surgical/Percutaneous/Transcatheter Interventional
Treatments of HF: Recommendations
10. Coordinating Care for Patients With Chronic HF:
Recommendations
11. Quality Metrics/Performance Measures:
Recommendations
12. Evidence Gaps and Future Research Directions 1835
References
Appendix 1. Author Relationships With Industry and
Other Entities (Relevant)
Appendix 2. Reviewer Relationships With Industry and
Other Entities (Relevant)

Preamble

The medical profession should play a central role in evaluating the evidence related to drugs, devices, and procedures for the detection, management, and prevention of disease. When properly applied, expert analysis of available data on the benefits and risks of these therapies and procedures can improve the quality of care, optimize patient outcomes, and favorably affect costs by focusing resources on the most effective strategies. An organized and directed approach to a thorough review of evidence has resulted in the production of clinical practice guidelines that assist clinicians in selecting the best management strategy for an individual patient. Moreover, clinical practice guidelines can provide a foundation for other applications, such as performance measures, appropriate use criteria, and both quality improvement and clinical decision support tools.

The American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA) have jointly produced guidelines in the area of cardiovascular disease since 1980. The ACCF/AHA Task Force on Practice Guidelines (Task Force), charged with developing, updating, and revising practice guidelines for cardiovascular diseases and procedures, directs and oversees this effort. Writing committees are charged with regularly reviewing and evaluating all available evidence to develop balanced, patient-centric recommendations for clinical practice.

Experts in the subject under consideration are selected by the ACCF and AHA to examine subject-specific data and write guidelines in partnership with representatives from other medical organizations and specialty groups. Writing committees are asked to perform a literature review; weigh the strength of evidence for or against particular tests, treatments,

Table 1. Applying Classification of Recommendation and Level of Evidence

	CLASS I	CLASS IIa	TMENT EFFECT	CLASS III No B	lenefit
	Benefit >>> Risk Procedure/Treatment SHOULD be performed/ administered	Benefit >> Risk Additional studies with focused objectives needed IT IS REASONABLE to per- form procedure/administer treatment	Benefit ≥ Risk Additional studies with broad objectives needed; additional registry data would be helpful Procedure/Treatment MAY BE CONSIDERED	or CLASS III H. Proce Test COR III: Not No benefit Helpfu	arm dure/ Treatmer No Prove Benefit s Cost Harmful enefit to Patient
LEVEL A Multiple populations evaluated* Data derived from multiple randomized clinical trials or meta-analyses	 Recommendation that procedure or treatment is useful/effective Sufficient evidence from multiple randomized trials or meta-analyses 	 Recommendation in favor of treatment or procedure being useful/effective Some conflicting evidence from multiple randomized trials or meta-analyses 	 Recommendation's usefulness/efficacy less well established Greater conflicting evidence from multiple randomized trials or meta-analyses 	 Recommenda procedure or tra- not useful/effect be harmful Sufficient evin multiple randon meta-analyses 	eatment is tive and may dence from
LEVEL B Limited populations evaluated* Data derived from a single randomized trial or nonrandomized studies	 Recommendation that procedure or treatment is useful/effective Evidence from single randomized trial or nonrandomized studies 	 Recommendation in favor of treatment or procedure being useful/effective Some conflicting evidence from single randomized trial or nonrandomized studies 	 Recommendation's usefulness/efficacy less well established Greater conflicting evidence from single randomized trial or nonrandomized studies 	 Recommenda procedure or trr not useful/effec be harmful Evidence fron randomized tria nonrandomized 	eatment is tive and may n single I or
LEVEL C Very limited populations evaluated* Only consensus opinion of experts, case studies, or standard of care	 Recommendation that procedure or treatment is useful/effective Only expert opinion, case studies, or standard of care 	 Recommendation in favor of treatment or procedure being useful/effective Only diverging expert opinion, case studies, or standard of care 	 Recommendation's usefulness/efficacy less well established Only diverging expert opinion, case studies, or standard of care 	 Recommenda procedure or tro not useful/effec be harmful Only expert o studies, or stan 	eatment is tive and may pinion, case
Suggested phrases for writing recommendations	should is recommended is indicated is useful/effective/beneficial	is reasonable can be useful/effective/beneficial is probably recommended or indicated	may/might be considered may/might be reasonable usefulness/effectiveness is unknown/unclear/uncertain or not well established	COR III: No Benefit is not recommended is not indicated	COR III: Harm potentially harmful causes harm
Comparative effectiveness phrases*	treatment/strategy A is recommended/indicated in preference to treatment B treatment A should be chosen over treatment B	treatment/strategy A is probably recommended/indicated in preference to treatment B it is reasonable to choose treatment A over treatment B		should not be performed/ administered/ other is not useful/ beneficial/ effective	associated of excess mort ity/mortality should not to performed/ administere other

IZE OF TREATMENT EFFECT

A recommendation with Level of Evidence B or C does not imply that the recommendation is weak. Many important clinical questions addressed in the guidelines do not lend themselves to clinical trials. Although randomized trials are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.

*Data available from clinical trials or registries about the usefulness/efficacy in different subpopulations, such as sex, age, history of diabetes, history of prior myocardial infarction, history of heart failure, and prior aspirin use.

†For comparative effectiveness recommendations (Class I and Ila; Level of Evidence A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.

or procedures; and include estimates of expected outcomes where such data exist. Patient-specific modifiers, comorbidities, and issues of patient preference that may influence the choice of tests or therapies are considered. When available, information from studies on cost is considered, but data on efficacy and outcomes constitute the primary basis for the recommendations contained herein.

In analyzing the data and developing recommendations and supporting text, the writing committee uses evidence-based methodologies developed by the Task Force.¹ The Class of Recommendation (COR) is an estimate of the size of the treatment effect considering risks versus benefits in addition to evidence and/or agreement that a given treatment or procedure is or is not useful/effective or in some situations may cause harm. The Level of Evidence (LOE) is an estimate of the certainty or precision of the treatment effect. The writing committee reviews and ranks evidence supporting each recommendation with the weight of evidence ranked as LOE A, B, or C according to specific definitions that are included in Table 1. Studies are identified as observational, retrospective, prospective, or randomized where appropriate. For certain conditions for which inadequate data are available, recommendations are based on expert consensus and clinical experience and are ranked as LOE C. When recommendations at LOE C are supported by historical clinical data, appropriate references (including clinical reviews) are cited if available. For issues for which sparse data are available, a survey of current practice among the clinicians on the writing committee is the basis for LOE C recommendations and no references are cited. The schema for COR and LOE are summarized in Table 1, which also provides suggested phrases for writing recommendations within each COR. A new addition to this methodology is separation of the Class III recommendations to delineate whether the recommendation is determined to be of "no benefit" or is associated with "harm" to the patient. In addition, in view of the increasing number of comparative effectiveness studies, comparator verbs and suggested phrases for writing recommendations for the comparative effectiveness of one treatment or strategy versus another have been added for COR I and IIa, LOE A or B only.

In view of the advances in medical therapy across the spectrum of cardiovascular diseases, the Task Force has designated the term *guideline-directed medical therapy (GDMT)* to represent optimal medical therapy as defined by ACCF/ AHA guideline–recommended therapies (primarily Class I). This new term, *GDMT*, will be used herein and throughout all future guidelines.

Because the ACCF/AHA practice guidelines address patient populations (and clinicians) residing in North America, drugs that are not currently available in North America are discussed in the text without a specific COR. For studies performed in large numbers of subjects outside North America, each writing committee reviews the potential influence of different practice patterns and patient populations on the treatment effect and relevance to the ACCF/AHA target population to determine whether the findings should inform a specific recommendation.

The ACCF/AHA practice guidelines are intended to assist clinicians in clinical decision making by describing a range of generally acceptable approaches to the diagnosis, management, and prevention of specific diseases or conditions. The guidelines attempt to define practices that meet the needs of most patients in most circumstances. The ultimate judgment regarding care of a particular patient must be made by the clinician and patient in light of all the circumstances presented by that patient. As a result, situations may arise for which deviations from these guidelines may be appropriate. Clinical decision making should involve consideration of the quality and availability of expertise in the area where care is provided. When these guidelines are used as the basis for regulatory or payer decisions, the goal should be improvement in quality of care. The Task Force recognizes that situations arise in which additional data are needed to inform patient care more effectively; these areas will be identified within each respective guideline when appropriate.

Prescribed courses of treatment in accordance with these recommendations are effective only if followed. Because lack of patient understanding and adherence may adversely affect outcomes, clinicians should make every effort to engage the patient's active participation in prescribed medical regimens and lifestyles. In addition, patients should be informed of the risks, benefits, and alternatives to a particular treatment and be involved in shared decision making whenever feasible, particularly for COR IIa and IIb, for which the benefit-to-risk ratio may be lower.

The Task Force makes every effort to avoid actual, potential, or perceived conflicts of interest that may arise as a result of industry relationships or personal interests among the members of the writing committee. All writing committee members and peer reviewers of the guideline are required to disclose all current healthcare-related relationships, including those existing 12 months before initiation of the writing effort. In December 2009, the ACCF and AHA implemented a new policy for relationship with industry and other entities (RWI) that requires the writing committee chair plus a minimum of 50% of the writing committee to have no relevant RWI (Appendix 1 includes the ACCF/AHA definition of relevance). These statements are reviewed by the Task Force and all members during each conference call and/or meeting of the writing committee and are updated as changes occur. All guideline recommendations require a confidential vote by the writing committee and must be approved by a consensus of the voting members. Members are not permitted to draft or vote on any text or recommendations pertaining to their RWI. Members who recused themselves from voting are indicated in the list of writing committee members, and specific section recusals are noted in Appendix 1. Authors' and peer reviewers' RWI pertinent to this guideline are disclosed in Appendixes 1 and 2, respectively. Additionally, to ensure complete transparency, writing committee members' comprehensive disclosure information-including RWI not pertinent to this documentis available as an online supplement. Comprehensive disclosure information for the Task Force is also available online at http://www.cardiosource.org/en/ACC/About-ACC/Who-We-Are/Leadership/Guidelines-and-Documents-Task-Forces. aspx. The work of writing committees is supported exclusively by the ACCF and AHA without commercial support. Writing committee members volunteered their time for this activity.

In an effort to maintain relevance at the point of care for practicing clinicians, the Task Force continues to oversee an ongoing process improvement initiative. As a result, in response to pilot projects, several changes to these guidelines will be apparent, including limited narrative text, a focus on summary and evidence tables (with references linked to abstracts in PubMed), and more liberal use of summary recommendation tables (with references that support LOE) to serve as a quick reference.

In April 2011, the Institute of Medicine released 2 reports: *Clinical Practice Guidelines We Can Trust* and *Finding What Works in Health Care: Standards for Systematic Reviews.*^{2,3} It is noteworthy that the ACCF/AHA practice guidelines are cited as being compliant with many of the proposed standards. A thorough review of these reports and of our current methodology is under way, with further enhancements anticipated.

The recommendations in this guideline are considered current until they are superseded by a focused update or the fulltext guideline is revised. Guidelines are official policy of both the ACCF and AHA. The reader is encouraged to consult the full-text guideline⁴ for additional guidance and details about heart failure, because the Executive Summary contains only the recommendations.

> Jeffrey L. Anderson, MD, FACC, FAHA Chair, ACCF/AHA Task Force on Practice Guidelines

1. Introduction

1.1. Methodology and Evidence Review

The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted through October 2011 and includes selected other references through April 2013. The relevant data are included in evidence tables in the Data Supplement. Searches were extended to studies, reviews, and other evidence conducted in human subjects and that were published in English from PubMed, EMBASE, Cochrane, Agency for Healthcare Research and Quality Reports, and other selected databases relevant to this guideline. Key search words included but were not limited to the following: heart failure, cardiomyopathy, quality of life, mortality, hospitalizations, prevention, biomarkers, hypertension, dyslipidemia, imaging, cardiac catheterization, endomyocardial biopsy, angiotensin-converting enzyme inhibitors, angiotensin-receptor antagonists/ blockers, beta blockers, cardiac, cardiac resynchronization therapy, defibrillator, device-based therapy, implantable cardioverter-defibrillator, device implantation, medical therapy, acute decompensated heart failure, preserved ejection fraction, terminal care and transplantation, quality measures, and performance measures. Additionally, the committee reviewed documents related to the subject matter previously published by the ACCF and AHA. References selected and published in this document are representative and not all-inclusive.

1.2. Organization of the Writing Committee

The committee was composed of physicians and a nurse with broad expertise in the evaluation, care, and management of patients with heart failure (HF). The authors included general cardiologists, HF and transplant specialists, electrophysiologists, general internists, and physicians with methodological expertise. The committee included representatives from the ACCF, AHA, American Academy of Family Physicians, American College of Chest Physicians, American College of Physicians, Heart Rhythm Society, and International Society for Heart and Lung Transplantation.

1.3. Document Review and Approval

This document was reviewed by 2 official reviewers each nominated by both the ACCF and the AHA, as well as 1 to 2 reviewers each from the American Academy of Family Physicians, American College of Chest Physicians, Heart Rhythm Society, and International Society for Heart and Lung Transplantation, as well as 32 individual content reviewers (including members of the ACCF Adult Congenital and Pediatric Cardiology Council, ACCF Cardiovascular Team Council, ACCF Council on Cardiovascular Care for Older Adults, ACCF Electrophysiology Committee, ACCF Heart Failure and Transplant Council, ACCF Imaging Council, ACCF Prevention Committee, ACCF Surgeons' Scientific Council, and ACCF Task Force on Appropriate Use Criteria). All information on reviewers' RWI was distributed to the writing committee and is published in this document (Appendix 2).

This document was approved for publication by the governing bodies of the ACCF and AHA and endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation, American College of Chest Physicians, Heart Rhythm Society, and International Society for Heart and Lung Transplantation.

1.4. Scope of This Guideline With Reference to Other Relevant Guidelines or Statements

This guideline covers multiple management issues for the adult patient with HF. Although there is an abundance of evidence addressing HF, for many important clinical considerations, this writing committee was unable to identify sufficient data to properly inform a recommendation. The writing committee actively worked to reduce the number of LOE "C" recommendations, especially for Class I–recommended therapies. Despite these limitations, it is apparent that much can be done for HF. Adherence to the clinical practice guidelines herein reproduced should lead to improved patient outcomes.

Although of increasing importance, children with HF and adults with congenital heart lesions are not specifically addressed in this guideline. The reader is referred to publically available resources to address questions in these areas. However, this guideline does address HF with preserved ejection fraction (EF) in more detail and similarly revisits hospitalized HF. Additional areas of renewed interest are stage D HF, palliative care, transition of care, and quality of care for HF. Certain management strategies appropriate for the patient at risk for HF or already affected by HF are also reviewed in numerous relevant clinical practice guidelines and scientific statements published by the ACCF/AHA Task Force on Practice Guidelines, AHA, ACCF Task Force on Appropriate Use Criteria, European Society of Cardiology, Heart Failure Society of America, and the National Heart, Lung, and Blood Institute. The writing committee saw no need to reiterate the recommendations contained in those guidelines and chose to harmonize recommendations when appropriate and eliminate discrepancies. This is especially the case for device-based therapeutics, where complete alignment between the HF guideline and the device-based therapy guideline was deemed imperative.5 Some recommendations from earlier guidelines have been updated as warranted by new evidence or a better understanding of earlier evidence, whereas others that were no longer accurate or relevant or that were overlapping were modified; recommendations from previous guidelines that were similar or redundant were eliminated or consolidated when possible.

The present document recommends a combination of lifestyle modifications and medications that constitute GDMT. GDMT is specifically referenced in the recommendations for treatment of HF (Section 6.3.2). Both for GDMT and other recommended drug treatment regimens, the reader is advised to confirm dosages with product insert material and to evaluate carefully for contraindications and drug-drug interactions. Table 2 is a list of documents deemed pertinent to this effort and is intended for use as a resource; it obviates the need to repeat already extant guideline recommendations. Additional other HF guideline statements are highlighted as well for the purpose of comparison and completeness.

2. Definition of HF

HF is a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or

Table 2. Associated Guidelines and Statements

Title	Organization	Publication Year (Reference)
Guidelines		
Guidelines for the Management of Adults With Congenital Heart Disease	ACCF/AHA	2008 ⁶
Guidelines for the Management of Patients With Atrial Fibrillation	ACCF/AHA/HRS	20117-9
Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults	ACCF/AHA	2010 ¹⁰
Guideline for Coronary Artery Bypass Graft Surgery	ACCF/AHA	201111
Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities	ACCF/AHA/HRS	20135
Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy	ACCF/AHA	2011 ¹²
Guideline for Percutaneous Coronary Intervention	ACCF/AHA/SCAI	2011 ¹³
Secondary Prevention and Risk Reduction Therapy for Patients With Coronary and Other Atherosclerotic Vascular Disease: 2011 Update	AHA/ACCF	201114
Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease	ACCF/AHA/ACP/AATS/PCNA/SCAI/STS	201215
Guideline for the Management of ST-Elevation Myocardial Infarction	ACCF/AHA	2013 ¹⁶
Guidelines for the Management of Patients With Unstable Angina/Non–ST- Elevation Myocardial Infarction	ACCF/AHA	201317
Guidelines for the Management of Patients With Valvular Heart Disease	ACCF/AHA	200818
Comprehensive Heart Failure Practice Guideline	HFSA	2010 ¹⁹
Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure	ESC	201220
Chronic Heart Failure: Management of Chronic Heart Failure in Adults in Primary and Secondary Care	NICE	2010 ²¹
Antithrombotic Therapy and Prevention of Thrombosis	ACCP	201222
Guidelines for the Care of Heart Transplant Recipients	ISHLT	201023
tatements		
Contemporary Definitions and Classification of the Cardiomyopathies	AHA	200624
Genetics and Cardiovascular Disease	AHA	201225
Appropriate Utilization of Cardiovascular Imaging in Heart Failure	ACCF	2013 ²⁶
Appropriate Use Criteria for Coronary Revascularization Focused Update	ACCF	201227
Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure	NHLBI	200328
Implications of Recent Clinical Trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines	NHLBI	2002 ²⁹
Referral, Enrollment, and Delivery of Cardiac Rehabilitation/Secondary Prevention Programs at Clinical Centers and Beyond	AHA/AACVPR	2011 ³⁰
Decision Making in Advanced Heart Failure	AHA	2012 ³¹
Recommendations for the Use of Mechanical Circulatory Support: Device Strategies and Patient Selection	AHA	2012 ³²
Advanced Chronic Heart Failure	ESC	200733
Oral Antithrombotic Agents for the Prevention of Stroke in Nonvalvular Atrial Fibrillation	AHA/ASA	201234
Third Universal Definition of Myocardial Infarction	ESC/ACCF/AHA/WHF	2012 ³⁵

AACVPR indicates American Association of Cardiovascular and Pulmonary Rehabilitation; AATS, American Association for Thoracic Surgery; ACCF, American College of Cardiology Foundation; ACCP, American College of Chest Physicians; ACP, American College of Physicians; AHA, American Heart Association; ASA, American Stroke Association; ESC, European Society of Cardiology; HFSA, Heart Failure Society of America; HRS, Heart Rhythm Society; ISHLT, International Society for Heart and Lung Transplantation; NHLBI, National Heart, Lung, and Blood Institute; NICE, National Institute for Health and Clinical Excellence; PCNA, Preventive Cardiovascular Nurses Association; SCAI, Society for Cardiovascular Angiography and Interventions; STS, Society of Thoracic Surgeons; and WHF, World Heart Federation.

ejection of blood. The cardinal manifestations of HF are dyspnea and fatigue, which may limit exercise tolerance, and fluid retention, which may lead to pulmonary and/ or splanchnic congestion and/or peripheral edema. Some patients have exercise intolerance but little evidence of fluid retention, whereas others complain primarily of edema, dyspnea, or fatigue. Because some patients present without

signs or symptoms of volume overload, the term "heart failure" is preferred over "congestive heart failure." There is no single diagnostic test for HF because it is largely a clinical diagnosis based on a careful history and physical examination.

The clinical syndrome of HF may result from disorders of the pericardium, myocardium, endocardium, heart valves, or

Table 3.	Definitions of HFrEF and HFpE	F
----------	-------------------------------	---

Classification	EF (%)	Description
I. Heart failure with reduced ejection fraction (HF <i>r</i> EF)	≤40	Also referred to as systolic HF. Randomized controlled trials have mainly enrolled patients with HF <i>r</i> EF, and it is only in these patients that efficacious therapies have been demonstrated to date.
II. Heart failure with preserved ejection fraction (HF <i>p</i> EF)	≥50	Also referred to as diastolic HF. Several different criteria have been used to further define HF <i>p</i> EF. The diagnosis of HF <i>p</i> EF is challenging because it is largely one of excluding other potential noncardiac causes of symptoms suggestive of HF. To date, efficacious therapies have not been identified.
a. HF <i>p</i> EF, borderline	41 to 49	These patients fall into a borderline or intermediate group. Their characteristics, treatment patterns, and outcomes appear similar to those of patients with HFpEF.
b. HF <i>p</i> EF, improved	>40	It has been recognized that a subset of patients with HFpEF previously had HFrEF. These patients with improvement or recovery in EF may be clinically distinct from those with persistently preserved or reduced EF. Further research is needed to better characterize these patients.

EF indicates ejection fraction; HF, heart failure; HF, heart failure with preserved ejection fraction; and HF, heart failure with reduced ejection fraction

great vessels, or from certain metabolic abnormalities, but most patients with HF have symptoms due to impaired left ventricular (LV) myocardial function. It should be emphasized that HF is not synonymous with either cardiomyopathy or LV dysfunction; these latter terms describe possible structural or functional reasons for the development of HF. HF may be associated with a wide spectrum of LV functional abnormalities, which may range from patients with normal LV size and preserved EF to those with severe dilatation and/ or markedly reduced EF. In most patients, abnormalities of systolic and diastolic dysfunction coexist, irrespective of EF. EF is considered important in classification of patients with HF because of differing patient demographics, comorbid conditions, prognosis, and response to therapies³⁶ and because most clinical trials selected patients based on EF. EF values are dependent on the imaging technique used, method of analysis, and operator. As other techniques may indicate abnormalities in systolic function among patients with a preserved EF, it is preferable to use the terms preserved or reduced EF over preserved or reduced systolic function. For the remainder of this guideline, we will consistently refer to HF with preserved EF and HF with reduced EF as HFpEF and HFrEF, respectively (Table 3).

3. HF Classifications

Both the ACCF/AHA stages of HF³⁷ and the New York Heart Association (NYHA) functional classification^{37,38} provide useful and complementary information about the presence and severity of HF. The ACCF/AHA stages of HF emphasize the development and progression of disease and can be used to describe individuals and populations, whereas the NYHA classes focus on exercise capacity and the symptomatic status of the disease (Table 4).

4. Epidemiology

The lifetime risk of developing HF is 20% for Americans \geq 40 years of age.³⁹ In the United States, HF incidence has largely remained stable over the past several decades, with >650 000 new HF cases diagnosed annually.⁴⁰⁻⁴² HF incidence increases with age, rising from approximately 20 per 1000 individuals 65 to 69 years of age to >80 per 1000 individuals among those \geq 85 years of age.⁴¹ Approximately 5.1 million persons in the United States have clinically manifest HF, and the prevalence continues to rise.⁴⁰ In the Medicare-eligible population, HF prevalence increased from 90 to 121 per 1000 beneficiaries from 1994 to 2003.⁴¹ HF*r*EF and HF*p*EF each make up about half of the overall HF burden.⁴³ One in

Table 4.	Comparison o	of ACCF/AHA Stages	s of HF and NYHA	Functional	Classifications

ACCF/AHA Stages of HF ³⁷			NYHA Functional Classification ³⁸		
A	At high risk for HF but without structural heart disease or symptoms of HF	None			
В	Structural heart disease but without signs or symptoms of HF	I	No limitation of physical activity. Ordinary physical activity does not cause symptoms of HF.		
C Structural heart disease with prior or current symptoms of HF		I	No limitation of physical activity. Ordinary physical activity does not cause symptoms of HF.		
		II	Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in symptoms of HF.		
		Ш	Marked limitation of physical activity. Comfortable at rest, but less than ordinary activity causes symptoms of HF.		
		IV	Unable to carry on any physical activity without symptoms of HF, or symptoms of HF at rest.		
D	Refractory HF requiring specialized interventions	IV	Unable to carry on any physical activity without symptoms of HF, or symptoms of HF at rest.		

ACCF indicates American College of Cardiology Foundation; AHA, American Heart Association; HF, heart failure; and NYHA, New York Heart Association.

5 Americans will be >65 years of age by 2050.⁴⁴ Because HF prevalence is highest in this group, the number of Americans with HF is expected to significantly worsen in the future. Disparities in the epidemiology of HF have been identified. Blacks have the highest risk for HF.⁴⁵ In the ARIC (Atherosclerosis Risk in Communities) study, incidence rate per 1000 person-years was lowest among white women^{41,42} and highest among black men,⁴⁶ with blacks having a greater 5-year mortality rate than whites.⁴⁷ HF in non-Hispanic black males and females has a prevalence of 4.5% and 3.8%, respectively, versus 2.7% and 1.8% in non-Hispanic white males and females, respectively.⁴⁰

5. Initial and Serial Evaluation of the HF Patient: Recommendations

5.1. Clinical Evaluation

See Table 5 for multivariable clinical risk scores.

5.1.1. History and Physical Examination

Class I

- **1.** A thorough history and physical examination should be obtained/performed in patients presenting with HF to identify cardiac and noncardiac disorders or behaviors that might cause or accelerate the development or progression of HF. (*Level of Evidence: C*)
- 2. In patients with idiopathic dilated cardiomyopathy, a 3-generational family history should be obtained to aid in establishing the diagnosis of familial dilated cardiomyopathy. (Level of Evidence: C)
- 3. Volume status and vital signs should be assessed at each patient encounter. This includes serial assessment of weight, as well as estimates of jugular venous

pressure and the presence of peripheral edema or orthopnea.^{48–51} (*Level of Evidence: B*)

5.1.2. Risk Scoring

Class IIa

1. Validated multivariable risk scores can be useful to estimate subsequent risk of mortality in ambulatory or hospitalized patients with HF.^{52–60} (*Level of Evidence: B*)

5.2. Diagnostic Tests

Class I

- 1. Initial laboratory evaluation of patients presenting with HF should include complete blood count, urinalysis, serum electrolytes (including calcium and magnesium), blood urea nitrogen, serum creatinine, glucose, fasting lipid profile, liver function tests, and thyroid-stimulating hormone. (Level of Evidence: C)
- 2. Serial monitoring, when indicated, should include serum electrolytes and renal function. (*Level of Evidence: C*)
- **3.** A 12-lead electrocardiogram should be performed initially on all patients presenting with HF. (*Level of Evidence: C*)

Class IIa

- 1. Screening for hemochromatosis or HIV is reasonable in selected patients who present with HF.⁶³ (Level of Evidence: C)
- 2. Diagnostic tests for rheumatologic diseases, amyloidosis, or pheochromocytoma are reasonable in patients presenting with HF in whom there is a clinical suspicion of these diseases. (Level of Evidence: C)

Table 5. Selected Multivariable Risk Scores to Predict Outcome in HF

Risk Score	Reference/Link
Chronic HF	
All patients with chronic HF	
Seattle Heart Failure Model	56/ http://SeattleHeartFailureModel.org
Heart Failure Survival Score	52/ http://handheld.softpedia.com/get/Health/Calculator/HFSS-Calc-37354.shtml
CHARM Risk Score	59
CORONA Risk Score	60
Specific to chronic HF <i>p</i> EF	
I-PRESERVE Score	54
Acutely decompensated HF	
ADHERE Classification and Regression Tree (CART) Model	53
American Heart Association Get With The Guidelines Score	58/ http://www.heart.org/HEARTORG/HealthcareProfessional/ GetWithTheGuidelinesHFStroke/GetWithTheGuidelinesHeartFailureHomePage/Get-With The-Guidelines-Heart-Failure-Home-%20Page_UCM_306087_SubHomePage.jsp
EFFECT Risk Score	55/ http://www.ccort.ca/Research/CHFRiskModel.aspx
ESCAPE Risk Model and Discharge Score	61
OPTIMIZE HF Risk-Prediction Nomogram	62

ADHERE indicates Acute Decompensated Heart Failure National Registry; CHARM, Candesartan in Heart failure-Assessment of Reduction in Mortality and morbidity; CORONA, Controlled Rosuvastatin Multinational Trial in Heart Failure; EFFECT, Enhanced Feedback for Effective Cardiac Treatment; ESCAPE, Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; I-PRESERVE, Irbesartan in Heart Failure with Preserved Ejection Fraction Study; and OPTIMIZE, Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure.

Biomarker, Application	Setting	COR	LOE	References
Natriuretic peptides			8	
Diagnosis or exclusion of HF	Ambulatory, Acute	I	А	64–70, 92–98
Prognosis of HF	Ambulatory, Acute	I.	А	69, 71–76, 96, 99–106
Achieve GDMT	Ambulatory	lla	В	77–84
Guidance for acutely decompensated HF therapy	Acute	llb	C	107, 108
Biomarkers of myocardial injury				
Additive risk stratification	Acute, Ambulatory	I	А	85–88, 96, 101, 104–115
Biomarkers of myocardial fibrosis				
Additive risk stratification	Ambulatory	llb	В	89–91
	Acute	llb	А	96, 101, 104, 106–108, 110, 112–115

Table 6. Recommendations for Biomarkers in HF

COR indicates Class of Recommendation; GDMT, guideline-directed medical therapy; HF, heart failure; and LOE, Level of Evidence.

5.3. Biomarkers

See Table 6 for a summary of recommendations from this section.

A. Ambulatory/Outpatient

Class I

- **1.** In ambulatory patients with dyspnea, measurement of B-type natriuretic peptide (BNP) or N-terminal pro-B-type natriuretic peptide (NT-proBNP) is useful to support clinical decision making regarding the diagnosis of HF, especially in the setting of clinical uncertainty.⁶⁴⁻⁷⁰ (Level of Evidence: A)
- 2. Measurement of BNP or NT-proBNP is useful for establishing prognosis or disease severity in chronic HF.^{69,71-76} (Level of Evidence: A)

Class IIa

1. BNP- or NT-proBNP-guided HF therapy can be useful to achieve optimal dosing of GDMT in select clinically euvolemic patients followed in a well-structured HF disease management program.⁷⁷⁻⁸⁴ (*Level of Evidence: B*)

Class IIb

- 1. The usefulness of serial measurement of BNP or NT-proBNP to reduce hospitalization or mortality in patients with HF is not well established.⁷⁷⁻⁸⁴ (*Level of Evidence: B*)
- 2. Measurement of other clinically available tests such as biomarkers of myocardial injury or fibrosis may be considered for additive risk stratification in patients with chronic HF.^{85–91} (Level of Evidence: B)

B. Hospitalized/Acute

Class I

1. Measurement of BNP or NT-proBNP is useful to support clinical judgment for the diagnosis of acutely

decompensated HF, especially in the setting of uncertainty for the diagnosis.^{92–98} (*Level of Evidence: A*)

2. Measurement of BNP or NT-proBNP and/or cardiac troponin is useful for establishing prognosis or disease severity in acutely decompensated $\text{HF.}^{96,99-106}$ (*Level of Evidence: A*)

Class IIb

- 1. The usefulness of BNP- or NT-proBNP-guided therapy for acutely decompensated HF is not well established.^{107,108} (Level of Evidence: C)
- 2. Measurement of other clinically available tests such as biomarkers of myocardial injury or fibrosis may be considered for additive risk stratification in patients with acutely decompensated HF.^{96,101,104,105,109–115} (*Level of Evidence: A*)

5.4. Noninvasive Cardiac Imaging

See Table 7 for a summary of recommendations from this section.

Class I

- **1.** Patients with suspected or new-onset HF, or those presenting with acute decompensated HF, should undergo a chest x-ray to assess heart size and pulmonary congestion and to detect alternative cardiac, pulmonary, and other diseases that may cause or contribute to the patient's symptoms. (*Level of Evidence: C*)
- 2. A 2-dimensional echocardiogram with Doppler should be performed during initial evaluation of patients presenting with HF to assess ventricular function, size, wall thickness, wall motion, and valve function. (*Level of Evidence: C*)
- **3.** Repeat measurement of EF and measurement of the severity of structural remodeling are useful to provide information in patients with HF who have had a significant change in clinical status; who have experienced or recovered from a clinical event; or who have received treatment, including GDMT, that might have had a significant effect on cardiac function; or who may be candidates for device therapy. (*Level of Evidence: C*)

Table 7. Recommendations for Noninvasive Cardiac Imaging		
Recommendations	COR	
Patients with suspected, acute, or new-onset HF should undergo a chest x-ray	I	
A 2-dimensional echocardiogram with Doppler should be performed for initial evaluation of HF	I	
Repeat measurement of EF is useful in patients with HF who have had a significant change in clinical status or received treatment that might affect cardiac function or for consideration of device therapy	I	
Noninvasive imaging to detect myocardial ischemia and viability is reasonable in HF and CAD	lla	
Viability assessment is reasonable before revascularization in HF patients with CAD	lla	

Radionuclide ventriculography or MRI can be useful to assess LVEF and volume

Routine repeat measurement of LV function assessment should not be performed

MRI is reasonable when assessing myocardial infiltration or scar

CAD indicates coronary artery disease; COR, Class of Recommendation; EF, ejection fraction; HF, heart failure; LOE, Level of Evidence; LV, left ventricular; LVEF, left ventricular ejection fraction; and MRI, magnetic resonance imaging.

Class IIa

- 1. Noninvasive imaging to detect myocardial ischemia and viability is reasonable in patients presenting with de novo HF, who have known coronary artery disease (CAD) and no angina, unless the patient is not eligible for revascularization of any kind. (Level of Evidence: C)
- 2. Viability assessment is reasonable in select situations when planning revascularization in HF patients with CAD.¹¹⁷⁻¹²¹ (Level of Evidence: B)
- 3. Radionuclide ventriculography or magnetic resonance imaging can be useful to assess left ventricular ejection fraction (LVEF) and volume when echocardiography is inadequate. (Level of Evidence: C)
- 4. Magnetic resonance imaging is reasonable when assessing myocardial infiltrative processes or scar burden.¹²²⁻¹²⁴ (Level of Evidence: B)

Class III: No Benefit

1. Routine repeat measurement of LV function assessment in the absence of clinical status change or treatment interventions should not be performed.125,126 (Level of Evidence: B)

5.5. Invasive Evaluation

See Table 8 for a summary of recommendations from this section.

Class I

1. Invasive hemodynamic monitoring with a pulmonary artery catheter should be performed to guide therapy in patients who have respiratory distress or clinical evidence of impaired perfusion in whom the adequacy or excess of intracardiac filling pressures cannot be determined from clinical assessment. (Level of Evidence: C)

lla

lla

III: No Benefit

LOE С С С

С B117-121

С B122-124

B125,126

Class IIa

- 1. Invasive hemodynamic monitoring can be useful for carefully selected patients with acute HF who have persistent symptoms despite empiric adjustment of standard therapies and
 - a. whose fluid status, perfusion, or systemic or pulmonary vascular resistance is uncertain;
 - b. whose systolic pressure remains low, or is associated with symptoms, despite initial therapy;
 - c. whose renal function is worsening with therapy;
 - d. who require parenteral vasoactive agents; or
 - e. who may need consideration for mechanical circulatory support (MCS) or transplantation. (Level of Evidence: C)
- 2. When ischemia may be contributing to HF, coronary arteriography is reasonable for patients eligible for revascularization. (Level of Evidence: C)

Recommendations	COR	LOE
Monitoring with a pulmonary artery catheter should be performed in patients with respiratory distress or impaired systemic perfusion when clinical assessment is inadequate	I	C
Invasive hemodynamic monitoring can be useful for carefully selected patients with acute HF with persistent symptoms and/or when hemodynamics are uncertain	lla	C
When ischemia may be contributing to HF, coronary arteriography is reasonable	lla	С
Endomyocardial biopsy can be useful in patients with HF when a specific diagnosis is suspected that would influence therapy	lla	C
Routine use of invasive hemodynamic monitoring is not recommended in normotensive patients with acute HF	III: No Benefit	B ¹²⁷
Endomyocardial biopsy should not be performed in the routine evaluation of HF	III: Harm	С

Recommendations for Invasive Evaluation Table 8.

COR indicates Class of Recommendation; HF, heart failure; and LOE, Level of Evidence.

3. Endomyocardial biopsy can be useful in patients presenting with HF when a specific diagnosis is suspected that would influence therapy. (*Level of Evidence: C*)

Class III: No Benefit

1. Routine use of invasive hemodynamic monitoring is not recommended in normotensive patients with acute decompensated HF and congestion with symptomatic response to diuretics and vasodilators.¹²⁷ (Level of Evidence: B)

Class III: Harm

1. Endomyocardial biopsy should not be performed in the routine evaluation of patients with HF. (Level of Evidence: C)

6. Treatment of Stages A to D: Recommendations

6.1. Stage A

Class I

- 1. Hypertension and lipid disorders should be controlled in accordance with contemporary guidelines to lower the risk of HF.^{28,128–132} (Level of Evidence: A)
- 2. Other conditions that may lead to or contribute to HF, such as obesity, diabetes mellitus, tobacco use, and known cardiotoxic agents, should be controlled or avoided. (*Level of Evidence: C*)

6.2. Stage B

See Table 9 for a summary of recommendations from this section.

Class I

1. In all patients with a recent or remote history of myocardial infarction (MI) or acute coronary syndrome (ACS) and reduced EF, angiotensin-converting

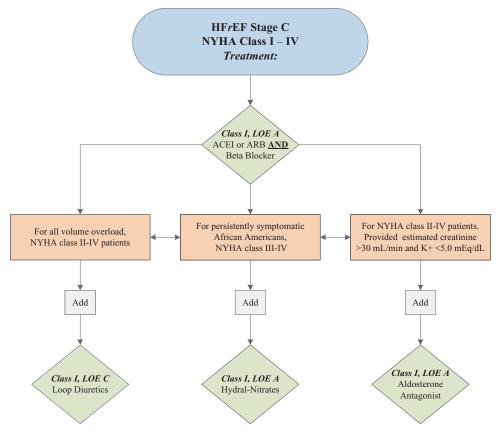
Table 9. Recommendations for Treatment of Stage B HF

enzyme (ACE) inhibitors should be used to prevent symptomatic HF and reduce mortality.^{133–135} In patients intolerant to ACE inhibitors, angiotensin-receptor blockers (ARBs) are appropriate unless contraindicated.^{132,136} (Level of Evidence: A)

- 2. In all patients with a recent or remote history of MI or ACS and reduced EF, evidence-based beta blockers should be used to reduce mortality.¹³⁷⁻¹³⁹ (*Level of Evidence: B*)
- 3. In all patients with a recent or remote history of MI or ACS, statins should be used to prevent symptomatic HF and cardiovascular events.¹⁴⁰⁻¹⁴⁶ (*Level of Evidence: A*)
- 4. In patients with structural cardiac abnormalities, including LV hypertrophy, in the absence of a history of MI or ACS, blood pressure should be controlled in accordance with clinical practice guidelines for hypertension to prevent symptomatic HF.^{28,128–131} (Level of Evidence: A)
- 5. ACE inhibitors should be used in all patients with a reduced EF to prevent symptomatic HF, even if they do not have a history of MI.^{135,147} (Level of Evidence: A)
- 6. Beta blockers should be used in all patients with a reduced EF to prevent symptomatic HF, even if they do not have a history of MI. (*Level of Evidence: C*)

Class IIa

1. To prevent sudden death, placement of an implantable cardioverter-defibrillator (ICD) is reasonable in patients with asymptomatic ischemic cardiomyopathy who are at least 40 days post-MI, have an LVEF of 30% or less, are on appropriate medical therapy, and have reasonable expectation of survival with a good functional status for more than 1 year.¹⁴⁸ (Level of Evidence: B)


Class III: Harm

1. Nondihydropyridine calcium channel blockers with negative inotropic effects may be harmful in asymptomatic patients with low LVEF and no symptoms of HF after MI. (Level of Evidence: C)

Recommendations	COR	LOE	References
In patients with a history of MI and reduced EF, ACE inhibitors or ARBs should be used to prevent HF	I	А	132–136
In patients with MI and reduced EF, evidence-based beta blockers should be used to prevent HF	I.	В	137–139
In patients with MI, statins should be used to prevent HF	I	А	140–146
Blood pressure should be controlled to prevent symptomatic HF	I.	А	28, 128–131
ACE inhibitors should be used in all patients with a reduced EF to prevent HF	I.	А	135, 147
Beta blockers should be used in all patients with a reduced EF to prevent HF	I.	С	N/A
An ICD is reasonable in patients with asymptomatic ischemic cardiomyopathy who are at least 40 d post-MI, have an LVEF \leq 30%, and on GDMT	lla	В	148
Nondihydropyridine calcium channel blockers may be harmful in patients with low LVEF	III: Harm	С	N/A

ACE indicates angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; COR, Class of Recommendation; EF, ejection fraction; GDMT, guideline-directed medical therapy; HF, heart failure; ICD, implantable cardioverter-defibrillator; LOE, Level of Evidence; LVEF, left ventricular ejection fraction; MI, myocardial infarction; and N/A, not available.

Downloaded from http://circ.ahajournals.org/ at UNIV OF LOUISVILLE on April 8, 2014

Figure 1. Stage C HFrEF: evidence-based, guideline-directed medical therapy. ACEI indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blocker; HFrEF, heart failure with reduced ejection fraction; Hydral-Nitrates, hydralazine and isosorbide dinitrate; LOE, Level of Evidence; and NYHA, New York Heart Association.

6.3. Stage C

6.3.1. Nonpharmacological Interventions

Class I

- 1. Patients with HF should receive specific education to facilitate HF self-care.^{149–154} (Level of Evidence: B)
- 2. Exercise training (or regular physical activity) is recommended as safe and effective for patients with HF who are able to participate to improve functional status.^{155–158} (Level of Evidence: A)

Class IIa

- **1.** Sodium restriction is reasonable for patients with symptomatic HF to reduce congestive symptoms. (*Level of Evidence: C*)
- 2. Continuous positive airway pressure can be beneficial to increase LVEF and improve functional status in patients with HF and sleep apnea.^{159–162} (*Level of Evidence: B*)
- **3.** Cardiac rehabilitation can be useful in clinically stable patients with HF to improve functional capacity, exercise duration, health-related quality of life, and mortality.^{155,157,158,163–166} (*Level of Evidence: B*)

6.3.2. Pharmacological Treatment for Stage C HFrEF

Class I

1. Measures listed as Class I recommendations for patients in stages A and B are recommended where

appropriate for patients in stage C. (Levels of Evidence: A, B, and C as appropriate)

2. GDMT as depicted in Figure 1 should be the mainstay of pharmacological therapy for HFrEF.^{134,136,137,167–182} (Level of Evidence: A)

6.3.2.1. Diuretics

See Table 10 for oral diuretics recommended for use in the treatment of chronic HF.

Class I

1. Diuretics are recommended in patients with HFrEF who have evidence of fluid retention, unless contraindicated, to improve symptoms. (*Level of Evidence: C*)

6.3.2.2. ACE Inhibitors

See Table 11 for drugs commonly used for HFrEF (stage C HF).

Class I

1. ACE inhibitors are recommended in patients with HFrEF and current or prior symptoms, unless contraindicated, to reduce morbidity and mortality.^{134,167-169} (Level of Evidence: A)

6.3.2.3. Angiotensin-Receptor Blockers

Class I

1. ARBs are recommended in patients with HFrEF with current or prior symptoms who are ACE inhibitor

Drug	Initial Daily Dose(s)	Maximum Total Daily Dose	Duration of Action
Loop diuretics			
Bumetanide	0.5 to 1.0 mg once or twice	10 mg	4 to 6 h
Furosemide	20 to 40 mg once or twice	600 mg	6 to 8 h
Torsemide	10 to 20 mg once	200 mg	12 to 16 h
Thiazide diuretics			
Chlorothiazide	250 to 500 mg once or twice	1000 mg	6 to 12 h
Chlorthalidone	12.5 to 25.0 mg once	100 mg	24 to 72 h
Hydrochlorothiazide	25 mg once or twice	200 mg	6 to 12 h
Indapamide	2.5 mg once	5 mg	36 h
Metolazone	2.5 mg once	20 mg	12 to 24 h
Potassium-sparing diure	etics*		
Amiloride	5 mg once	20 mg	24 h
Spironolactone	ronolactone 12.5 to 25.0 mg once		1 to 3 h
Triamterene	50 to 75 mg twice	200 mg	7 to 9 h
Sequential nephron bloc	ckade		
Metolazone‡	2.5 to 10.0 mg once plus loop diuretic	N/A	N/A
Hydrochlorothiazide	25 to 100 mg once or twice plus loop diuretic	N/A	N/A
Chlorothiazide (IV)	500 to 1000 mg once plus loop diuretic	N/A	N/A

Table 10. Oral Diuretics Recommended for Use in the Treatment of Chronic HF

*Eplerenone, although also a diuretic, is primarily used in chronic HF. †Higher doses may occasionally be used with close monitoring. ‡See Section 7.3.

HF indicates heart failure; IV, intravenous; and N/A, not applicable.

intolerant, unless contraindicated, to reduce morbidity and mortality.^{136,170,171,189} (Level of Evidence: A)

Class IIa

1. ARBs are reasonable to reduce morbidity and mortality as alternatives to ACE inhibitors as first-line therapy for patients with HF*r*EF, especially for patients already taking ARBs for other indications, unless contraindicated.¹⁹⁰⁻¹⁹⁵ (Level of Evidence: A)

Class IIb

1. Addition of an ARB may be considered in persistently symptomatic patients with HFrEF who are already being treated with an ACE inhibitor and a beta blocker in whom an aldosterone antagonist is not indicated or tolerated.^{176,196} (Level of Evidence: A)

Class III: Harm

1. Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially harmful for patients with HFrEF. (*Level of Evidence: C*)

6.3.2.4. Beta Blockers

Class I

1. Use of 1 of the 3 beta blockers proven to reduce mortality (eg, bisoprolol, carvedilol, and sustainedrelease metoprolol succinate) is recommended for all patients with current or prior symptoms of HF*r*EF, unless contraindicated, to reduce morbidity and mortality.^{137,172-175,187} (*Level of Evidence: A*)

6.3.2.5. Aldosterone Receptor Antagonists

See Table 12 for aldosterone receptor antagonists drug dosing.

Class I

- 1. Aldosterone receptor antagonists (or mineralocorticoid receptor antagonists) are recommended in patients with NYHA class II–IV HF and who have LVEF of 35% or less, unless contraindicated, to reduce morbidity and mortality. Patients with NYHA class II HF should have a history of prior cardiovascular hospitalization or elevated plasma natriuretic peptide levels to be considered for aldosterone receptor antagonists. Creatinine should be 2.5 mg/dL or less in men or 2.0 mg/dL or less in women (or estimated glomerular filtration rate >30 mL/min/1.73 m²), and potassium should be less than 5.0 mEq/L. Careful monitoring of potassium, renal function, and diuretic dosing should be performed at initiation and closely followed thereafter to minimize risk of hyperkalemia and renal insufficiency.^{181,182,197} (*Level of Evidence: A*)
- 2. Aldosterone receptor antagonists are recommended to reduce morbidity and mortality following an acute MI in patients who have LVEF of 40% or less who develop symptoms of HF or have a history of diabetes mellitus, unless contraindicated.¹⁸⁴ (*Level of Evidence: B*)

Class III: Harm

1. Inappropriate use of aldosterone receptor antagonists is potentially harmful because of life-threatening hyperkalemia or renal insufficiency when serum creatinine is greater than 2.5 mg/dL in men or greater than 2.0 mg/dL in women (or estimated glomerular filtration rate <30 mL/min/1.73 m²), and/or potassium greater than 5.0 mEq/L.^{198,199} (Level of Evidence: B)

6.3.2.6. Hydralazine and Isosorbide Dinitrate

Class I

1. The combination of hydralazine and isosorbide dinitrate is recommended to reduce morbidity and mortality for patients self-described as African Americans with NYHA class III-IV HFrEF receiving optimal therapy with ACE inhibitors and beta blockers, unless contraindicated.^{179,180} (Level of Evidence: A)

Class IIa

1. A combination of hydralazine and isosorbide dinitrate can be useful to reduce morbidity or mortality in patients with current or prior symptomatic HFrEF who cannot be given an ACE inhibitor or ARB because

of drug intolerance, hypotension, or renal insufficiency, unless contraindicated.¹⁸⁸ (*Level of Evidence: B*)

See Table 13 for a summary of the treatment benefit of GDMT in HF*r*EF.

6.3.2.7. Digoxin

Class IIa

1. Digoxin can be beneficial in patients with HFrEF, unless contraindicated, to decrease hospitalizations for HF.²⁰²⁻²⁰⁹ (*Level of Evidence: B*)

Table 11. Drugs Commonly Used for Stage C HFrEF

6.3.2.8. Other Drug Treatment

6.3.2.8.1. Anticoagulation

Class I

1. Patients with chronic HF with permanent/persistent/ paroxysmal atrial fibrillation (AF) and an additional risk factor for cardioembolic stroke (history of hypertension, diabetes mellitus, previous stroke or transient ischemic attack, or ≥75 years of age) should receive chronic anticoagulant therapy.^{*210-216} (Level of Evidence: A)

*In the absence of contraindications to anticoagulation.

Drug	Initial Daily Dose(s)	Maximum Dose(s)	Mean Doses Achieved in Clinical Trials
ACE inhibitors			
Captopril	6.25 mg 3 times	50 mg 3 times	122.7 mg/d ¹⁷⁸
Enalapril	2.5 mg twice	10 to 20 mg twice	16.6 mg/d ¹⁶⁸
Fosinopril	5 to 10 mg once	40 mg once	N/A
Lisinopril	2.5 to 5 mg once	20 to 40 mg once	32.5 to 35.0 mg/d ¹⁸³
Perindopril	2 mg once	8 to 16 mg once	N/A
Quinapril	5 mg twice	20 mg twice	N/A
Ramipril	1.25 to 2.5 mg once	10 mg once	N/A
Trandolapril	1 mg once	4 mg once	N/A
ARBs			
Candesartan	4 to 8 mg once	32 mg once	24 mg/d ¹⁷⁶
Losartan	25 to 50 mg once	50 to 150 mg once	129 mg/d ¹⁷⁷
Valsartan	20 to 40 mg twice	160 mg twice	254 mg/d ¹⁷⁰
Aldosterone antagonists			
Spironolactone	12.5 to 25.0 mg once	25 mg once or twice	26 mg/d ¹⁸¹
Eplerenone	25 mg once	50 mg once	42.6 mg/d ¹⁸⁴
Beta blockers			
Bisoprolol	1.25 mg once	10 mg once	8.6 mg/d ¹⁸⁵
Carvedilol	3.125 mg twice	50 mg twice	37 mg/d ¹⁸⁶
Carvedilol CR	10 mg once	80 mg once	N/A
Metoprolol succinate extended release (metoprolol CR/XL)	12.5 to 25.0 mg once	200 mg once	159 mg/d ¹⁸⁷
Hydralazine and isosorbide dinitrate			
Fixed-dose combination ¹⁸⁰	37.5 mg hydralazine/ 20 mg isosorbide dinitrate 3 times daily	75 mg hydralazine/ 40 mg isosorbide dinitrate 3 times daily	~175 mg hydralazine/90 mg isosorbide dinitrate daily
Hydralazine and isosorbide dinitrate ¹⁸⁸	Hydralazine: 25 to 50 mg, 3 or 4 times daily and isosorbide dinitrate: 20 to 30 mg 3 or 4 times daily	Hydralazine: 300 mg daily in divided doses and isosorbide dinitrate: 120 mg daily in divided doses	N/A

ACE indicates angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; CR, controlled release; CR/XL, controlled release/extended release; HFrEF, heart failure with reduced ejection fraction; and N/A, not applicable.

Table 12.	Drug Dosing	for Aldosterone	Receptor Antagonists
	brug boomg	101 / 10001010110	noooptor /intagomoto

		Eplerenone	Spi	ironolactone
eGFR (mL/min/1.73 m ²)	≥50	30 to 49	≥50	30 to 49
Initial dose (only if K $^{+} \leq 5 \text{ mEq/L}$)	25 mg once daily	25 mg once every other day	12.5 to 25.0 mg once daily	12.5 mg once daily or every other day
Maintenance dose (after 4 wk for K⁺ ≤5 mEɑ/L)*	50 mg once daily	25 mg once daily	25 mg once or twice daily	12.5 to 25.0 mg once daily

*After dose initiation for K⁺, increase ≤6.0 mEq/L, or worsening renal function, hold until K⁺ <5.0 mEq/L. Consider restarting reduced dose after confirming resolution of hyperkalemia/renal insufficiency for at least 72 h.

eGFR indicates estimated glomerular filtration rate; and K^, potassium. Adapted from Butler et al. $^{\rm 200}$

Table 13. Medical Therapy for Stage C HF*r*EF: Magnitude of Benefit Demonstrated in RCTs

GDMT	RR Reduction in Mortality (%)	NNT for Mortality Reduction (Standardized to 36 mo)	RR Reduction in HF Hospitalizations (%)
ACE inhibitor or ARB	17	26	31
Beta blocker	34	9	41
Aldosterone antagonist	30	6	35
Hydralazine/nitrate	43	7	33

ACE indicates angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; GDMT, guideline-directed medical therapy; HF, heart failure; HF/EF, heart failure with reduced ejection fraction; NNT, number needed to treat; RCTs, randomized controlled trials; and RR, relative risk.

Adapted with permission from Fonarow et al.201

2. The selection of an anticoagulant agent (warfarin, dabigatran, apixaban, or rivaroxaban) for permanent/ persistent/paroxysmal AF should be individualized on the basis of risk factors, cost, tolerability, patient preference, potential for drug interactions, and other clinical characteristics, including time in the international normalized ratio therapeutic range if the patient has been taking warfarin. (*Level of Evidence: C*)

Class IIa

1. Chronic anticoagulation is reasonable for patients with chronic HF who have permanent/persistent/paroxysmal AF but are without an additional risk factor for cardioembolic stroke.*^{211-213,217-219} (Level of Evidence: B)

Class III: No Benefit

1. Anticoagulation is not recommended in patients with chronic HFrEF without AF, a prior thromboembolic event, or a cardioembolic source.^{220–222} (Level of Evidence: B)

6.3.2.8.2. Statins

Class III: No Benefit

1. Statins are not beneficial as adjunctive therapy when prescribed solely for the diagnosis of HF in the absence of other indications for their use.²²³⁻²²⁸ (*Level of Evidence: A*)

6.3.2.8.3. Omega-3 Fatty Acids

Class IIa

1. Omega-3 polyunsaturated fatty acid supplementation is reasonable to use as adjunctive therapy in patients with NYHA class II–IV symptoms and HFrEF or HFpEF, unless contraindicated, to reduce mortality and cardiovascular hospitalizations.^{229,230} (Level of Evidence: B)

6.3.2.9. Drugs of Unproven Value or That May Worsen HF

Class III: No Benefit

- 1. Nutritional supplements as treatment for HF are not recommended in patients with current or prior symptoms of HFrEF.^{231,232} (Level of Evidence: B)
- 2. Hormonal therapies other than to correct deficiencies are not recommended for patients with current or prior symptoms of HFrEF. (Level of Evidence: C)

Class III: Harm

- 1. Drugs known to adversely affect the clinical status of patients with current or prior symptoms of HFrEF are potentially harmful and should be avoided or withdrawn whenever possible (eg, most antiarrhythmic drugs, most calcium channel-blocking drugs [except amlodipine], nonsteroidal anti-inflammatory drugs, or thiazolidinediones).²³³⁻²⁴⁴ (Level of Evidence: B)
- 2. Long-term use of infused positive inotropic drugs is potentially harmful for patients with HFrEF, except as palliation for patients with end-stage disease who cannot be stabilized with standard medical treatment (see recommendations for stage D). (Level of Evidence: C)

6.3.2.9.1. Calcium Channel Blockers

Class III: No Benefit

1. Calcium channel-blocking drugs are not recommended as routine treatment for patients with HFrEF.^{238,245,246} (Level of Evidence: A)

See Table 14 for a summary of recommendations from this section and Table 15 for strategies for achieving optimal GDMT.

6.3.3. Pharmacological Treatment for Stage C HFpEF

See Table 16 for a summary of recommendations from this section.

Class I

- 1. Systolic and diastolic blood pressure should be controlled in patients with HFpEF in accordance with published clinical practice guidelines to prevent morbidity. ^{28,247} (Level of Evidence: B)
- 2. Diuretics should be used for relief of symptoms due to volume overload in patients with HFpEF. (Level of Evidence: C)

Class IIa

1. Coronary revascularization is reasonable in patients with CAD in whom symptoms (angina) or demonstrable myocardial ischemia is judged to be having an adverse effect on symptomatic HFpEF despite GDMT. (Level of Evidence: C)

^{*}In the absence of contraindications to anticoagulation.

Table 14. Recommendations for Pharmacological Therapy for Management of Stage C HFrEF

Diuretics Diuretics are recommended in patients with HFrEF with fluid retention 1 ACE inhibitors ACE inhibitors are recommended for all patients with HFrEF 1 ARBs ARBs are recommended in patients with HFrEF who are ACE inhibitor intolerant 1 ARBs are reasonable as alternatives to ACE inhibitors as first-line therapy in HFrEF 1 Addition of an ARB may be considered in persistently symptomatic patients 10 with HFrEF on GDMT 10 Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially harmful 10 Beta blockers 1 Use of 1 of the 3 beta blockers proven to reduce mortality is recommended for all stable patients 1 Aldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF ≤35% 1 Aldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF ≤40% with symptoms of HF or DM 1 Inappropriate use of aldosterone receptor antagonists may be harmful 11 Hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HFrEF on GDMT 1 A combination of hydralazine and isosorbide dinitrate can be useful in patients with HFrEF 11 Bujgoxin 1 1 Digoxin can be beneficial in patients with HFrEF<		N/A 134, 167–169 136, 170, 171, 189
ACE inhibitors ACE inhibitors are recommended for all patients with HF/EF I ARBs ARBs are recommended in patients with HF/EF who are ACE inhibitor intolerant I ARBs are reasonable as alternatives to ACE inhibitors as first-line therapy in HF/EF IIa Addition of an ARB may be considered in persistently symptomatic patients IIb with HF/EF on GDMT III. Ha Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially harmful III. Ha Beta blockers Use of 1 of the 3 beta blockers proven to reduce mortality is recommended for all stable patients I Aldosterone receptor antagonists Aldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF ≤35% I Aldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF ≤40% with symptoms of HF or DM II Inappropriate use of aldosterone receptor antagonists may be harmful III: Ha Hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF/EF on GDMT I A combination of hydralazine and isosorbide dinitrate can be useful in patients with HF/EF IIa Digoxin Digoxin can be beneficial in patients with HF/EF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional r	A A A	134, 167–169 136, 170, 171, 189
ACE inhibitors are recommended for all patients with HF/EF I ARBs ARBs are recommended in patients with HF/EF who are ACE inhibitor intolerant I ARBs are reasonable as alternatives to ACE inhibitors as first-line therapy in HF/EF IIa Addition of an ARB may be considered in persistently symptomatic patients IIb with HF/EF on GDMT III: Ha Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially harmful III: Ha Beta blockers Use of 1 of the 3 beta blockers proven to reduce mortality is recommended for all stable patients I Aldosterone receptor antagonists II III Aldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF ≤35% III Aldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF ≤40% with symptoms of HF or DM III Inappropriate use of aldosterone receptor antagonists may be harmful IIII: Ha Hydralazine and isosorbide dinitrate IIII The combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF/EF on GDMT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	A	136, 170, 171, 189
ARBs are recommended in patients with HF/EF who are ACE inhibitor intolerant I ARBs are reasonable as alternatives to ACE inhibitors as first-line therapy in HF/EF IIa Addition of an ARB may be considered in persistently symptomatic patients with HF/EF on GDMT IIb Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially harmful III: Ha Beta blockers Ise of 1 of the 3 beta blockers proven to reduce mortality is recommended for all stable patients I Aldosterone receptor antagonists Aldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF ≤35% I Aldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF ≤40% with symptoms of HF or DM III: Ha Hydralazine and isosorbide dinitrate I III: Ha Hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF/EF on GDMT III: Ha No cannot be given ACE inhibitors or ARBs III III Digoxin Digoxin can be beneficial in patients with HF/EF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy* I	A	
ARBs are reasonable as alternatives to ACE inhibitors as first-line therapy in HF/EF IIa Addition of an ARB may be considered in persistently symptomatic patients with HF/EF on GDMT IIb Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially harmful III: Ha Beta blockers Use of 1 of the 3 beta blockers proven to reduce mortality is recommended for all stable patients I Aldosterone receptor antagonists Aldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF ≤35% I Aldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF ≤40% with symptoms of HF or DM III: Ha Inappropriate use of aldosterone receptor antagonists may be harmful III: Ha Hydralazine and isosorbide dinitrate I The combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF/EF on GDMT I A combination of hydralazine and isosorbide dinitrate can be useful in patients with HF/EF IIa Digoxin Digoxin can be beneficial in patients with HF/EF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy* I	A	
Addition of an ARB may be considered in persistently symptomatic patients with HF/EF on GDMT IIb Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially harmful III: Ha Beta blockers Use of 1 of the 3 beta blockers proven to reduce mortality is recommended for all stable patients I Aldosterone receptor antagonists Aldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF ≤35% I Aldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF ≤40% with symptoms of HF or DM I Inappropriate use of aldosterone receptor antagonists may be harmful III: Ha Hydralazine and isosorbide dinitrate I The combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF/EF on GDMT I A combination of hydralazine and isosorbide dinitrate can be useful in patients with HF/EF IIa Digoxin Digoxin can be beneficial in patients with HF/EF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy* I		
with HF/EF on GDMT III: Ha Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially harmful III: Ha Beta blockers Use of 1 of the 3 beta blockers proven to reduce mortality is recommended for all stable patients I Aldosterone receptor antagonists I Aldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF ≤35% I Aldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF ≤40% with symptoms of HF or DM I Inappropriate use of aldosterone receptor antagonists may be harmful III: Ha Hydralazine and isosorbide dinitrate I The combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF/EF on GDMT I A combination of hydralazine and isosorbide dinitrate can be useful in patients with HF/EF IIa Digoxin Digoxin can be beneficial in patients with HF/EF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy* I	А	190–195
Beta blockersUse of 1 of the 3 beta blockers proven to reduce mortality is recommended for all stable patientsAldosterone receptor antagonistsAldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF \leq 35%Aldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF \leq 40% with symptoms of HF or DMInappropriate use of aldosterone receptor antagonists may be harmfulHydralazine and isosorbide dinitrateThe combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF <i>r</i> EF on GDMTA combination of hydralazine and isosorbide dinitrate can be useful in patients with HF <i>r</i> EFDigoxin Digoxin can be beneficial in patients with HF <i>r</i> EFDigoxin can be beneficial in patients with HF <i>r</i> EFPatients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy*		176, 196
Use of 1 of the 3 beta blockers proven to reduce mortality is recommended for all stable patients I Aldosterone receptor antagonists Aldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF ≤35% I Aldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF ≤40% with symptoms of HF or DM I Inappropriate use of aldosterone receptor antagonists may be harmful III: Ha Hydralazine and isosorbide dinitrate I The combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF/EF on GDMT I A combination of hydralazine and isosorbide dinitrate can be useful in patients with HF/EF IIa Digoxin Digoxin can be beneficial in patients with HF/EF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy* I	rm C	N/A
Aldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF \leq 35%IAldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF \leq 40% with symptoms of HF or DMIInappropriate use of aldosterone receptor antagonists may be harmfulIII: HaHydralazine and isosorbide dinitrate The combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HFr/EF on GDMTIA combination of hydralazine and isosorbide dinitrate can be useful in patients with HFr/EFIIaDigoxin Digoxin can be beneficial in patients with HFr/EFIIaAnticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy*I	А	137, 172–175, 187
have LVEF ≤35% I Aldosterone receptor antagonists are recommended in patients following an acute MI I who have LVEF ≤40% with symptoms of HF or DM III Inappropriate use of aldosterone receptor antagonists may be harmful III: Ha Hydralazine and isosorbide dinitrate III: Ha The combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF/EF on GDMT I A combination of hydralazine and isosorbide dinitrate can be useful in patients with HF/EF IIa Who cannot be given ACE inhibitors or ARBs Digoxin Digoxin Digoxin can be beneficial in patients with HF/EF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy* I		_
who have LVEF ≤40% with symptoms of HF or DM Inappropriate use of aldosterone receptor antagonists may be harmful III: Ha Hydralazine and isosorbide dinitrate Inappropriate use of aldosterone receptor antagonists may be harmful III: Ha Hydralazine and isosorbide dinitrate Inappropriate use of aldosterone receptor antagonists may be harmful III: Ha Hydralazine and isosorbide dinitrate Inappropriate use of aldosterone receptor antagonists may be harmful III: Ha Hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF/EF on GDMT I I A combination of hydralazine and isosorbide dinitrate can be useful in patients with HF/EF IIa IIa Digoxin Digoxin can be beneficial in patients with HF/EF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy* I	А	181, 182, 197
Hydralazine and isosorbide dinitrate The combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HFrEF on GDMT A combination of hydralazine and isosorbide dinitrate can be useful in patients with HFrEF Ila who cannot be given ACE inhibitors or ARBs Digoxin Digoxin can be beneficial in patients with HFrEF Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy*	В	184
The combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class III–IV HF/EF on GDMT I A combination of hydralazine and isosorbide dinitrate can be useful in patients with HF/EF IIa Who cannot be given ACE inhibitors or ARBs I Digoxin I Digoxin can be beneficial in patients with HF/EF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy* I	<mark>rm B</mark>	198, 199
African Americans with NYHA class III–IV HF/EF on GDMT A combination of hydralazine and isosorbide dinitrate can be useful in patients with HF/EF IIa who cannot be given ACE inhibitors or ARBs Digoxin Digoxin can be beneficial in patients with HF/EF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy*		
who cannot be given ACE inhibitors or ARBs Digoxin Digoxin can be beneficial in patients with HFrEF Ila Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy*	A	179, 180
Digoxin can be beneficial in patients with HFrEF IIa Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy*	В	188
Anticoagulation Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy*	В	202–209
Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy*		
	А	210–216
The selection of an anticoagulant agent should be individualized	С	N/A
Chronic anticoagulation is reasonable for patients with chronic HF who have permanent/ persistent/paroxysmal AF but are without an additional risk factor for cardioembolic stroke*	В	211–213, 217–219
Anticoagulation is not recommended in patients with chronic HF <i>r</i> EF without AF, a prior III: No Be thromboembolic event, or a cardioembolic source	enefit B	220–222
Statins		
Statins are not beneficial as adjunctive therapy when prescribed solely for HF III: No Be	enefit A	223–228
Omega-3 fatty acids	D	000,000
Omega-3 PUFA supplementation is reasonable to use as adjunctive therapy in IIa HF <i>r</i> EF or HF <i>p</i> EF patients	В	229, 230
Other drugs		001 000
Nutritional supplements as treatment for HF are not recommended in HFrEF		231, 232
Hormonal therapies other than to correct deficiencies are not recommended in HFrEF	enefit C	N/A
Drugs known to adversely affect the clinical status of patients with HFrEF are potentially harmful and should be avoided or withdrawn	rm B	233–244
Long-term use of an infusion of a positive inotropic drug is not recommended and may be harmful except as palliation	rm C	N/A
Calcium channel blockers Calcium channel–blocking drugs are not recommended as routine treatment in HF <i>r</i> EF III: No Be		238, 245, 246

ACE indicates angiotensin-converting enzyme; AF, atrial fibrillation; ARB, angiotensin-receptor blocker; COR, Class of Recommendation; DM, diabetes mellitus; GDMT, guideline-directed medical therapy; HF, heart failure; HF*p*EF, heart failure with preserved ejection fraction; HF*r*EF, heart failure with reduced ejection fraction; LOE, Level of Evidence; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not available; NYHA, New York Heart Association; and PUFA, polyunsaturated fatty acids.

- 2. Management of AF according to published clinical practice guidelines in patients with HFpEF is reasonable to improve symptomatic HF. (Level of Evidence: C)
- **3.** The use of beta-blocking agents, ACE inhibitors, and ARBs in patients with hypertension is reasonable to control blood pressure in patients with HFpEF. (*Level of Evidence: C*)

Class IIb

1. The use of ARBs might be considered to decrease hospitalizations for patients with HFpEF.²⁴⁸ (Level of Evidence: B)

Table 15. Strategies for Achieving Optimal GDMT

Class III: No Benefit

1. Routine use of nutritional supplements is not recommended for patients with HFpEF. (Level of Evidence: C)

6.3.4. Device Therapy for Stage C HFrEF

See Table 17 for a summary of recommendations from this section.

- 1. ICD therapy is recommended for primary prevention of sudden cardiac death to reduce total mortality in selected patients with nonischemic dilated cardiomyopathy or ischemic heart disease at least
- 1. Uptitrate in small increments to the recommended target dose or the highest tolerated dose for those medications listed in Table 11 with an appreciation that some patients cannot tolerate the full recommended doses of all medications, particularly patients with low baseline heart rate or blood pressure or with a tendency to postural symptoms.
- Certain patients (eg, the elderly, patients with chronic kidney disease) may require more frequent visits and laboratory monitoring during dose titration and more
 gradual dose changes. However, such vulnerable patients may accrue considerable benefits from GDMT. Inability to tolerate optimal doses of GDMT may change
 after disease-modifying interventions such as CRT.
- Monitor vital signs closely before and during uptitration, including postural changes in blood pressure or heart rate, particularly in patients with orthostatic symptoms, bradycardia, and/or "low" systolic blood pressure (eg, 80 to 100 mm Hg).
- Alternate adjustments of different medication classes (especially ACE inhibitors/ARBs and beta blockers) listed in Table 11. Patients with elevated or normal blood
 pressure and heart rate may tolerate faster incremental increases in dosages.
- Monitor renal function and electrolytes for rising creatinine and hyperkalemia, recognizing that an initial rise in creatinine may be expected and does not necessarily require discontinuation of therapy; discuss tolerable levels of creatinine above baseline with a nephrologist if necessary.
- 6. Patients may complain of *symptoms of fatigue and weakness* with dosage increases; in the absence of instability in vital signs, reassure them that these symptoms are often transient and usually resolve within a few days of changes in therapy.
- 7. Discourage sudden spontaneous discontinuation of GDMT medications by the patient and/or other clinicians without discussion with managing clinicians.
- 8. Carefully review doses of other medications for HF symptom control (eg, diuretics, nitrates) during uptitration.
- 9. Consider temporary adjustments in dosages of GDMT during acute episodes of noncardiac illnesses (eg, respiratory infections, risk of dehydration, etc).
- 10. Educate patients, family members, and other clinicians about the expected benefits of achieving GDMT, including an understanding of the potential benefits of myocardial reverse remodeling, increased survival, and improved functional status and HRQOL.

ACE indicates angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; CRT, cardiac resynchronization therapy; GDMT, guideline-directed medical therapy; HF, heart failure; and HRQOL, health-related quality of life.

Recommendations	COR	LOE
Systolic and diastolic blood pressure should be controlled according to published clinical practice quidelines	I	B ^{28,247}
Diuretics should be used for relief of symptoms due to volume overload	l. I	С
Coronary revascularization for patients with CAD in whom angina or demonstrable myocardial ischemia is present despite GDMT	lla	С
Management of AF according to published clinical practice guidelines for HFpEF to improve symptomatic HF	lla	С
Use of beta-blocking agents, ACE inhibitors, and ARBs for hypertension in $HFpEF$	lla	С
ARBs might be considered to decrease hospitalizations in HFpEF	llb	B ²⁴⁸
Nutritional supplementation is not recommended in HFpEF	III: No Benefit	С

ACE indicates angiotensin-converting enzyme; AF, atrial fibrillation; ARB, angiotensin-receptor blocker; CAD, coronary artery disease; COR, Class of Recommendation; GDMT, guideline-directed medical therapy; HF, heart failure; HF*p*EF, heart failure with preserved ejection fraction; and LOE, Level of Evidence.

Downloaded from http://circ.ahajournals.org/ at UNIV OF LOUISVILLE on April 8, 2014

Table 16. Recommendations for Treatment of HFpEF

Recommendations	COR	LOE	References
CD therapy is recommended for primary prevention of SCD in selected patients with HF <i>r</i> EF at least 40 d post-MI with LVEF \leq 35% and NYHA class II or III symptoms on chronic GDMT, who are expected to live >1 y*	1	А	148, 249
CRT is indicated for patients who have LVEF ≤35%, sinus rhythm, and LBBB with a QRS ≥150 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT	1	A (NYHA class III/IV)	37, 250–252
		B (NYHA class II)	253, 254
CD therapy is recommended for primary prevention of SCD in selected patients with HF <i>r</i> EF at least 40 d post-MI with LVEF \leq 30% and NYHA class I symptoms while receiving GDMT, who are expected to live >1 y*	T	В	255–257
RT can be useful for patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with a QRS ≥150 ms, and NYHA class III/ambulatory class IV symptoms on GDMT	lla	А	250–252, 254
RT can be useful for patients who have LVEF ≤35%, sinus rhythm, LBBB with a QRS 120 to 149 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT	lla	В	250–254, 258
RT can be useful in patients with AF and LVEF ≤35% on GDMT if a) the patient requires ventricular pacing or otherwise meets CRT criteria and b) AV nodal ablation or rate control allows near 100% ventricular pacing with CRT	lla	В	259–264
RT can be useful for patients on GDMT who have LVEF <35% and are undergoing new or replacement device implantation with anticipated ventricular pacing (>40%)	lla	C	261, 265–267
IN ICD is of uncertain benefit to prolong meaningful survival in patients with a high risk of nonsudden death such as frequent hospitalizations, frailty, or severe comorbidities*	llb	В	268–271
RT may be considered for patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with QRS 120 to 149 ms, and NYHA class III/ambulatory class IV on GDMT	llb	В	254, 272
RT may be considered for patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with a QRS ≥150 ms, and NYHA class II symptoms on GDMT	llb	В	253, 254
RT may be considered for patients who have LVEF ≤30%, ischemic etiology of HF, sinus rhythm, LBBB with QRS ≥150 ms, and NYHA class I symptoms on GDMT	llb	C	253, 254
RT is not recommended for patients with NYHA class I or II symptoms and a non-LBBB pattern with QRS <150 ms $$	III: No Benefit	В	253, 254, 272
RT is not indicated for patients whose comorbidities and/or frailty limit survival to <1 y	III: No Benefit	С	37

Table 17. Recommendations for Device Therapy for Management of Stage C HF

*Counseling should be specific to each individual patient and should include documentation of a discussion about the potential for sudden death and nonsudden death from HF or noncardiac conditions. Information should be provided about the efficacy, safety, and potential complications of an ICD and the potential for defibrillation to be inactivated if desired in the future, notably when a patient is approaching end of life. This will facilitate shared decision making between patients, families, and the medical care team about ICDs.³¹

AF indicates atrial fibrillation; AV, atrioventricular; COR, Class of Recommendation; CRT, cardiac resynchronization therapy; GDMT, guideline-directed medical therapy; HF, heart failure; HF*r*EF, heart failure with reduced ejection fraction; ICD, implantable cardioverter-defibrillator; LBBB, left bundle-branch block; LOE, Level of Evidence; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NYHA, New York Heart Association; and SCD, sudden cardiac death.


40 days post-MI with LVEF of 35% or less and NYHA class II or III symptoms on chronic GDMT, who have reasonable expectation of meaning-ful survival for more than 1 year.^{+148,249} (Level of Evidence: A)

2. Cardiac resynchronization therapy (CRT) is indicated for patients who have LVEF of 35% or less, sinus rhythm, left bundle-branch block (LBBB) with a QRS duration of 150 ms or greater, and NYHA class II, III, or ambulatory IV symptoms on GDMT. (Level of Evidence: A for NYHA class III/IV^{37,250-252}; Level of Evidence: B for NYHA class II^{253,254}) 3. ICD therapy is recommended for primary prevention of sudden cardiac death to reduce total mortality in selected patients at least 40 days post-MI with LVEF of 30% or less and NYHA class I symptoms while receiving GDMT, who have reasonable expectation of meaningful survival for more than 1 year.⁺²⁵⁻²⁵⁷ (Level of Evidence: B)

Class IIa

- 1. CRT can be useful for patients who have LVEF of 35% or less, sinus rhythm, a non-LBBB pattern with a QRS duration of 150 ms or greater, and NYHA class III/ambulatory class IV symptoms on GDMT.^{250–252,254} (Level of Evidence: A)
- 2. CRT can be useful for patients who have LVEF of 35% or less, sinus rhythm, LBBB with a QRS duration of 120 to 149 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT.^{250–254,258} (Level of Evidence: B)
- 3. CRT can be useful in patients with AF and LVEF of 35% or less on GDMT if a) the patient requires

[†]Counseling should be specific to each individual patient and should include documentation of a discussion about the potential for sudden death and nonsudden death from HF or noncardiac conditions. Information should be provided about the efficacy, safety, and potential complications of an ICD and the potential for defibrillation to be inactivated if desired in the future, notably when a patient is approaching end of life. This will facilitate shared decision making between patients, families, and the medical care team about ICDs.³¹

Colors correspond to the class of recommendations in the ACCF/AHA Table 1.

Benefit for NYHA class I and II patients has only been shown in CRT-D trials, and while patients may not experience immediate symptomatic benefit, late remodeling may be avoided along with long-term HF consequences. There are no trials that support CRT-pacing (without ICD) in NYHA class I and II patients. Thus, it is anticipated these patients would receive CRT-D unless clinical reasons or personal wishes make CRT-pacing more appropriate. In patients who are NYHA class III and ambulatory class IV, CRT-D may be chosen but clinical reasons and personal wishes may make CRT-pacing appropriate to improve symptoms and quality of life when an ICD is not expected to produce meaningful benefit in survival.

Figure 2. Indications for CRT therapy algorithm. CRT indicates cardiac resynchronization therapy; CRT-D, cardiac resynchronization therapy-defibrillator; GDMT, guideline-directed medical therapy; HF, heart failure; ICD, implantable cardioverter-defibrillator; LBBB, left bundle-branch block; LVEF, left ventricular ejection fraction; MI, myocardial infarction; and NYHA, New York Heart Association.

ventricular pacing or otherwise meets CRT criteria and b) atrioventricular nodal ablation or pharmacological rate control will allow near 100% ventricular pacing with CRT.^{259–264} (Level of Evidence: B)

4. CRT can be useful for patients on GDMT who have LVEF of 35% or less and are undergoing placement of a new or replacement device implantation with anticipated requirement for significant (>40%) ventricular pacing.^{261,265–267} (Level of Evidence: C)

Class IIb

- 1. The usefulness of implantation of an ICD is of uncertain benefit to prolong meaningful survival in patients with a high risk of nonsudden death as predicted by frequent hospitalizations, advanced frailty, or comorbidities such as systemic malignancy or severe renal dysfunction.⁺²⁶⁸⁻²⁷¹ (Level of Evidence: B)
- 2. CRT may be considered for patients who have LVEF of 35% or less, sinus rhythm, a non-LBBB pattern with

a QRS duration of 120 to 149 ms, and NYHA class III/ ambulatory class IV on GDMT.^{254,272} (Level of Evidence: B)

- 3. CRT may be considered for patients who have LVEF of 35% or less, sinus rhythm, a non-LBBB pattern with a QRS duration of 150 ms or greater, and NYHA class II symptoms on GDMT.^{253,254} (Level of Evidence: B)
- 4. CRT may be considered for patients who have LVEF of 30% or less, ischemic etiology of HF, sinus rhythm, LBBB with a QRS duration of 150 ms or greater, and NYHA class I symptoms on GDMT.^{253,254} (Level of Evidence: C)

Class III: No Benefit

- 1. CRT is not recommended for patients with NYHA class I or II symptoms and non-LBBB pattern with a QRS duration of less than 150 ms.^{253,254,272} (Level of Evidence: B)
- 2. CRT is not indicated for patients whose comorbidities and/or frailty limit survival with good functional capacity to less than 1 year.³⁷ (Level of Evidence: C)

See Figure 2, indications for CRT therapy algorithm.

6.4. Stage D

See Table 18 for the European Society of Cardiology definition of advanced HF and Table 19 for clinical events and findings useful for identifying patients with advanced HF.

Downloaded from http://circ.ahajournals.org/ at UNIV OF LOUISVILLE on April 8, 2014

[†]Counseling should be specific to each individual patient and should include documentation of a discussion about the potential for sudden death and nonsudden death from HF or noncardiac conditions. Information should be provided about the efficacy, safety, and potential complications of an ICD and the potential for defibrillation to be inactivated if desired in the future, notably when a patient is approaching end of life. This will facilitate shared decision making between patients, families, and the medical care team about ICDs.³¹

Table 18. ESC Definition of Advanced HF

- 1. Severe symptoms of HF with dyspnea and/or fatigue at rest or with minimal exertion (NYHA class III or IV)
- 2. Episodes of fluid retention (pulmonary and/or systemic congestion, peripheral edema) and/or reduced cardiac output at rest (peripheral hypoperfusion)
- 3. Objective evidence of severe cardiac dysfunction shown by at least 1 of the following:
 - a. LVEF <30%
 - b. Pseudonormal or restrictive mitral inflow pattern
 - c. Mean PCWP >16 mm Hg and/or RAP >12 mm Hg by PA catheterization
 - d. High BNP or NT-proBNP plasma levels in the absence of noncardiac causes
- 4. Severe impairment of functional capacity shown by 1 of the following: a. Inability to exercise
 - b. 6-Minute walk distance ≤300 m
 - c. Peak Vo₂ <12 to 14 mL/kg/min
- 5. History of \geq 1 HF hospitalization in past 6 mo
- Presence of all the previous features despite "attempts to optimize" therapy, including diuretics and GDMT, unless these are poorly tolerated or contraindicated, and CRT when indicated

BNP indicates B-type natriuretic peptide; CRT, cardiac resynchronization therapy; ESC, European Society of Cardiology; GDMT, guideline-directed medical therapy; HF, heart failure; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; PA, pulmonary artery; PCWP, pulmonary capillary wedge pressure; and RAP, right atrial pressure. Adapted from Metra et al.³³

6.4.1. Water Restriction

Class IIa

1. Fluid restriction (1.5 to 2 L/d) is reasonable in stage D, especially in patients with hyponatremia, to reduce congestive symptoms. (*Level of Evidence: C*)

6.4.2. Inotropic Support

See Table 20 for inotropic agents used in HF management and Table 21 for a summary of recommendations from this section.

Class I

1. Until definitive therapy (eg, coronary revascularization, MCS, heart transplantation) or resolution of the acute precipitating problem, patients with cardiogenic shock should receive temporary intravenous inotropic

Table 20.	Intravenous	Inotropic A	aents Used	in Manaq	ement of HF

Table 19. Clinical Events and Findings Useful for Identifying Patients With Advanced HF

Repeated (\geq 2) hospitalizations or ED visits for HF in the past year

Progressive deterioration in renal function (eg, rise in BUN and creatinine)

Weight loss without other cause (eg, cardiac cachexia)

Intolerance to ACE inhibitors due to hypotension and/or worsening renal function

Intolerance to beta blockers due to worsening HF or hypotension

Frequent systolic blood pressure <90 mm Hg

Persistent dyspnea with dressing or bathing requiring rest

Inability to walk 1 block on the level ground due to dyspnea or fatigue

Recent need to escalate diuretics to maintain volume status, often reaching daily furosemide equivalent dose over 160 mg/d and/or use of supplemental metolazone therapy

Progressive decline in serum sodium, usually to <133 mEq/L

Frequent ICD shocks

ACE indicates angiotensin-converting enzyme; BUN, blood urea nitrogen; ED, emergency department; HF, heart failure; and ICD, implantable cardioverter-defibrillator.

Adapted from Russell et al.274

support to maintain systemic perfusion and preserve end-organ performance. (*Level of Evidence: C*)

Class IIa

1. Continuous intravenous inotropic support is reasonable as "bridge therapy" in patients with stage D HF refractory to GDMT and device therapy who are eligible for and awaiting MCS or cardiac transplantation.^{275,276} (*Level of Evidence: B*)

Class IIb

- 1. Short-term, continuous intravenous inotropic support may be reasonable in those hospitalized patients presenting with documented severe systolic dysfunction who present with low blood pressure and significantly depressed cardiac output to maintain systemic perfusion and preserve end-organ performance.^{277–279} (Level of Evidence: B)
- 2. Long-term, continuous intravenous inotropic support may be considered as palliative therapy for

Inotropic	Do	se (mcg/kg)	Drug Kinetics		Effe	ects			Special
Agent	Bolus	Infusion (/min)	and Metabolism	CO	HR	SVR	PVR	Adverse Effects	Considerations
Adrenergic agonists									
Dopamine	N/A	5 to 10	t _{1/2} : 2 to 20 min	Ť	↑	\leftrightarrow	\leftrightarrow	T, HA, N, tissue	Caution: MAO-I
	N/A	10 to 15	R,H,P	Ť	↑	Ť	\leftrightarrow	necrosis	
Dobutamine	N/A	2.5 to 5	t _{1/2} : 2 to 3 min	Ť	↑	\downarrow	\leftrightarrow	†/↓BP, HA, T, N, F,	Caution: MAO-I;
	N/A	5 to 20	Н	Ť	↑	\leftrightarrow	\leftrightarrow	hypersensitivity	CI: sulfite allergy
PDE inhibitor									
Milrinone	N/R	0.125 to 0.75	t _½ : 2.5 h H	Ŷ	\uparrow	\downarrow	\downarrow	T, ↓BP	Renal dosing, monitor LFTs

BP indicates blood pressure; CI, contraindication; CO, cardiac output; F, fever; H, hepatic; HA, headache; HF, heart failure; HR, heart rate; LFT, liver function test; MAO-I, monoamine oxidase inhibitor; N, nausea; N/A, not applicable; N/R, not recommended; P, plasma; PDE, phosphodiesterase; PVR, pulmonary vascular resistance; R, renal; SVR, systemic vascular resistance; T, tachyarrhythmias; and t₁₄, elimination half-life.

Recommendations	COR	LOE	References
Inotropic support			
Cardiogenic shock pending definitive therapy or resolution	l I	С	N/A
BTT or MCS in stage D refractory to GDMT	lla	В	275, 276
Short-term support for threatened end-organ dysfunction in hospitalized patients with stage D and severe HF <i>r</i> EF	llb	В	277–279
Long-term support with continuous infusion palliative therapy in select stage D HF	llb	В	280–282
Routine intravenous use, either continuous or intermittent, is potentially harmful in stage D HF	III: Harm	В	172, 283–288
Short-term intravenous use in hospitalized patients without evidence of shock or threatened end-organ performance is potentially harmful	III: Harm	В	277–279
MCS			
MCS is beneficial in carefully selected* patients with stage D HF in whom definitive management (eg, cardiac transplantation) is anticipated or planned	lla	В	289–296
Nondurable MCS is reasonable as a "bridge to recovery" or a "bridge to decision" for carefully selected* patients with HF and acute profound disease	lla	В	297–300
Durable MCS is reasonable to prolong survival for carefully selected* patients with stage D HF/EF	lla	В	301–304
Cardiac transplantation			
Evaluation for cardiac transplantation is indicated for carefully selected patients with stage D HF despite GDMT, device, and surgical management	l l	C	305

Table 21. Recommendations for Inotropic Support, MCS, and Cardiac Transplantation

*Although optimal patient selection for MCS remains an active area of investigation, general indications for referral for MCS therapy include patients with LVEF <25% and NYHA class III–IV functional status despite GDMT, including, when indicated, CRT, with either high predicted 1- to 2-year mortality (eg, as suggested by markedly reduced peak oxygen consumption and clinical prognostic scores) or dependence on continuous parenteral inotropic support. Patient selection requires a multidisciplinary team of experienced advanced HF and transplantation cardiologists, cardiothoracic surgeons, nurses, and ideally, social workers and palliative care clinicians.

BTT indicates bridge to transplant; COR, Class of Recommendation; CRT, cardiac resynchronization therapy; GDMT, guideline-directed medical therapy; HF, heart failure; HF*r*EF, heart failure with reduced ejection fraction; LOE, Level of Evidence; LVEF, left ventricular ejection fraction; MCS; mechanical circulatory support; N/A, not applicable; and NYHA, New York Heart Association.

symptom control in select patients with stage D HF despite optimal GDMT and device therapy who are not eligible for either MCS or cardiac transplantation.^{280–282} (Level of Evidence: B)

Class III: Harm

- **1.** Long-term use of either continuous or intermittent, intravenous parenteral positive inotropic agents, in the absence of specific indications or for reasons other than palliative care, is potentially harmful in the patient with HF.^{172,283–288} (*Level of Evidence: B*)
- 2. Use of parenteral inotropic agents in hospitalized patients without documented severe systolic dysfunction, low blood pressure, or impaired perfusion and evidence of significantly depressed cardiac output, with or without congestion, is potentially harmful.²⁷⁷⁻²⁷⁹ (Level of Evidence: B)

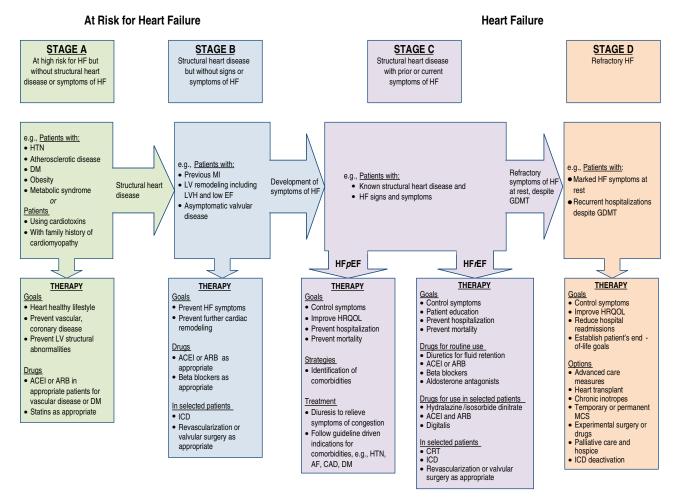
6.4.3. Mechanical Circulatory Support

Class IIa

- 1. MCS is beneficial in carefully selected[‡] patients with stage D HFrEF in whom definitive management (eg, cardiac transplantation) or cardiac recovery is anticipated or planned.²⁸⁹⁻²⁹⁶ (Level of Evidence: B)
- 2. Nondurable MCS, including the use of percutaneous and extracorporeal ventricular assist devices, is

reasonable as a "bridge to recovery" or a "bridge to decision" for carefully selected‡ patients with HF*r*EF with acute, profound hemodynamic compromise.²⁹⁷⁻³⁰⁰ (Level of Evidence: B)

3. Durable MCS is reasonable to prolong survival for carefully selected[‡] patients with stage D HFrEF.^{301–304} (*Level of Evidence: B*)


6.4.4. Cardiac Transplantation

Class I

1. Evaluation for cardiac transplantation is indicated for carefully selected patients with stage D HF despite GDMT, device, and surgical management.³⁰⁵ (Level of Evidence: C)

See Figure 3 for the stages in the development of HF.

[‡]Although optimal patient selection for MCS remains an active area of investigation, general indications for referral for MCS therapy include patients with LVEF <25% and NYHA class III–IV functional status despite GDMT, including, when indicated, CRT, with either high predicted 1- to 2-year mortality (eg, as suggested by markedly reduced peak oxygen consumption and clinical prognostic scores) or dependence on continuous parenteral inotropic support. Patient selection requires a multidisciplinary team of experienced advanced HF and transplantation cardiologists, cardiothoracic surgeons, nurses, and ideally, social workers and palliative care clinicians.

Figure 3. Stages in the development of HF and recommended therapy by stage. ACEI indicates angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin-receptor blocker; CAD, coronary artery disease; CRT, cardiac resynchronization therapy; DM, diabetes mellitus; EF, ejection fraction; GDMT, guideline-directed medical therapy; HF, heart failure; HF*p*EF, heart failure with preserved ejection fraction; HF*r*EF, heart failure with reduced ejection fraction; HRQOL, health-related quality of life; HTN, hypertension; ICD, implantable cardioverter-defibrillator; LV, left ventricular; LVH, left ventricular hypertrophy; MCS, mechanical circulatory support; and MI, myocardial infarction. Adapted from Hunt et al.³⁷

7. The Hospitalized Patient: Recommendations

See Table 22 for a summary of recommendations from this section and Figure 4 for the classification of patients presenting with acutely decompensated HF.

7.1. Precipitating Causes of Decompensated HF

Class I

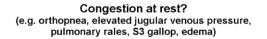
- **1.** ACS precipitating acute HF decompensation should be promptly identified by electrocardiogram and serum biomarkers, including cardiac troponin testing, and treated optimally as appropriate to the overall condition and prognosis of the patient. (*Level of Evidence: C*)
- 2. Common precipitating factors for acute HF should be considered during initial evaluation, as recognition of these conditions is critical to guide appropriate therapy. (Level of Evidence: C)

7.2. Maintenance of GDMT During Hospitalization

Class I

- 1. In patients with HFrEF experiencing a symptomatic exacerbation of HF requiring hospitalization during chronic maintenance treatment with GDMT, it is recommended that GDMT be continued in the absence of hemodynamic instability or contraindications.³⁰⁷⁻³⁰⁹ (Level of Evidence: B)
- 2. Initiation of beta-blocker therapy is recommended after optimization of volume status and successful discontinuation of intravenous diuretics, vasodilators, and inotropic agents. Beta-blocker therapy should be initiated at a low dose and only in stable patients. Caution should be used when initiating beta blockers in patients who have required inotropes during their hospital course.^{307–309} (Level of Evidence: B)

Recommendations	COR	LOE	References
HF patients hospitalized with fluid overload should be treated with intravenous diuretics	I	В	310, 311
HF patients receiving loop diuretic therapy should receive an initial parenteral dose greater than or equal to their chronic oral daily dose; then dose should be serially adjusted	I.	В	312
HF <i>r</i> EF patients requiring HF hospitalization on GDMT should continue GDMT except in cases of hemodynamic instability or where contraindicated	I.	В	307–309
Initiation of beta-blocker therapy at a low dose is recommended after optimization of volume status and discontinuation of intravenous agents	1	В	307–309
Thrombosis/thromboembolism prophylaxis is recommended for patients hospitalized with HF	1	В	22, 324–328
Serum electrolytes, urea nitrogen, and creatinine should be measured during titration of HF medications, including diuretics	I.	С	N/A
When diuresis is inadequate, it is reasonable to a. give higher doses of intravenous loop diuretics; or b. add a second diuretic (eg, thiazide)	lla	B B	37, 312 313–316
Low-dose dopamine infusion may be considered with loop diuretics to improve diuresis	llb	В	317, 318
Ultrafiltration may be considered for patients with obvious volume overload	llb	В	319
Ultrafiltration may be considered for patients with refractory congestion	llb	С	N/A
Intravenous nitroglycerin, nitroprusside, or nesiritide may be considered an adjuvant to diuretic therapy for stable patients with HF	llb	А	320–323
In patients hospitalized with volume overload and severe hyponatremia, vasopressin antagonists may be considered	llb	В	330, 331


Table 22. Recommendations for Therapies in the Hospitalized HF Patient

COR indicates Class of Recommendation; GDMT, guideline-directed medical therapy; HF, heart failure; HF/EF, heart failure with reduced ejection fraction; LOE, Level of Evidence; and N/A, not available.

7.3. Diuretics in Hospitalized Patients

Class I

- 1. Patients with HF admitted with evidence of significant fluid overload should be promptly treated with intravenous loop diuretics to reduce morbidity.^{310,311} (Level of Evidence: B)
- 2. If patients are already receiving loop diuretic therapy, the initial intravenous dose should equal or exceed their chronic oral daily dose and should be given as either intermittent boluses or continuous infusion. Urine output and signs and symptoms of congestion should be serially assessed, and the diuretic dose should be adjusted accordingly to

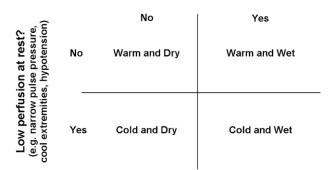


Figure 4. Classification of patients presenting with acutely decompensated heart failure. Adapted with permission from Nohria et al.³⁰⁶

relieve symptoms, reduce volume excess, and avoid hypotension.³¹² (*Level of Evidence: B*)

3. The effect of HF treatment should be monitored with careful measurement of fluid intake and output, vital signs, body weight that is determined at the same time each day, and clinical signs and symptoms of systemic perfusion and congestion. Daily serum electrolytes, urea nitrogen, and creatinine concentrations should be measured during the use of intravenous diuretics or active titration of HF medications. (Level of Evidence: C)

Class IIa

- 1. When diuresis is inadequate to relieve symptoms, it is reasonable to intensify the diuretic regimen using either:
 - a. higher doses of intravenous loop diuretics^{37,312} (Level of Evidence: B);
 - b. addition of a second (eg, thiazide) diuretic.^{313–316} (Level of Evidence: B)

Class IIb

1. Low-dose dopamine infusion may be considered in addition to loop diuretic therapy to improve diuresis and better preserve renal function and renal blood flow.^{317,318} (*Level of Evidence: B*)

7.4. Renal Replacement Therapy—Ultrafiltration

Class IIb

1. Ultrafiltration may be considered for patients with obvious volume overload to alleviate congestive symptoms and fluid weight.³¹⁹ (*Level of Evidence: B*)

Recommendations or Indications	COR	LOE	References
Performance improvement systems in the hospital and early postdischarge outpatient setting to identify HF for GDMT	I	В	151, 332–338
 Before hospital discharge, at the first postdischarge visit, and in subsequent follow-up visits, the following should be addressed: a. initiation of GDMT if not done or contraindicated; b. causes of HF, barriers to care, and limitations in support; c. assessment of volume status and blood pressure with adjustment of HF therapy; d. optimization of chronic oral HF therapy; e. renal function and electrolytes; f. management of comorbid conditions; g. HF education, self-care, emergency plans, and adherence; and h. palliative or hospice care 	I	В	57, 337, 339–341
Multidisciplinary HF disease management for patients at high risk for hospital readmission	I.	В	336, 342–344
A follow-up visit within 7 to 14 d and a telephone follow-up within 3 d of hospital discharge are reasonable	lla	В	345, 346
Use of clinical risk-prediction tools and/or biomarkers to identify higher-risk patients are reasonable	lla	В	62

Table 23. Recommendations for Hospital Discharge

COR indicates Class of Recommendation; GDMT, guideline-directed medical therapy; HF, heart failure; and LOE, Level of Evidence.

2. Ultrafiltration may be considered for patients with refractory congestion not responding to medical therapy. (Level of Evidence: C)

7.5. Parenteral Therapy in Hospitalized HF

Class IIb

1. If symptomatic hypotension is absent, intravenous nitroglycerin, nitroprusside, or nesiritide may be considered an adjuvant to diuretic therapy for relief of dyspnea in patients admitted with acutely decompensated HF.³²⁰⁻³²³ (Level of Evidence: A)

7.6. Venous Thromboembolism Prophylaxis in Hospitalized Patients

Class I

1. A patient admitted to the hospital with decompensated HF should receive venous thromboembolism prophylaxis with an anticoagulant medication if the risk-benefit ratio is favorable.^{22,324-328} (Level of Evidence: B)

7.7. Arginine Vasopressin Antagonists

Class IIb

1. In patients hospitalized with volume overload, including HF, who have persistent severe hyponatremia and are at risk for or having active cognitive symptoms despite water restriction and maximization of GDMT, vasopressin antagonists may be considered in the short term to improve serum sodium concentration in hypervolemic, hyponatremic states with either a V_2 receptor selective or a nonselective vasopressin antagonist.^{330,331} (Level of Evidence: B)

7.8. Inpatient and Transitions of Care

See Table 23 for a summary of recommendations from this section.

Class I

- 1. The use of performance improvement systems and/or evidence-based systems of care is recommended in the hospital and early postdischarge outpatient setting to identify appropriate HF patients for GDMT, provide clinicians with useful reminders to advance GDMT, and assess the clinical response.^{151,332-338} (Level of Evidence: B)
- 2. Throughout the hospitalization as appropriate, before hospital discharge, at the first postdischarge visit, and in subsequent follow-up visits, the following should be addressed^{57,337,339-341} (*Level of Evidence: B*):
 - a. initiation of GDMT if not previously established and not contraindicated;
 - b. precipitant causes of HF, barriers to optimal care transitions, and limitations in postdischarge support;
 - c. assessment of volume status and supine/upright hypotension with adjustment of HF therapy as appropriate;
 - d. titration and optimization of chronic oral HF therapy;
 - e. assessment of renal function and electrolytes where appropriate;
 - f. assessment and management of comorbid conditions;
 - g. reinforcement of HF education, self-care, emergency plans, and need for adherence; and
 - h. consideration for palliative care or hospice care in selected patients.
- **3.** Multidisciplinary HF disease-management programs are recommended for patients at high risk for hospital readmission, to facilitate the implementation of GDMT, to address different barriers to behavioral change, and to reduce the risk of subsequent rehospitalization for HF.^{336,342-344} (*Level of Evidence: B*)

Class IIa

- 1. Scheduling an early follow-up visit (within 7 to 14 days) and early telephone follow-up (within 3 days) of hospital discharge are reasonable.^{345,346} (*Level of Evidence: B*)
- 2. Use of clinical risk-prediction tools and/or biomarkers to identify patients at higher risk for postdischarge clinical events are reasonable.⁶² (Level of Evidence: B)

8. Important Comorbidities in HF

Although there are additional and important comorbidities that occur in patients with HF as referenced in Table 24, it remains uncertain how best to generate specific recommendations, given the status of current evidence.

9. Surgical/Percutaneous/Transcatheter Interventional Treatments of HF: Recommendations

See Table 25 for a summary of recommendations from this section.

Class I

1. Coronary artery revascularization via coronary artery bypass graft surgery (CABG) or percutaneous

Table 24.	Ten Most Common Co-Occurring	Chronic Conditions Among	Medicare Beneficiaries With	Heart Failure (N=4947918), 2011

Beneficiaries Age \geq 65 y (N=4376150)*		Beneficiaries Age <65 y (N=571768)†			
	Ν	%		Ν	%
Hypertension	3685373	84.2	Hypertension	461 235	80.7
Ischemic heart disease	3145718	71.9	Ischemic heart disease	365 889	64.0
Hyperlipidemia	2623601	60.0	Diabetes	338687	59.2
Anemia	2200674	50.3	Hyperlipidemia	325 498	56.9
Diabetes	2027875	46.3	Anemia	284102	49.7
Arthritis	1 901 447	43.5	Chronic kidney disease	257015	45.0
Chronic kidney disease	1851812	42.3	Depression	207 082	36.2
COPD	1 311 118	30.0	Arthritis	201 964	35.3
Atrial fibrillation	1 247 748	28.5	COPD	191016	33.4
Alzheimer's disease/dementia	1 207 704	27.6	Asthma	88816	15.5

*Mean No. of conditions is 6.1; median is 6.

†Mean No. of conditions is 5.5; median is 5.

COPD indicates chronic obstructive pulmonary disease.

Data source: Centers for Medicare and Medicaid Services administrative claims data, January 2011–December 2011, from the Chronic Condition Warehouse (CCW), ccwdata.org.³⁴⁷

Recommendations	COR	LOE	References
CABG or percutaneous intervention is indicated for HF patients on GDMT with angina and suitable coronary anatomy, especially significant left main stenosis or left main equivalent	I	С	11, 13, 15, 348
CABG to improve survival is reasonable in patients with mild to moderate LV systolic dysfunction and significant multivessel CAD or proximal LAD stenosis when viable myocardium is present	lla	В	348–350
CABG or medical therapy is reasonable to improve morbidity and mortality for patients with severe LV dysfunction (EF $<$ 35%), HF, and significant CAD	lla	В	351, 352
Surgical aortic valve replacement is reasonable for patients with critical aortic stenosis and a predicted surgical mortality of no greater than 10%	lla	В	353
Transcatheter aortic valve replacement is reasonable for patients with critical aortic stenosis who are deemed inoperable	lla	В	354
CABG may be considered in patients with ischemic heart disease, severe LV systolic dysfunction, and operable coronary anatomy whether or not viable myocardium is present	llb	В	352, 355, 356
Transcatheter mitral valve repair or mitral valve surgery for functional mitral insufficiency is of uncertain benefit	llb	В	357–360
Surgical reverse remodeling or LV aneurysmectomy may be considered in HFrEF for specific indications, including intractable HF and ventricular arrhythmias	llb	В	361

CABG indicates coronary artery bypass graft; CAD, coronary artery disease; COR, Class of Recommendation; EF, ejection fraction; GDMT, guideline-directed medical therapy; HF, heart failure; HF*r*EF, heart failure with reduced ejection fraction; LAD, left anterior descending; LOE, Level of Evidence; and LV, left ventricular.

Downloaded from http://circ.ahajournals.org/ at UNIV OF LOUISVILLE on April 8, 2014

intervention is indicated for patients (HF*p*EF and HF*r*EF) on GDMT with angina and suitable coronary anatomy, especially for a left main stenosis (>50%) or left main equivalent disease.^{11,13,15,348} (*Level of Evidence: C*)

Class IIa

- 1. CABG to improve survival is reasonable in patients with mild to moderate LV systolic dysfunction (EF 35% to 50%) and significant (\geq 70% diameter stenosis) multivessel CAD or proximal left anterior descending coronary artery stenosis when viable myocardium is present in the region of intended revascularization.³⁴⁸⁻³⁵⁰ (Level of Evidence: B)
- 2. CABG or medical therapy is reasonable to improve morbidity and cardiovascular mortality for patients with severe LV dysfunction (EF <35%), HF, and significant CAD.^{351,352} (Level of Evidence: B)
- 3. Surgical aortic valve replacement is reasonable for patients with critical aortic stenosis and a predicted surgical mortality of no greater than 10%.³⁵³ (Level of Evidence: B)
- 4. Transcatheter aortic valve replacement after careful candidate consideration is reasonable for patients with critical aortic stenosis who are deemed inoperable.³⁵⁴ (*Level of Evidence: B*)

Class IIb

- 1. CABG may be considered with the intent of improving survival in patients with ischemic heart disease with severe LV systolic dysfunction (EF <35%) and operable coronary anatomy whether or not viable myocardium is present.^{352,355,356} (Level of Evidence: B)
- 2. Transcatheter mitral valve repair or mitral valve surgery for functional mitral insufficiency is of uncertain benefit and should only be considered after careful candidate selection and with a background of GDMT.³⁵⁷⁻³⁶⁰ (Level of Evidence: B)
- **3.** Surgical reverse remodeling or LV aneurysmectomy may be considered in carefully selected patients with HF*r*EF for specific indications, including intractable HF and ventricular arrhythmias.³⁶¹ (*Level of Evidence: B*)

10. Coordinating Care for Patients With Chronic HF: Recommendations

Class I

- 1. Effective systems of care coordination with special attention to care transitions should be deployed for every patient with chronic HF that facilitate and ensure effective care that is designed to achieve GDMT and prevent hospitalization.^{333,336,362–377} (Level of Evidence: B)
- 2. Every patient with HF should have a clear, detailed, and evidence-based plan of care that ensures the achievement of GDMT goals, effective management of comorbid conditions, timely follow-up with the healthcare team, appropriate dietary and physical activities, and compliance with secondary prevention

guidelines for cardiovascular disease. This plan of care should be updated regularly and made readily available to all members of each patient's healthcare team.¹⁴ (*Level of Evidence: C*)

3. Palliative and supportive care is effective for patients with symptomatic advanced HF to improve quality of life.^{31,378–381} (*Level of Evidence: B*)

11. Quality Metrics/Performance Measures: Recommendations

Class I

1. Performance measures based on professionally developed clinical practice guidelines should be used with the goal of improving quality of care for HF.^{334,343,382} (Level of Evidence: B)

Class IIa

1. Participation in quality improvement programs and patient registries based on nationally endorsed, clinical practice guideline–based quality and performance measures can be beneficial in improving quality of HF care.^{334,343} (*Level of Evidence: B*)

See Table 26 for a revised ACCF/AHA/PCPI 2011 HF measurement set.

12. Evidence Gaps and Future Research Directions

Despite the objective evidence compiled by the writing committee on the basis of hundreds of clinical trials, there are huge gaps in our knowledge base about many fundamental aspects of HF care. Some key examples include an effective management strategy for patients with HFpEF beyond blood pressure control; a convincing method to use biomarkers in the optimization of medical therapy; the recognition and treatment of cardiorenal syndrome; and the critical need for improving patient adherence to therapeutic regimens. Even the widely embraced dictum of sodium restriction in HF is not well supported by current evidence. Moreover, the majority of the clinical trials that inform GDMT were designed around the primary endpoint of mortality, so that there is less certainty about the impact of therapies on the health-related quality of life of patients. It is also of major concern that the majority of randomized controlled trials failed to randomize a sufficient number of the elderly, women, and underrepresented minorities, thus limiting our insight into these important patient cohorts. A growing body of studies on patient-centered outcomes research is likely to address some of these deficiencies, but time will be required.

HF is a syndrome with a high prevalence of comorbidities and multiple chronic conditions, but most guidelines are developed for patients with a single disease. Nevertheless, the coexistence of additional diseases such as arthritis, renal insufficiency, diabetes mellitus, or chronic lung disease with the HF syndrome should logically require a modification of treatment, outcome assessment, or follow-up care. About 25%

Table 26. ACCF/AHA/AMA-PCPI 2011 HF Measurement Set

Measure	Description*	Care Setting	Level of Measurement
1. LVEF assessment	Percentage of patients aged ≥18 y with a diagnosis of HF for whom the quantitative or qualitative results of a recent or prior (any time in the past) LVEF assessment is documented within a 12-mo period	Outpatient	Individual practitioner
2. LVEF assessment	Percentage of patients aged ≥18 y with a principal discharge diagnosis of HF with documentation in the hospital record of the results of an LVEF assessment performed either before arrival or during hospitalization, OR documentation in the hospital record that LVEF assessment is planned for after discharge	Inpatient	 Individual practitioner Facility
3. Symptom and activity assessment	Percentage of patient visits for patients aged ≥18 y with a diagnosis of HF with quantitative results of an evaluation of both current level of activity and clinical symptoms documented	Outpatient	Individual practitioner
4. Symptom management†	Percentage of patient visits for patients aged ≥18 y with a diagnosis of HF and with quantitative results of an evaluation of both level of activity AND clinical symptoms documented in which patient symptoms have improved or remained consistent with treatment goals since last assessment OR patient symptoms have demonstrated clinically important deterioration since last assessment with a documented plan of care	Outpatient	Individual practitioner
5. Patient self-care education†‡	Percentage of patients aged ≥18 y with a diagnosis of HF who were provided with self-care education on ≥3 elements of education during ≥1 visits within a 12-mo period	Outpatient	Individual practitioner
 Beta-blocker therapy for LVSD (outpatient and inpatient setting) 	Percentage of patients aged ≥18 y with a diagnosis of HF with a current or prior LVEF <40% who were prescribed beta-blocker therapy with bisoprolol, carvedilol, or sustained-release metoprolol succinate either within a 12-mo period when seen in the outpatient setting or at hospital discharge	Inpatient and outpatient	 Individual practitioner Facility
7. ACE inhibitor or ARB therapy for LVSD (outpatient and inpatient setting)	Percentage of patients aged ≥18 y with a diagnosis of HF with a current or prior LVEF <40% who were prescribed ACE inhibitor or ARB therapy either within a 12-mo period when seen in the outpatient setting or at hospital discharge	Inpatient and outpatient	 Individual practitioner Facility
8. Counseling about ICD implantation for patients with LVSD on combination medical therapy†‡	Percentage of patients aged ≥18 y with a diagnosis of HF with current LVEF ≤35% despite ACE inhibitor/ARB and beta- blocker therapy for at least 3 mo who were counseled about ICD placement as a treatment option for the prophylaxis of sudden death	Outpatient	Individual practitioner
9. Postdischarge appointment for HF patients	Percentage of patients, regardless of age, discharged from an inpatient facility to ambulatory care or home health care with a principal discharge diagnosis of HF for whom a follow-up appointment was scheduled and documented, including location, date, and time for a follow-up office visit or home health visit (as specified)	Inpatient	Facility

N.B., Regarding test measure no. 8, implantation of an ICD must be consistent with published guidelines. This measure is intended to promote counseling only. *Refer to the complete measures for comprehensive information, including measure exception.

†Test measure designated for use in internal quality improvement programs only. These measures are not appropriate for any other purpose (eg, pay for performance, physician ranking, or public reporting programs).

‡New measure.

ACCF indicates American College of Cardiology Foundation; ACE, angiotensin-converting enzyme; AHA, American Heart Association; AMA-PCPI, American Medical Association–Physician Consortium for Performance Improvement; ARB, angiotensin-receptor blocker; HF, heart failure; ICD, implantable cardioverter-defibrillator; LVEF, left ventricular ejection fraction; and LVSD, left ventricular systolic dysfunction.

Adapted from Bonow et al.383

of Americans have multiple chronic conditions; this figure rises to 75% in those >65 years of age, including the diseases referred to above, as well as asthma, hypertension, cognitive disorders, or depression.³⁴⁷ Most randomized controlled trials in HF specifically excluded patients with significant other

comorbidities from enrollment, thus limiting our ability to generalize our recommendations to many real-world patients. Therefore, the clinician must, as always, practice the art of using the best of the guideline recommendations as they apply to a specific patient. Future research will need to focus on novel pharmacological therapies, especially for patients hospitalized with HF; regenerative cell-based therapies to restore myocardium; and new device platforms that will either improve existing technologies (eg, CRT, ICD, left ventricular assist device) or introduce simpler, less morbid devices that are capable of changing the natural history of HF. What is critically needed is an evidence base that clearly identifies best processes of care, especially in the transition from hospital to home. Finally, preventing the burden of this disease through more successful risk modification, sophisticated screening, perhaps using specific omics technologies (ie, systems biology), or effective treatment interventions that reduce the progression from stage A to stage B is an urgent need.

Presidents and Staff

American College of Cardiology Foundation

John Gordon Harold, MD, MACC, President

- Shalom Jacobovitz, Chief Executive Officer
- William J. Oetgen, MD, MBA, FACC, Senior Vice President, Science and Quality
- Charlene L. May, Senior Director, Science and Clinical Policy

American College of Cardiology Foundation/ American Heart Association

Lisa Bradfield, CAE, Director, Science and Clinical Policy Debjani Mukherjee, MPH, Associate Director, Evidence-Based Medicine

Ezaldeen Ramadhan III, Specialist, Science and Clinical Policy Sarah Jackson, MPH, Specialist, Science and Clinical Policy

American Heart Association

Donna K. Arnett, PhD, MD, FAHA, President

Nancy Brown, Chief Executive Officer

Rose Marie Robertson, MD, FAHA, Chief Science Officer

Gayle R. Whitman, PhD, RN, FAHA, FAAN, Senior Vice President, Office of Science Operations

- Judy Bezanson, DSN, RN, CNS-MS, FAHA, Science and Medicine Advisor
- Jody Hundley, Production Manager, Scientific Publications, Office of Science Operations

References

- ACCF/AHA Task Force on Practice Guidelines. Methodology Manual and Policies From the ACCF/AHA Task Force on Practice Guidelines. Available at: http://assets.cardiosource.com/Methodology_Manual_for_ ACC_AHA_Writing_Committees.pdf and http://my.americanheart.org/idc/ groups/ahamah-public/@wcm/sop/documents/downloadable/ucm_319826. pdf. American College of Cardiology Foundation and American Heart Association. Accessed May 16, 2012.
- Committee on Standards for Developing Trustworthy Clinical Practice Guidelines; Institute of Medicine. *Clinical Practice Guidelines We Can Trust.* Washington, DC: The National Academies Press; 2011.
- Committee on Standards for Systematic Reviews of Comparative Effectiveness Research, Institute of Medicine: *Finding What Works in Health Care: Standards for Systematic Reviews*. Washington, DC: The National Academies Press; 2011.
- Yancy C, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:e240–e327.

- Tracy CM, Epstein AE, Darbar D, et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for devicebased therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation. 2013;127:e283–352.
- 6. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Circulation. 2008;118:e714–833.
- Fuster V, Ryden LE, Cannom DS, et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;123:e269–367.
- Wann LS, Curtis AB, January CT, et al. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (updating the 2006 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;123:104–23.
- Wann LS, Curtis AB, Ellenbogen KA, et al. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (update on dabigatran): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2011;123:1144–50.
- Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2010;122:e584–636.
- Hillis LD, Smith PK, Anderson JL, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124:e652–735.
- Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124:e783–831.
- 13. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/ SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011;124:e574–651.
- 14. Smith SC Jr, Benjamin EJ, Bonow RO, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation. 2011;124:2458–73.
- 15. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/ PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012;126:e354–471.
- O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:529–55.
- Anderson J, Adams C, Antman E, et al. 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction. Circulation. 2013;127:e663–828.
- 18. Bonow RO, Carabello BA, Chatterjee K, et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Circulation. 2008;118:e523–661.
- Lindenfeld J, Albert NM, Boehmer JP, et al. HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16:e1–194.

- 20. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Eur Heart J. 2012;33:1787–847.
- National Collaborating Centre for Acute and Chronic Conditions. Chronic heart failure: management of chronic heart failure in adults in primary and secondary care (NICE clinical guideline 108): Available at: http://www. nice.org.uk/nicemedia/live/13099/50517/50517.pdf. Accessed March 11, 2013.
- 22. Guyatt GH, Akl EA, Crowther M, et al. Executive summary: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:7S–47S.
- Costanzo MR, Dipchand A, Starling R, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29:914–56.
- 24. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113:1807–16.
- Ashley EA, Hershberger RE, Caleshu C, et al. Genetics and cardiovascular disease: a policy statement from the American Heart Association. Circulation. 2012;126:142–57.
- 26. Patel MR, White RD, Abbara S, et al. 2013 ACCF/ACR/ASE/ASNC/SCCT/ SCMR appropriate utilization of cardiovascular imaging in heart failure: a joint report of the American College of Radiology Appropriateness Criteria Committee and the American College of Cardiology Foundation Appropriate Use Criteria Task Force. J Am Coll Cardiol. 2013;61:2207–2231.
- 27. Patel MR, Dehmer GJ, Hirshfeld JW, et al. ACCF/SCAI/STS/AATS/AHA/ ASNC/HFSA/SCCT 2012 appropriate use criteria for coronary revascularization focused update: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, American Society of Nuclear Cardiology, and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. 2012;59:857–81.
- Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52.
- 29. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.
- Balady GJ, Ades PA, Bittner VA, et al. Referral, enrollment, and delivery of cardiac rehabilitation/secondary prevention programs at clinical centers and beyond: a presidential advisory from the American Heart Association. Circulation. 2011;124:2951–60.
- Allen LA, Stevenson LW, Grady KL, et al. Decision making in advanced heart failure: a scientific statement from the American Heart Association. Circulation. 2012;125:1928–52.
- 32. Peura JL, Colvin-Adams M, Francis GS, et al. Recommendations for the use of mechanical circulatory support: device strategies and patient selection: a scientific statement from the American Heart Association. Circulation. 2012;126:2648–67.
- 33. Metra M, Ponikowski P, Dickstein K, et al. Advanced chronic heart failure: a position statement from the Study Group on Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2007;9:684–94.
- 34. Furie KL, Goldstein LB, Albers GW, et al. Oral antithrombotic agents for the prevention of stroke in nonvalvular atrial fibrillation: a science advisory for healthcare professionals from the American Heart Association/ American Stroke Association. Stroke. 2012;43:3442–3453. Errata in: Stroke. 2013;44:e20 and Stroke. 2012;43:e181.
- Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60:1581–98.
- 36. Fonarow GC, Stough WG, Abraham WT, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.
- Hunt SA, Abraham WT, Chin MH, et al. 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and

management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2009;119:e391–479.

- The Criteria Committee of the New York Heart Association. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels. 9th ed. Boston, Mass: Little & Brown; 1994.
- Djousse L, Driver JA, Gaziano JM. Relation between modifiable lifestyle factors and lifetime risk of heart failure. JAMA. 2009;302:394–400.
- Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–245.
- Curtis LH, Whellan DJ, Hammill BG, et al. Incidence and prevalence of heart failure in elderly persons, 1994–2003. Arch Intern Med. 2008;168:418–24.
- Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292:344–50.
- Owan TE, Redfield MM. Epidemiology of diastolic heart failure. Prog Cardiovasc Dis. 2005;47:320–32.
- 44. The Booming Dynamics of Aging: From Awareness to Action. The White House Conference on Aging. Washington, DC: US Department of Health and Human Services; 2011.
- Bahrami H, Kronmal R, Bluemke DA, et al. Differences in the incidence of congestive heart failure by ethnicity: the Multi-Ethnic Study of Atherosclerosis. Arch Intern Med. 2008;168:2138–45.
- Lloyd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation. 2002;106:3068–72.
- Loehr LR, Rosamond WD, Chang PP, et al. Heart failure incidence and survival (from the Atherosclerosis Risk in Communities study). Am J Cardiol. 2008;101:1016–22.
- Butman SM, Ewy GA, Standen JR, et al. Bedside cardiovascular examination in patients with severe chronic heart failure: importance of rest or inducible jugular venous distension. J Am Coll Cardiol. 1993;22:968–74.
- 49. Drazner MH, Rame JE, Stevenson LW, et al. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345:574–81.
- Drazner MH, Hellkamp AS, Leier CV, et al. Value of clinician assessment of hemodynamics in advanced heart failure: the ESCAPE trial. Circ Heart Fail. 2008;1:170–7.
- Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261:884–8.
- Aaronson KD, Schwartz JS, Chen TM, et al. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation. 1997;95:2660–7.
- Fonarow GC, Adams KF Jr, Abraham WT, et al. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293:572–80.
- 54. Komajda M, Carson PE, Hetzel S, et al. Factors associated with outcome in heart failure with preserved ejection fraction: findings from the Irbesartan in Heart Failure with Preserved Ejection Fraction Study (I-PRESERVE). Circ Heart Fail. 2011;4:27–35.
- Lee DS, Austin PC, Rouleau JL, et al. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290:2581–7.
- Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113:1424–33.
- 57. O'Connor CM, Abraham WT, Albert NM, et al. Predictors of mortality after discharge in patients hospitalized with heart failure: an analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J. 2008;156:662–73.
- Peterson PN, Rumsfeld JS, Liang L, et al. A validated risk score for inhospital mortality in patients with heart failure from the American Heart Association get with the guidelines program. Circ Cardiovasc Qual Outcomes. 2010;3:25–32.
- Pocock SJ, Wang D, Pfeffer MA, et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J. 2006;27:65–75.
- 60. Wedel H, McMurray JJ, Lindberg M, et al. Predictors of fatal and non-fatal outcomes in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA): incremental value of apolipoprotein A-1, high-sensitivity C-reactive peptide and N-terminal pro B-type natriuretic peptide. Eur J Heart Fail. 2009;11:281–91.
- O'Connor CM, Hasselblad V, Mehta RH, et al. Triage after hospitalization with advanced heart failure: the ESCAPE (Evaluation Study of Congestive

Heart Failure and Pulmonary Artery Catheterization Effectiveness) risk model and discharge score. J Am Coll Cardiol. 2010;55:872–8.

- 62. Kociol RD, Horton JR, Fonarow GC, et al. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims. Circ Heart Fail. 2011;4:628–36.
- Okonko DO, Mandal AK, Missouris CG, et al. Disordered iron homeostasis in chronic heart failure: prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol. 2011;58:1241–51.
- Costello-Boerrigter LC, Boerrigter G, Redfield MM, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J Am Coll Cardiol. 2006;47:345–53.
- 65. de Lemos JA, McGuire DK, Khera A, et al. Screening the population for left ventricular hypertrophy and left ventricular systolic dysfunction using natriuretic peptides: results from the Dallas Heart Study. Am Heart J. 2009;157:746–53.
- 66. Goetze JP, Mogelvang R, Maage L, et al. Plasma pro-B-type natriuretic peptide in the general population: screening for left ventricular hypertrophy and systolic dysfunction. Eur Heart J. 2006;27:3004–10.
- Ng LL, Loke IW, Davies JE, et al. Community screening for left ventricular systolic dysfunction using plasma and urinary natriuretic peptides. J Am Coll Cardiol. 2005;45:1043–50.
- Richards AM, Doughty R, Nicholls MG, et al. Plasma N-terminal probrain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction: Australia-New Zealand Heart Failure Group. J Am Coll Cardiol. 2001;37:1781–7.
- Tang WH, Girod JP, Lee MJ, et al. Plasma B-type natriuretic peptide levels in ambulatory patients with established chronic symptomatic systolic heart failure. Circulation. 2003;108:2964–6.
- Vasan RS, Benjamin EJ, Larson MG, et al. Plasma natriuretic peptides for community screening for left ventricular hypertrophy and systolic dysfunction: the Framingham heart study. JAMA. 2002;288:1252–9.
- Berger R, Huelsman M, Strecker K, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation. 2002;105:2392–7.
- Anand IS, Fisher LD, Chiang YT, et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation. 2003;107:1278–83.
- Forfia PR, Watkins SP, Rame JE, et al. Relationship between B-type natriuretic peptides and pulmonary capillary wedge pressure in the intensive care unit. J Am Coll Cardiol. 2005;45:1667–71.
- Taub PR, Daniels LB, Maisel AS. Usefulness of B-type natriuretic peptide levels in predicting hemodynamic and clinical decompensation. Heart Fail Clin. 2009;5:169–75.
- 75. Maeda K, Tsutamoto T, Wada A, et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J Am Coll Cardiol. 2000;36:1587–93.
- 76. Neuhold S, Huelsmann M, Strunk G, et al. Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease. J Am Coll Cardiol. 2008;52:266–72.
- Januzzi JL Jr, Rehman SU, Mohammed AA, et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58:1881–9.
- Porapakkham P, Porapakkham P, Zimmet H, et al. B-type natriuretic peptide-guided heart failure therapy: a meta-analysis. Arch Intern Med. 2010;170:507–14.
- Felker GM, Hasselblad V, Hernandez AF, et al. Biomarker-guided therapy in chronic heart failure: a meta-analysis of randomized controlled trials. Am Heart J. 2009;158:422–30.
- Jourdain P, Jondeau G, Funck F, et al. Plasma brain natriuretic peptideguided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol. 2007;49:1733–9.
- Pfisterer M, Buser P, Rickli H, et al. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. JAMA. 2009;301:383–92.
- 82. Berger R, Moertl D, Peter S, et al. N-terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary

care in chronic heart failure: a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol. 2010;55:645–53.

- Troughton RW, Frampton CM, Yandle TG, et al. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet. 2000;355:1126–30.
- Lainchbury JG, Troughton RW, Strangman KM, et al. N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol. 2009;55:53–60.
- Horwich TB, Patel J, MacLellan WR, et al. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108:833–8.
- Sato Y, Yamada T, Taniguchi R, et al. Persistently increased serum concentrations of cardiac troponint in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation. 2001;103:369–74.
- Setsuta K, Seino Y, Takahashi N, et al. Clinical significance of elevated levels of cardiac troponin T in patients with chronic heart failure. Am J Cardiol. 1999;84:608–11, A9.
- Hudson MP, O'Connor CM, Gattis WA, et al. Implications of elevated cardiac troponin T in ambulatory patients with heart failure: a prospective analysis. Am Heart J. 2004;147:546–52.
- Tang WH, Shrestha K, Shao Z, et al. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol. 2011;108:385–90.
- 90. de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43:60–8.
- 91. Lok DJ, van der Meer P, de la Porte PW, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010;99:323–8.
- Dao Q, Krishnaswamy P, Kazanegra R, et al. Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting. J Am Coll Cardiol. 2001;37:379–85.
- Davis M, Espiner E, Richards G, et al. Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet. 1994;343:440–4.
- 94. Januzzi JL Jr, Sakhuja R, O'Donoghue M, et al. Utility of amino-terminal pro-brain natriuretic peptide testing for prediction of 1-year mortality in patients with dyspnea treated in the emergency department. Arch Intern Med. 2006;166:315–20.
- Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–7.
- van Kimmenade RR, Pinto YM, Bayes-Genis A, et al. Usefulness of intermediate amino-terminal pro-brain natriuretic peptide concentrations for diagnosis and prognosis of acute heart failure. Am J Cardiol. 2006;98:386–90.
- 97. Moe GW, Howlett J, Januzzi JL, et al. N-terminal pro-B-type natriuretic peptide testing improves the management of patients with suspected acute heart failure: primary results of the Canadian prospective randomized multicenter IMPROVE-CHF study. Circulation. 2007;115:3103–10.
- Mueller C, Scholer A, Laule-Kilian K, et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N Engl J Med. 2004;350:647–54.
- Bettencourt P, Azevedo A, Pimenta J, et al. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004;110:2168–74.
- 100. Cheng V, Kazanagra R, Garcia A, et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J Am Coll Cardiol. 2001;37:386–91.
- 101. Fonarow GC, Peacock WF, Horwich TB, et al. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE. Am J Cardiol. 2008;101:231–7.
- 102. Logeart D, Thabut G, Jourdain P, et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J Am Coll Cardiol. 2004;43:635–41.
- 103. Maisel A, Hollander JE, Guss D, et al. Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT): a multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J Am Coll Cardiol. 2004;44:1328–33.
- 104. Zairis MN, Tsiaousis GZ, Georgilas AT, et al. Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decompensated chronic heart failure. Int J Cardiol. 2010;141:284–90.
- Peacock WFIV, De Marco T, Fonarow GC, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117–26.

- Lee DS, Stitt A, Austin PC, et al. Prediction of heart failure mortality in emergent care: a cohort study. Ann Intern Med. 2012;156:767–75.
- 107. Bayes-Genis A, Lopez L, Zapico E, et al. NT-ProBNP reduction percentage during admission for acutely decompensated heart failure predicts long-term cardiovascular mortality. J Card Fail. 2005;11:S3–S8.
- Dhaliwal AS, Deswal A, Pritchett A, et al. Reduction in BNP levels with treatment of decompensated heart failure and future clinical events. J Card Fail. 2009;15:293–9.
- 109. Alonso-Martinez JL, Llorente-Diez B, Echegaray-Agara M, et al. C-reactive protein as a predictor of improvement and readmission in heart failure. Eur J Heart Fail. 2002;4:331–6.
- 110. Dieplinger B, Gegenhuber A, Kaar G, et al. Prognostic value of established and novel biomarkers in patients with shortness of breath attending an emergency department. Clin Biochem. 2010;43:714–9.
- 111. Ilva T, Lassus J, Siirila-Waris K, et al. Clinical significance of cardiac troponins I and T in acute heart failure. Eur J Heart Fail. 2008;10:772–9.
- 112. Januzzi JL Jr, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–13.
- 113. Manzano-Fernandez S, Mueller T, Pascual-Figal D, et al. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am J Cardiol. 2011;107:259–67.
- 114. Rehman SU, Mueller T, Januzzi JL Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52:1458–65.
- 115. Shah RV, Chen-Tournoux AA, Picard MH, et al. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010;12:826–32.
- 116. Deleted in press.
- 117. Rizzello V, Poldermans D, Biagini E, et al. Prognosis of patients with ischaemic cardiomyopathy after coronary revascularisation: relation to viability and improvement in left ventricular ejection fraction. Heart. 2009;95:1273–7.
- 118. Allman KC, Shaw LJ, Hachamovitch R, et al. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39:1151–8.
- 119. Beanlands RS, Ruddy TD, deKemp RA, et al. Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol. 2002;40:1735–43.
- Pagley PR, Beller GA, Watson DD, et al. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation. 1997;96:793–800.
- 121. Senior R, Kaul S, Lahiri A. Myocardial viability on echocardiography predicts long-term survival after revascularization in patients with ischemic congestive heart failure. J Am Coll Cardiol. 1999;33:1848–54.
- 122. Kwon DH, Halley CM, Carrigan TP, et al. Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function: a delayed hyperenhancement cardiac magnetic resonance study. JACC Cardiovasc Imaging. 2009;2:34–44.
- Ordovas KG, Higgins CB. Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology. 2011;261:358–74.
- 124. Syed IS, Glockner JF, Feng D, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3:155–64.
- 125. Beller GA. Tests that may be overused or misused in cardiology: the Choosing Wisely campaign. J Nucl Cardiol. 2012;19:401–3.
- 126. Douglas PS, Garcia MJ, Haines DE, et al. ACCF/ASE/AHA/ASNC/ HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians. J Am Soc Echocardiogr. 2011;24:229–67.
- 127. Binanay C, Califf RM, Hasselblad V, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294:1625–33.
- Beckett NS, Peters R, Fletcher AE, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98.

- 129. Kostis JB, Davis BR, Cutler J, et al. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension: SHEP Cooperative Research Group. JAMA. 1997;278:212–6.
- 130. Sciarretta S, Palano F, Tocci G, et al. Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network metaanalysis of studies in patients with hypertension and high cardiovascular risk. Arch Intern Med. 2011;171:384–94.
- Staessen JA, Wang JG, Thijs L. Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003. J Hypertens. 2003;21:1055–76.
- 132. Verdecchia P, Sleight P, Mancia G, et al. Effects of telmisartan, ramipril, and their combination on left ventricular hypertrophy in individuals at high vascular risk in the Ongoing Telmisartan Alone and in Combination With Ramipril Global End Point Trial and the Telmisartan Randomized Assessment Study in ACE Intolerant Subjects With Cardiovascular Disease. Circulation. 2009;120:1380–9.
- 133. Pfeffer MA, Braunwald E, Moye LA, et al; the SAVE Investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the survival and ventricular enlargement trial. N Engl J Med. 1992;327:669–77.
- 134. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316:1429–35.
- 135. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992;327:685–91.
- 136. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893–906.
- Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet. 2001;357:1385–90.
- Vantrimpont P, Rouleau JL, Wun CC, et al; SAVE Investigators. Additive beneficial effects of beta-blockers to angiotensin-converting enzyme inhibitors in the Survival and Ventricular Enlargement (SAVE) Study. J Am Coll Cardiol. 1997;29:229–36.
- 139. Exner DV, Dries DL, Waclawiw MA, et al. Beta-adrenergic blocking agent use and mortality in patients with asymptomatic and symptomatic left ventricular systolic dysfunction: a post hoc analysis of the Studies of Left Ventricular Dysfunction. J Am Coll Cardiol. 1999;33:916–23.
- 140. Scirica BM, Morrow DA, Cannon CP, et al. Intensive statin therapy and the risk of hospitalization for heart failure after an acute coronary syndrome in the PROVE IT-TIMI 22 study. J Am Coll Cardiol. 2006;47:2326–31.
- 141. Afilalo J, Majdan AA, Eisenberg MJ. Intensive statin therapy in acute coronary syndromes and stable coronary heart disease: a comparative meta-analysis of randomised controlled trials. Heart. 2007;93:914–21.
- 142. Ho JE, Waters DD, Kean A, et al. Relation of improvement in estimated glomerular filtration rate with atorvastatin to reductions in hospitalizations for heart failure (from the Treating to New Targets [TNT] study). Am J Cardiol. 2012;109:1761–6.
- 143. Strandberg TE, Holme I, Faergeman O, et al. Comparative effect of atorvastatin (80 mg) versus simvastatin (20 to 40 mg) in preventing hospitalizations for heart failure in patients with previous myocardial infarction. Am J Cardiol. 2009;103:1381–5.
- 144. Kjekshus J, Pedersen TR, Olsson AG, et al. The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease. J Card Fail. 1997;3:249–54.
- 145. Sacks FM, Pfeffer MA, Moye LA, et al; Cholesterol and Recurrent Events Trial Investigators. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med. 1996;335:1001–9.
- 146. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol. 2004;44:720–32.
- 147. Jong P, Yusuf S, Rousseau MF, et al. Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study. Lancet. 2003;361:1843–8.
- 148. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83.
- 149. Boren SA, Wakefield BJ, Gunlock TL, et al. Heart failure self-management education: a systematic review of the evidence. Int J Evid Based Healthc. 2009;7:159–68.

- 150. Gwadry-Sridhar FH, Arnold JM, Zhang Y, et al. Pilot study to determine the impact of a multidisciplinary educational intervention in patients hospitalized with heart failure. Am Heart J. 2005;150:982.
- Koelling TM, Johnson ML, Cody RJ, et al. Discharge education improves clinical outcomes in patients with chronic heart failure. Circulation. 2005;111:179–85.
- 152. VanSuch M, Naessens JM, Stroebel RJ, et al. Effect of discharge instructions on readmission of hospitalised patients with heart failure: do all of the Joint Commission on Accreditation of Healthcare Organizations heart failure core measures reflect better care? Qual Saf Health Care. 2006;15:414–7.
- Aguado O, Morcillo C, Delas J, et al. Long-term implications of a single home-based educational intervention in patients with heart failure. Heart Lung. 2010;39:S14–S22.
- 154. Riegel B, Moser DK, Anker SD, et al. State of the science: promoting self-care in persons with heart failure: a scientific statement from the American Heart Association. Circulation. 2009;120:1141–63.
- Davies EJ, Moxham T, Rees K, et al. Exercise training for systolic heart failure: Cochrane systematic review and meta-analysis. Eur J Heart Fail. 2010;12:706–15.
- 156. McKelvie RS. Exercise training in patients with heart failure: clinical outcomes, safety, and indications. Heart Fail Rev. 2008;13:3–11.
- 157. O'Connor CM, Whellan DJ, Lee KL, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301:1439–50.
- 158. Pina IL, Apstein CS, Balady GJ, et al. Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation. 2003;107:1210–25.
- 159. Arzt M, Floras JS, Logan AG, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation. 2007;115:3173–80.
- Bradley TD, Logan AG, Kimoff RJ, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353:2025–33.
- 161. Kaneko Y, Floras JS, Usui K, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348:1233–41.
- 162. Mansfield DR, Gollogly NC, Kaye DM, et al. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am J Respir Crit Care Med. 2004;169:361–6.
- 163. Smart N, Marwick TH. Exercise training for patients with heart failure: a systematic review of factors that improve mortality and morbidity. Am J Med. 2004;116:693–706.
- 164. Piepoli MF, Davos C, Francis DP, et al. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ. 2004;328:189.
- 165. Austin J, Williams R, Ross L, et al. Randomised controlled trial of cardiac rehabilitation in elderly patients with heart failure. Eur J Heart Fail. 2005;7:411–7.
- 166. Austin J, Williams WR, Ross L, et al. Five-year follow-up findings from a randomized controlled trial of cardiac rehabilitation for heart failure. Eur J Cardiovasc Prev Rehabil. 2008;15:162–7.
- 167. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325:303–10.
- 168. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325:293–302.
- 169. Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure: Collaborative Group on ACE Inhibitor Trials. JAMA. 1995;273:1450–6.
- 170. Cohn JN, Tognoni G. A randomized trial of the angiotensinreceptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667–75.
- 171. Maggioni AP, Anand I, Gottlieb SO, et al. Effects of valsartan on morbidity and mortality in patients with heart failure not receiving angiotensinconverting enzyme inhibitors. J Am Coll Cardiol. 2002;40:1414–21.
- 172. The Xamoterol in Severe Heart Failure Study Group. Xamoterol in severe heart failure. Lancet. 1990;336:1–6.
- 173. Australia-New Zealand Heart Failure Research Collaborative Group. Effects of carvedilol, a vasodilator-beta-blocker, in patients with congestive heart failure due to ischemic heart disease. Circulation. 1995;92:212–8.

- 174. The Beta-Blocker Evaluation of Survival Trial Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344:1659–67.
- 175. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet. 2003;362:7–13.
- 176. Pfeffer MA, Swedberg K, Granger CB, et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet. 2003;362:759–66.
- 177. Konstam MA, Neaton JD, Dickstein K, et al. Effects of high-dose versus lowdose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet. 2009;374:1840–8.
- 178. Pitt B, Segal R, Martinez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–52.
- 179. Carson P, Ziesche S, Johnson G, et al; Vasodilator-Heart Failure Trial Study Group. Racial differences in response to therapy for heart failure: analysis of the vasodilator-heart failure trials. J Card Fail. 1999;5:178–87.
- Taylor AL, Ziesche S, Yancy C, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004;351:2049–57.
- 181. Pitt B, Zannad F, Remme WJ, et al; Randomized Aldactone Evaluation Study Investigators. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341:709–17.
- Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.
- 183. Packer M, Poole-Wilson PA, Armstrong PW, et al; ATLAS Study Group. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. Circulation. 1999;100:2312–8.
- 184. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.
- 185. CBIS II Authors. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999;353:9–13.
- Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651–8.
- Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353:2001–7.
- Cohn JN, Archibald DG, Ziesche S, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure: results of a Veterans Administration Cooperative Study. N Engl J Med. 1986;314:1547–52.
- 189. Granger CB, McMurray JJ, Yusuf S, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003;362:772–6.
- 190. Crozier I, Ikram H, Awan N, et al; Losartan Hemodynamic Study Group. Losartan in heart failure: hemodynamic effects and tolerability. Circulation. 1995;91:691–7.
- 191. Gottlieb SS, Dickstein K, Fleck E, et al. Hemodynamic and neurohormonal effects of the angiotensin II antagonist losartan in patients with congestive heart failure. Circulation. 1993;88:1602–9.
- 192. Mazayev VP, Fomina IG, Kazakov EN, et al. Valsartan in heart failure patients previously untreated with an ACE inhibitor. Int J Cardiol. 1998;65:239–46.
- 193. McKelvie RS, Yusuf S, Pericak D, et al. Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study: the RESOLVD Pilot Study Investigators. Circulation. 1999;100:1056–64.
- 194. Riegger GA, Bouzo H, Petr P, et al. for the Symptom, Tolerability, Response to Exercise Trial of Candesartan Cilexetil in Heart Failure (STRETCH) Investigators. Improvement in exercise tolerance and symptoms of congestive heart failure during treatment with candesartan cilexetil: Circulation. 1999;100:2224–30.
- 195. Sharma D, Buyse M, Pitt B, et al. Meta-analysis of observed mortality data from all-controlled, double-blind, multiple-dose studies of losartan in heart failure: Losartan Heart Failure Mortality Meta-analysis Study Group. Am J Cardiol. 2000;85:187–92.
- Velazquez EJ, Pfeffer MA, McMurray JV, et al. VALsartan In Acute myocardial iNfarcTion (VALIANT) trial: baseline characteristics in context. Eur J Heart Fail. 2003;5:537–44.

- 197. Vizzardi E, D'Aloia A, Giubbini R, et al. Effect of spironolactone on left ventricular ejection fraction and volumes in patients with class I or II heart failure. Am J Cardiol. 2010;106:1292–6.
- Juurlink DN, Mamdani MM, Lee DS, et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med. 2004;351:543–51.
- 199. Bozkurt B, Agoston I, Knowlton AA. Complications of inappropriate use of spironolactone in heart failure: when an old medicine spirals out of new guidelines. J Am Coll Cardiol. 2003;41:211–4.
- 200. Butler J, Ezekowitz JA, Collins SP, et al. Update on aldosterone antagonists use in heart failure with reduced left ventricular ejection fraction: Heart Failure Society of America Guidelines Committee. J Card Fail. 2012;18:265–81.
- 201. Fonarow GC, Yancy CW, Hernandez AF, et al. Potential impact of optimal implementation of evidence-based heart failure therapies on mortality. Am Heart J. 2011;161:1024–30.
- 202. The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;336:525–33.
- 203. The Captopril-Digoxin Multicenter Research Group. Comparative effects of therapy with captopril and digoxin in patients with mild to moderate heart failure. JAMA. 1988;259:539–44.
- Dobbs SM, Kenyon WI, Dobbs RJ. Maintenance digoxin after an episode of heart failure: placebo-controlled trial in outpatients. Br Med J. 1977;1:749–52.
- Lee DC, Johnson RA, Bingham JB, et al. Heart failure in outpatients: a randomized trial of digoxin versus placebo. N Engl J Med. 1982;306:699–705.
- Guyatt GH, Sullivan MJ, Fallen EL, et al. A controlled trial of digoxin in congestive heart failure. Am J Cardiol. 1988;61:371–5.
- 207. DiBianco R, Shabetai R, Kostuk W, et al. A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. N Engl J Med. 1989;320:677–83.
- 208. Uretsky BF, Young JB, Shahidi FE, et al. Randomized study assessing the effect of digoxin withdrawal in patients with mild to moderate chronic congestive heart failure: results of the PROVED trial. PROVED Investigative Group. J Am Coll Cardiol. 1993;22:955–62.
- 209. Packer M, Gheorghiade M, Young JB, et al. Withdrawal of digoxin from patients with chronic heart failure treated with angiotensin-convertingenzyme inhibitors: RADIANCE Study. N Engl J Med. 1993;329:1–7.
- Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–92.
- 211. Cairns JA, Connolly S, McMurtry S, et al. Canadian Cardiovascular Society atrial fibrillation guidelines 2010: prevention of stroke and systemic thromboembolism in atrial fibrillation and flutter. Can J Cardiol. 2011;27:74–90.
- 212. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation: analysis of pooled data from five randomized controlled trials. Arch Intern Med. 1994;154:1449–57. Erratum in: Arch Intern Med. 1994;154:2254.
- 213. Hughes M, Lip GY. Stroke and thromboembolism in atrial fibrillation: a systematic review of stroke risk factors, risk stratification schema and cost effectiveness data. Thromb Haemost. 2008;99:295–304.
- 214. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139–51.
- 215. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Newly identified events in the RE-LY trial. N Engl J Med. 2010;363:1875–6.
- Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–91.
- 217. Dries DL, Rosenberg YD, Waclawiw MA, et al. Ejection fraction and risk of thromboembolic events in patients with systolic dysfunction and sinus rhythm: evidence for gender differences in the studies of left ventricular dysfunction trials. J Am Coll Cardiol. 1997;29:1074–80.
- 218. Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J. 2010;31:2369–429.
- 219. Freudenberger RS, Hellkamp AS, Halperin JL, et al. Risk of thromboembolism in heart failure: an analysis from the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Circulation. 2007;115:2637–41.
- Loh E, Sutton MS, Wun CC, et al. Ventricular dysfunction and the risk of stroke after myocardial infarction. N Engl J Med. 1997;336:251–7.
- 221. Massie BM, Collins JF, Ammon SE, et al. Randomized trial of warfarin, aspirin, and clopidogrel in patients with chronic heart failure: the Warfarin and Antiplatelet Therapy in Chronic Heart Failure (WATCH) trial. Circulation. 2009;119:1616–24.

- Homma S, Thompson JL, Pullicino PM, et al. Warfarin and aspirin in patients with heart failure and sinus rhythm. N Engl J Med. 2012;366:1859–69.
- 223. Horwich TB, MacLellan WR, Fonarow GC. Statin therapy is associated with improved survival in ischemic and non-ischemic heart failure. J Am Coll Cardiol. 2004;43:642–8.
- 224. Anker SD, Clark AL, Winkler R, et al. Statin use and survival in patients with chronic heart failure: results from two observational studies with 5200 patients. Int J Cardiol. 2006;112:234–42.
- 225. Go AS, Lee WY, Yang J, et al. Statin therapy and risks for death and hospitalization in chronic heart failure. JAMA. 2006;296:2105–11.
- Foody JM, Shah R, Galusha D, et al. Statins and mortality among elderly patients hospitalized with heart failure. Circulation. 2006;113:1086–92.
- Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:2248–61.
- Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1231–9.
- 229. Macchia A, Levantesi G, Franzosi MG, et al. Left ventricular systolic dysfunction, total mortality, and sudden death in patients with myocardial infarction treated with n-3 polyunsaturated fatty acids. Eur J Heart Fail. 2005;7:904–9.
- 230. Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–30.
- 231. McMurray JJ, Dunselman P, Wedel H, et al. Coenzyme Q10, rosuvastatin, and clinical outcomes in heart failure: a pre-specified substudy of CORONA (Controlled Rosuvastatin Multinational Study in Heart Failure). J Am Coll Cardiol. 2010;56:1196–204.
- Soukoulis V, Dihu JB, Sole M, et al. Micronutrient deficiencies an unmet need in heart failure. J Am Coll Cardiol. 2009;54:1660–73.
- Effect of verapamil on mortality and major events after acute myocardial infarction (the Danish Verapamil Infarction Trial II--DAVIT II). Am J Cardiol. 1990;66:779–85.
- 234. Goldstein RE, Boccuzzi SJ, Cruess D, et al. Diltiazem increases late-onset congestive heart failure in postinfarction patients with early reduction in ejection fraction: the Adverse Experience Committee; and the Multicenter Diltiazem Postinfarction Research Group. Circulation. 1991;83:52–60.
- 235. Waldo AL, Camm AJ, deRuyter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction: the SWORD Investigators: Survival With Oral d-Sotalol. Lancet. 1996;348:7–12.
- Kober L, Torp-Pedersen C, McMurray JJ, et al. Increased mortality after dronedarone therapy for severe heart failure. N Engl J Med. 2008;358:2678–87.
- 237. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med. 1989;321:406–12.
- The Multicenter Diltiazem Postinfarction Trial Research Group. The effect of diltiazem on mortality and reinfarction after myocardial infarction. N Engl J Med. 1988;319:385–92.
- 239. Figulla HR, Gietzen F, Zeymer U, et al. Diltiazem improves cardiac function and exercise capacity in patients with idiopathic dilated cardiomyopathy: results of the Diltiazem in Dilated Cardiomyopathy Trial. Circulation. 1996;94:346–52.
- 240. Elkayam U, Amin J, Mehra A, et al. A prospective, randomized, doubleblind, crossover study to compare the efficacy and safety of chronic nifedipine therapy with that of isosorbide dinitrate and their combination in the treatment of chronic congestive heart failure. Circulation. 1990;82:1954–61.
- 241. Gislason GH, Rasmussen JN, Abildstrom SZ, et al. Increased mortality and cardiovascular morbidity associated with use of nonsteroidal anti-inflammatory drugs in chronic heart failure. Arch Intern Med. 2009;169:141–9.
- 242. Heerdink ER, Leufkens HG, Herings RM, et al. NSAIDs associated with increased risk of congestive heart failure in elderly patients taking diuretics. Arch Intern Med. 1998;158:1108–12.
- Hudson M, Richard H, Pilote L. Differences in outcomes of patients with congestive heart failure prescribed celecoxib, rofecoxib, or non-steroidal anti-inflammatory drugs: population based study. BMJ. 2005;330:1370.
- Lipscombe LL, Gomes T, Levesque LE, et al. Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA. 2007;298:2634–43.
- 245. Setaro JF, Zaret BL, Schulman DS, et al. Usefulness of verapamil for congestive heart failure associated with abnormal left ventricular

diastolic filling and normal left ventricular systolic performance. Am J Cardiol. 1990;66:981-6.

- 246. Packer M, O'Connor CM, Ghali JK, et al; Prospective Randomized Amlodipine Survival Evaluation Study Group. Effect of amlodipine on morbidity and mortality in severe chronic heart failure. N Engl J Med. 1996;335:1107–14.
- 247. Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557–62.
- 248. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362:777–81.
- Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.
- Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53.
- 251. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.
- Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.
- Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361:1329–38.
- 254. Tang AS, Wells GA, Talajic M, et al; Multicenter Automatic Defibrillator Implantation Trial Investigators. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med. 2010;363:2385–95.
- 255. Moss AJ, Hall WJ, Cannom DS, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med. 1996;335:1933–40.
- Buxton AE, Lee KL, Fisher JD, et al; Multicenter Unsustained Tachycardia Trial Investigators. A randomized study of the prevention of sudden death in patients with coronary artery disease. N Engl J Med. 1999;341:1882–90.
- Hohnloser SH, Kuck KH, Dorian P, et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N Engl J Med. 2004;351:2481–8.
- 258. Linde C, Abraham WT, Gold MR, et al. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J Am Coll Cardiol. 2008;52:1834–43.
- 259. Brignole M, Gammage M, Puggioni E, et al. Comparative assessment of right, left, and biventricular pacing in patients with permanent atrial fibrillation. Eur Heart J. 2005;26:712–22.
- 260. Brignole M, Botto G, Mont L, et al. Cardiac resynchronization therapy in patients undergoing atrioventricular junction ablation for permanent atrial fibrillation: a randomized trial. Eur Heart J. 2011;32:2420–9.
- Doshi RN, Daoud EG, Fellows C, et al. Left ventricular-based cardiac stimulation post AV nodal ablation evaluation (the PAVE study). J Cardiovasc Electrophysiol. 2005;16:1160–5.
- 262. Gasparini M, Auricchio A, Regoli F, et al. Four-year efficacy of cardiac resynchronization therapy on exercise tolerance and disease progression: the importance of performing atrioventricular junction ablation in patients with atrial fibrillation. J Am Coll Cardiol. 2006;48:734–43.
- 263. Wilton SB, Leung AA, Ghali WA, et al. Outcomes of cardiac resynchronization therapy in patients with versus those without atrial fibrillation: a systematic review and meta-analysis. Heart Rhythm. 2011;8:1088–94.
- Upadhyay GA, Choudhry NK, Auricchio A, et al. Cardiac resynchronization in patients with atrial fibrillation: a meta-analysis of prospective cohort studies. J Am Coll Cardiol. 2008;52:1239–46.
- Wilkoff BL, Cook JR, Epstein AE, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. 2002;288:3115–23.
- Adelstein E, Schwartzman D, Gorcsan J 3rd, et al. Predicting hyperresponse among pacemaker-dependent nonischemic cardiomyopathy patients upgraded to cardiac resynchronization. J Cardiovasc Electrophysiol. 2011;22:905–11.
- 267. Vatankulu MA, Goktekin O, Kaya MG, et al. Effect of long-term resynchronization therapy on left ventricular remodeling in pacemaker patients upgraded to biventricular devices. Am J Cardiol. 2009;103:1280–4.
- 268. Setoguchi S, Nohria A, Rassen JA, et al. Maximum potential benefit of implantable defibrillators in preventing sudden death after hospital admission because of heart failure. CMAJ. 2009;180:611–6.
- 269. Carson P, Anand I, O'Connor C, et al. Mode of death in advanced heart failure: the Comparison of Medical, Pacing, and Defibrillation Therapies in Heart Failure (COMPANION) trial. J Am Coll Cardiol. 2005;46:2329–34.

- Zareba W, Piotrowicz K, McNitt S, et al. Implantable cardioverter-defibrillator efficacy in patients with heart failure and left ventricular dysfunction (from the MADIT II population). Am J Cardiol. 2005;95:1487–91.
- 271. Mozaffarian D, Anker SD, Anand I, et al. Prediction of mode of death in heart failure: the Seattle Heart Failure Model. Circulation. 2007;116:392–8.
- 272. Rickard J, Bassiouny M, Cronin EM, et al. Predictors of response to cardiac resynchronization therapy in patients with a non-left bundle branch block morphology. Am J Cardiol. 2011;108:1576–80.
- 273. Deleted in press.
- 274. Russell SD, Miller LW, Pagani FD. Advanced heart failure: a call to action. Congest Heart Fail. 2008;14:316–21.
- 275. Aranda JM Jr, Schofield RS, Pauly DF, et al. Comparison of dobutamine versus milrinone therapy in hospitalized patients awaiting cardiac transplantation: a prospective, randomized trial. Am Heart J. 2003;145:324–9.
- 276. Brozena SC, Twomey C, Goldberg LR, et al. A prospective study of continuous intravenous milrinone therapy for status IB patients awaiting heart transplant at home. J Heart Lung Transplant. 2004;23:1082–6.
- 277. Cuffe MS, Califf RM, Adams KF Jr, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287:1541–7.
- Elkayam U, Tasissa G, Binanay C, et al. Use and impact of inotropes and vasodilator therapy in hospitalized patients with severe heart failure. Am Heart J. 2007;153:98–104.
- 279. Abraham WT, Adams KF, Fonarow GC, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2005;46:57–64.
- 280. O'Connor CM, Gattis WA, Uretsky BF, et al. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1999;138:78–86.
- Hershberger RE, Nauman D, Walker TL, et al. Care processes and clinical outcomes of continuous outpatient support with inotropes (COSI) in patients with refractory endstage heart failure. J Card Fail. 2003;9:180–7.
- Gorodeski EZ, Chu EC, Reese JR, et al. Prognosis on chronic dobutamine or milrinone infusions for stage D heart failure. Circ Heart Fail. 2009;2:320–4.
- 283. Cohn JN, Goldstein SO, Greenberg BH, et al; Vesnarinone Trial Investigators. A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. N Engl J Med. 1998;339:1810–6.
- 284. Hampton JR, van Veldhuisen DJ, Kleber FX, et al; Second Prospective Randomised Study of Ibopamine on Mortality and Efficacy (PRIME II) Investigators. Randomised study of effect of ibopamine on survival in patients with advanced severe heart failure. Lancet. 1997;349:971–7.
- 285. Lubsen J, Just H, Hjalmarsson AC, et al. Effect of pimobendan on exercise capacity in patients with heart failure: main results from the Pimobendan in Congestive Heart Failure (PICO) trial. Heart. 1996;76:223–31.
- Packer M, Carver JR, Rodeheffer RJ, et al; the PROMISE Study Research Group. Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med. 1991;325:1468–75.
- 287. Metra M, Eichhorn E, Abraham WT, et al. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur Heart J. 2009;30:3015–26.
- Oliva F, Latini R, Politi A, et al. Intermittent 6-month low-dose dobutamine infusion in severe heart failure: DICE multicenter trial. Am Heart J. 1999;138:247–53.
- Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312–21.
- 290. Alba AC, Rao V, Ross HJ, et al. Impact of fixed pulmonary hypertension on post-heart transplant outcomes in bridge-to-transplant patients. J Heart Lung Transplant. 2010;29:1253–8.
- Elhenawy AM, Algarni KD, Rodger M, et al. Mechanical circulatory support as a bridge to transplant candidacy. J Card Surg. 2011;26:542–7.
- 292. Nair PK, Kormos RL, Teuteberg JJ, et al. Pulsatile left ventricular assist device support as a bridge to decision in patients with end-stage heart failure complicated by pulmonary hypertension. J Heart Lung Transplant. 2010;29:201–8.
- 293. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.
- 294. Lahpor J, Khaghani A, Hetzer R, et al. European results with a continuous-flow ventricular assist device for advanced heart-failure patients. Eur J Cardiothorac Surg. 2010;37:357–61.

- 295. Starling RC, Naka Y, Boyle AJ, et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011;57:1890–8.
- 296. Grady KL, Meyer PM, Dressler D, et al. Longitudinal change in quality of life and impact on survival after left ventricular assist device implantation. Ann Thorac Surg. 2004;77:1321–7.
- 297. Burkhoff D, Cohen H, Brunckhorst C, et al. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152:469-8.
- 298. Greenberg B, Czerska B, Delgado RM, et al. Effects of continuous aortic flow augmentation in patients with exacerbation of heart failure inadequately responsive to medical therapy: results of the Multicenter Trial of the Orqis Medical Cancion System for the Enhanced Treatment of Heart Failure Unresponsive to Medical Therapy (MOMENTUM). Circulation. 2008;118:1241–9.
- 299. Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52:1584–8.
- 300. Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intraaortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26:1276–83.
- Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.
- 302. Stevenson LW, Miller LW, Desvigne-Nickens P, et al. Left ventricular assist device as destination for patients undergoing intravenous inotropic therapy: a subset analysis from REMATCH (Randomized Evaluation of Mechanical Assistance in Treatment of Chronic Heart Failure). Circulation. 2004;110:975–81.
- 303. Rogers JG, Butler J, Lansman SL, et al. Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: results of the INTrEPID Trial. J Am Coll Cardiol. 2007;50:741–7.
- Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.
- 305. Mehra MR, Kobashigawa J, Starling R, et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates--2006. J Heart Lung Transplant. 2006;25:1024–42.
- Nohria A, Lewis E, Stevenson LW. Medical management of advanced heart failure. JAMA. 2002;287:628–40.
- 307. Metra M, Torp-Pedersen C, Cleland JG, et al. Should beta-blocker therapy be reduced or withdrawn after an episode of decompensated heart failure? Results from COMET. Eur J Heart Fail. 2007;9:901–9.
- 308. Fonarow GC, Abraham WT, Albert NM, et al. Influence of beta-blocker continuation or withdrawal on outcomes in patients hospitalized with heart failure: findings from the OPTIMIZE-HF program. J Am Coll Cardiol. 2008;52:190–9.
- Butler J, Young JB, Abraham WT, et al. Beta-blocker use and outcomes among hospitalized heart failure patients. J Am Coll Cardiol. 2006;47:2462–9.
- 310. Maisel AS, Peacock WF, McMullin N, et al. Timing of immunoreactive B-type natriuretic peptide levels and treatment delay in acute decompensated heart failure: an ADHERE (Acute Decompensated Heart Failure National Registry) analysis. J Am Coll Cardiol. 2008;52:534–40.
- 311. Peacock WF, Fonarow GC, Emerman CL, et al. Impact of early initiation of intravenous therapy for acute decompensated heart failure on outcomes in ADHERE. Cardiology. 2007;107:44–51.
- 312. Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364:797–805.
- Grosskopf I, Rabinovitz M, Rosenfeld JB. Combination of furosemide and metolazone in the treatment of severe congestive heart failure. Isr J Med Sci. 1986;22:787–90.
- 314. Channer KS, McLean KA, Lawson-Matthew P, et al. Combination diuretic treatment in severe heart failure: a randomised controlled trial. Br Heart J. 1994;71:146–50.
- 315. Sigurd B, Olesen KH, Wennevold A. The supra-additive natriuretic effect addition of bendroflumethiazide and bumetanide in congestive heart failure: permutation trial tests in patients in long-term treatment with bumetanide. Am Heart J. 1975;89:163–70.

- 316. Rosenberg J, Gustafsson F, Galatius S, et al. Combination therapy with metolazone and loop diuretics in outpatients with refractory heart failure: an observational study and review of the literature. Cardiovasc Drugs Ther. 2005;19:301–6.
- 317. Giamouzis G, Butler J, Starling RC, et al. Impact of dopamine infusion on renal function in hospitalized heart failure patients: results of the Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial. J Card Fail. 2010;16:922–30.
- Elkayam U, Ng TM, Hatamizadeh P, et al. Renal vasodilatory action of dopamine in patients with heart failure: magnitude of effect and site of action. Circulation. 2008;117:200–5.
- Costanzo MR, Guglin ME, Saltzberg MT, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49:675–83.
- 320. Colucci WS, Elkayam U, Horton DP, et al; Nesiritide Study Group. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure . N Engl J Med. 2000;343:246–53. Errata in: N Engl J Med. 2000;343:1504 and N Engl J Med. 2000;343:896.
- 321. Cioffi G, Stefenelli C, Tarantini L, et al. Hemodynamic response to intensive unloading therapy (furosemide and nitroprusside) in patients >70 years of age with left ventricular systolic dysfunction and decompensated chronic heart failure. Am J Cardiol. 2003;92:1050-6.
- 322. O'Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.
- 323. Publication Committee for the VMAC Investigators. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA. 2002;287:1531–40. Erratum in: JAMA. 2002;288:577.
- 324. Alikhan R, Cohen AT, Combe S, et al. Prevention of venous thromboembolism in medical patients with enoxaparin: a subgroup analysis of the MEDENOX study. Blood Coagul Fibrinolysis. 2003;14:341–6.
- 325. Belch JJ, Lowe GD, Ward AG, et al. Prevention of deep vein thrombosis in medical patients by low-dose heparin. Scott Med J. 1981;26:115–7.
- 326. Kleber FX, Witt C, Vogel G, et al. Randomized comparison of enoxaparin with unfractionated heparin for the prevention of venous thromboembolism in medical patients with heart failure or severe respiratory disease. Am Heart J. 2003;145:614–21.
- 327. Samama MM, Cohen AT, Darmon JY, et al; Prophylaxis in Medical Patients with Enoxaparin Study Group. A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. N Engl J Med. 1999;341:793–800.
- 328. Turpie AG. Thrombosis prophylaxis in the acutely ill medical patient: insights from the prophylaxis in MEDical patients with ENOXaparin (MEDENOX) trial. Am J Cardiol. 2000;86:48M–52M.
- 329. Deleted in press.
- 330. Ghali JK, Koren MJ, Taylor JR, et al. Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatremia. J Clin Endocrinol Metab. 2006;91:2145–52.
- Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355:2099–112.
- Naylor M, Brooten D, Jones R, et al. Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial. Ann Intern Med. 1994;120:999–1006.
- 333. Naylor MD, Brooten DA, Campbell RL, et al. Transitional care of older adults hospitalized with heart failure: a randomized, controlled trial. J Am Geriatr Soc. 2004;52:675–84.
- 334. Fonarow GC, Heywood JT, Heidenreich PA, et al. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2007;153:1021–8.
- 335. Fonarow GC, Abraham WT, Albert NM, et al. Influence of a performance-improvement initiative on quality of care for patients hospitalized with heart failure: results of the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients With Heart Failure (OPTIMIZE-HF). Arch Intern Med. 2007;167:1493–502.
- 336. McAlister FA, Stewart S, Ferrua S, et al. Multidisciplinary strategies for the management of heart failure patients at high risk for admission: a systematic review of randomized trials. J Am Coll Cardiol. 2004;44:810–9.
- 337. Lappe JM, Muhlestein JB, Lappe DL, et al. Improvements in 1-year cardiovascular clinical outcomes associated with a hospital-based discharge medication program. Ann Intern Med. 2004;141:446–53.

- 338. Phillips CO, Wright SM, Kern DE, et al. Comprehensive discharge planning with postdischarge support for older patients with congestive heart failure: a meta-analysis. JAMA. 2004;291:1358–67.
- 339. Gislason GH, Rasmussen JN, Abildstrom SZ, et al. Persistent use of evidence-based pharmacotherapy in heart failure is associated with improved outcomes. Circulation. 2007;116:737–44.
- 340. Masoudi FA, Rathore SS, Wang Y, et al. National patterns of use and effectiveness of angiotensin-converting enzyme inhibitors in older patients with heart failure and left ventricular systolic dysfunction. Circulation. 2004;110:724–31.
- 341. Braunstein JB, Anderson GF, Gerstenblith G, et al. Noncardiac comorbidity increases preventable hospitalizations and mortality among Medicare beneficiaries with chronic heart failure. J Am Coll Cardiol. 2003;42:1226–33.
- Windham BG, Bennett RG, Gottlieb S. Care management interventions for older patients with congestive heart failure. Am J Manag Care. 2003;9:447–59.
- 343. Fonarow GC, Albert NM, Curtis AB, et al. Improving evidence-based care for heart failure in outpatient cardiology practices: primary results of the Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting (IMPROVE HF). Circulation. 2010;122:585–96.
- 344. Fonarow GC, Abraham WT, Albert NM, et al. Association between performance measures and clinical outcomes for patients hospitalized with heart failure. JAMA. 2007;297:61–70.
- 345. Hernandez AF, Greiner MA, Fonarow GC, et al. Relationship between early physician follow-up and 30-day readmission among Medicare beneficiaries hospitalized for heart failure. JAMA. 2010;303:1716–22.
- 346. Krumholz HM, Chen YT, Wang Y, et al. Predictors of readmission among elderly survivors of admission with heart failure. Am Heart J. 2000;139:72–7.
- 347. Unpublished data provided by the Office of Information Products and Data Analytics-CMS. CMS Administrative Claims Data, Jan 2011 - Dec 2011, from the Chronic Condition Warehouse: 2012.
- 348. Caracciolo EA, Davis KB, Sopko G, et al. Comparison of surgical and medical group survival in patients with left main coronary artery disease: long-term CASS experience. Circulation. 1995;91:2325–34.
- The VA Coronary Artery Bypass Surgery Cooperative Study Group. Eighteenyear follow-up in the Veterans Affairs Cooperative Study of Coronary Artery Bypass Surgery for stable angina. Circulation. 1992;86:121–30.
- 350. The Veterans Administration Coronary Artery Bypass Surgery Cooperative Study Group. Eleven-year survival in the Veterans Administration randomized trial of coronary bypass surgery for stable angina. N Engl J Med. 1984;311:1333–9.
- 351. Cleland JG, Calvert M, Freemantle N, et al. The Heart Failure Revascularisation Trial (HEART). Eur J Heart Fail. 2011;13:227–33.
- Velazquez EJ, Lee KL, Deja MA, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med. 2011;364:1607–16.
- 353. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–98.
- Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.
- Alderman EL, Fisher LD, Litwin P, et al. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation. 1983;68:785–95.
- 356. Patel MR, Dehmer GJ, Hirshfeld JW, et al. ACCF/SCAI/STS/AATS/ AHA/ASNC 2009 appropriateness criteria for coronary revascularization: a report by the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology. Circulation. 2009;119:1330–52.
- 357. Feldman T, Foster E, Glower DD, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med. 2011;364:1395–406.
- 358. Chan KM, Punjabi PP, Flather M, et al. Coronary artery bypass surgery with or without mitral valve annuloplasty in moderate functional ischemic mitral regurgitation: final results of the Randomized Ischemic Mitral Evaluation (RIME) trial. Circulation. 2012;126:2502–10.
- 359. Fattouch K, Guccione F, Sampognaro R, et al. POINT: efficacy of adding mitral valve restrictive annuloplasty to coronary artery bypass grafting in patients with moderate ischemic mitral valve regurgitation: a randomized trial. J Thorac Cardiovasc Surg. 2009;138:278–85.
- 360. Franzen O, van der Heyden J, Baldus S, et al. MitraClip® therapy in patients with end-stage systolic heart failure. Eur J Heart Fail. 2011;13:569–76.

- Jones RH, Velazquez EJ, Michler RE, et al. Coronary bypass surgery with or without surgical ventricular reconstruction. N Engl J Med. 2009;360:1705–17.
- 362. Inglis SC, Clark RA, McAlister FA, et al. Structured telephone support or telemonitoring programmes for patients with chronic heart failure. Cochrane Database Syst Rev. 2010;(8):CD007228.
- Coleman EA, Boult C. Improving the quality of transitional care for persons with complex care needs. J Am Geriatr Soc. 2003;51:556–7.
- 364. Stewart S, Pearson S, Horowitz JD. Effects of a home-based intervention among patients with congestive heart failure discharged from acute hospital care. Arch Intern Med. 1998;158:1067–72.
- 365. Stewart S, Marley JE, Horowitz JD. Effects of a multidisciplinary, home-based intervention on unplanned readmissions and survival among patients with chronic congestive heart failure: a randomised controlled study. Lancet. 1999;354:1077–83.
- 366. Sochalski J, Jaarsma T, Krumholz HM, et al. What works in chronic care management: the case of heart failure. Health Aff (Millwood). 2009;28:179–89.
- 367. Laramee AS, Levinsky SK, Sargent J, et al. Case management in a heterogeneous congestive heart failure population: a randomized controlled trial. Arch Intern Med. 2003;163:809–17.
- 368. Clark RA, Inglis SC, McAlister FA, et al. Telemonitoring or structured telephone support programmes for patients with chronic heart failure: systematic review and meta-analysis. BMJ. 2007;334:942.
- Chaudhry SI, Phillips CO, Stewart SS, et al. Telemonitoring for patients with chronic heart failure: a systematic review. J Card Fail. 2007;13:56–62.
- 370. Riegel B, Carlson B, Kopp Z, et al. Effect of a standardized nurse casemanagement telephone intervention on resource use in patients with chronic heart failure. Arch Intern Med. 2002;162:705–12.
- 371. Riegel B, Carlson B, Glaser D, et al. Randomized controlled trial of telephone case management in Hispanics of Mexican origin with heart failure. J Card Fail. 2006;12:211–9.
- 372. Krumholz HM, Currie PM, Riegel B, et al. A taxonomy for disease management: a scientific statement from the American Heart Association Disease Management Taxonomy Writing Group. Circulation. 2006;114:1432–45.
- 373. Faxon DP, Schwamm LH, Pasternak RC, et al. Improving quality of care through disease management: principles and recommendations from the American Heart Association's Expert Panel on Disease Management. Circulation. 2004;109:2651–4.
- 374. Rich MW, Beckham V, Wittenberg C, et al. A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. N Engl J Med. 1995;333:1190–5.
- 375. McAlister FA, Lawson FM, Teo KK, et al. A systematic review of randomized trials of disease management programs in heart failure. Am J Med. 2001;110:378–84.
- 376. Riegel B, LePetri B. Heart failure disease management models. In: Moser D, Riegel B, eds. Improving Outcomes in Heart Failure: An Interdisciplinary Approach. Gaithersburg, Md: Aspen Publishers; 2001:267–81.
- 377. Coleman EA, Mahoney E, Parry C. Assessing the quality of preparation for posthospital care from the patient's perspective: the care transitions measure. Med Care. 2005;43:246–55.
- Lorenz KA, Lynn J, Dy SM, et al. Evidence for improving palliative care at the end of life: a systematic review. Ann Intern Med. 2008;148:147–59.
- Hauptman PJ, Havranek EP. Integrating palliative care into heart failure care. Arch Intern Med. 2005;165:374–8.
- Adler ED, Goldfinger JZ, Kalman J, et al. Palliative care in the treatment of advanced heart failure. Circulation. 2009;120:2597–606.
- 381. Qaseem A, Snow V, Shekelle P, et al. Evidence-based interventions to improve the palliative care of pain, dyspnea, and depression at the end of life: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2008;148:141–6.
- 382. Jencks SF, Huff ED, Cuerdon T. Change in the quality of care delivered to Medicare beneficiaries, 1998-1999 to 2000-2001. JAMA. 2003;289:305–12.
- 383. Bonow RO, Ganiats TG, Beam CT et al. ACCF/AHA/AMA-PCPI 2011 performance measures for adults with heart failure: a report of the ACCF/AHA Task Force on Performance Measures (Writing Committee to Develop Performance Measures for Heart Failure). Circulation. 2012;125:2382–401.

KEY WORDS: AHA Scientific Statements • cardio-renal physiology/ pathophysiology • congestive heart failure • CV surgery: transplantation, ventricular assistance, cardiomyopathy • epidemiology • health policy and outcome research • heart failure • other heart failure

Appendix 1. Author Relationships With Industry and Other Entities (Relevant)—2013 ACCF/AHA Guideline for the Management of Heart Failure

Committee Member	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness	Voting Recusals by Section*
Clyde W. 'ancy, <i>Chair</i>	Northwestern University—Chief, Division of Cardiology and Magerstadt Professor of Medicine	None	None	None	None	None	None	None
Mariell Jessup, <i>Vice Chair</i>	University of Pennsylvania—Professor of Medicine	None	None	None	 Amgen Celladon HeartWare	None	None	7.4.4 7.4.5 7.4.6 10
iykem ozkurt	Michael E. DeBakey VA Medical Center—The Mary and Gordon Cain Chair and Professor of Medicine	None	None	None	None	None	None	None
Javed Butler	Emory Healthcare— Director of Heart Failure Research; Emory University School of Medicine—Professor of Medicine	 Amgen CardioMEMS Gambro Takeda 	None	None	None	 Amgen Biotronic Boston Scientific CardioMEMS Corthera† FoldRx iOcopsys Johnson & Johnson Medtronic Thoratec World Heart 	None	6.4 7.1 7.2 7.3.2 7.3.3 7.3.4 7.4.4 7.4.5 7.4.6 8.6 8.7 10
onald E. casey, Jr	Clinically Integrated Physician Network, NYU Langone Medical Center—Vice President and Medical Director	None	None	None	None	None	None	None
lark H. razner	University of Texas Southwestern Medical Center—Professor, Internal Medicine	None	None	None	 HeartWare Scios/Johnson & Johnson† 	• Medtronic • Thoratec†	None	7.1 7.2 7.3.2 7.3.4 7.4.4 7.4.5 7.4.6 8.6 8.7 10
aregg C. Tonarow	Director Ahmanson— UCLA Cardiomyopathy Center; Co-Chief—UCLA Division of Cardiology	 Gambro (formerly CHF Solutions) Medtronic Novartis† Takeda 	None	None	 Gambro (formerly CHF Solutions) Novartis† 	Medtronic	None	7.1 7.2 (Class II 7.3.2 7.3.4 8.3 8.4 8.7 10
Stephen A. Geraci	Quillen College of Medicine/East Tennessee State University— Chairman of Internal Medicine	None	None	None	None	None	None	None
Tamara Horwich	Ahmanson—UCLA Cardiomyopathy Center—Assistant Professor of Medicine, Cardiology	None	None	None	None	None	None	None

Appendix 1. Continued

Committee Nember	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness	Voting Recusals by Section*
ames L. anuzzi	Harvard Medical School— Associate Professor of Medicine; Massachusetts General Hospital— Director, Cardiac Intensive Care Unit	 Critical Diagnostics† Roche Diagnostics† 	None	None	 Critical Diagnostics† Roche Diagnostics† 	None	None	6.2 6.3
/laryl R. Iohnson	University of Wisconsin– Madison, Professor of Medicine, Director Heart Failure and Transplantation	None	None	None	None	None	None	None
dward K. Kasper	Johns Hopkins Hospital— E. Cowles Andrus Professor in Cardiology Director, Clinical Cardiology	None	None	None	None	None	None	None
Nayne C. .evy	University of Washington— Professor of Medicine, Division of Cardiology	 Cardiac Dimensions† CardioMEMS GE/Scios/ Johnson & Johnson 	 Amarin Boehringer Ingelheim GlaxoSmithKline 	None	• Amgen† • HeartWare†	 Amgen Epocrates GE Healthcare HeartWare Thoratec 	None	6.4 6.5 7.1 7.2 7.3.1 7.3.2 7.3.4 7.4.5 8.3 8.6 8.7 10
rederick A. Aasoudi	University of Colorado, Denver—Associate Professor of Medicine, Division of Cardiology	None	None	None	None	None	None	None
Patrick E. AcBride	University of Wisconsin School of Medicine and Public Health—Professor of Medicine and Family Medicine, Associate Dean for Students, Associate Director, Preventive Cardiology	None	None	None	None	None	None	None
lohn J.V. AcMurray	University of Glasgow, Scotland, BHF Glasgow Cardiovascular Research Center—Professor of Medical Cardiology	None	None	None	 GlaxoSmithKline† Novartis Roche (DSMB) 	• Novartis (PARADIGM-PI)	None	6.2 6.3 7.1 7.2 (Class I an Class III) 7.3.2 8.3 8.7
ludith E. ⁄litchell	SUNY Downstate Medical Center—Director, Heart Failure Center; Associate Professor of Medicine	None	None	None	None	None	None	None
amela N. eterson	University of Colorado, Denver Health Medical Center—Associate Professor of Medicine, Division of Cardiology	None	None	None	None	None	None	None
Barbara Riegel	University of Pennsylvania School of Nursing—Professor	None	None	None	None	None	None	None (<i>contin</i> e

Downloaded from http://circ.ahajournals.org/ at UNIV OF LOUISVILLE on April 8, 2014

Appendix 1. Continued

Committee Member	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal		Institutional, Organizational, or Other Financial Benefit	Expert Witness	Voting Recusals by Section*
Flora Sam	Boston University School of Medicine, Whitaker Cardiovascular Institute—Associate Professor of Medicine, Division of Cardiology/ Cardiomyopathy Program	None	None	None	None	None	None	None
Lynne W. Stevenson	Brigham and Women's Hospital Cardiovascular Division—Director, Cardiomyopathy and Heart Failure Program	None	None	None	Biosense Webster	None	None	7.3.4
W.H. Wilson Tang	Cleveland Clinic Foundation—Associate Professor of Medicine, Research Director for Heart Failure/Transplant	Medtronic St. Jude Medical	None	None	 Abbott† FoldRx Johnson & Johnson Medtronic† St. Jude Medical† 	None	None	6.2 6.3 7.1 7.2 7.3.2 7.3.3 7.3.4 8.6 8.7 10
Emily J. Tsai	Temple University School of Medicine—Assistant Professor of Medicine, Cardiology	None	None	None	None	None	None	None
Bruce L. Wilkoff	Cleveland Clinic— Director, Cardiac Pacing and Tachyarrhythmia Devices; Director, Clinical EP Research	None	None	None	 Biotronic Boston Scientific Medtronic St. Jude Medica 		None	7.2 (Class IIa) 7.3.4 10

This table represents the relationships of committee members with industry and other entities that were determined to be relevant to this document. These relationships were reviewed and updated in conjunction with all meetings and/or conference calls of the writing committee during the document development process. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \geq 5% of the voting stock or share of the business entity, or ownership of \geq \$10000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person's gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

According to the ACCF/AHA, a person has a *relevant* relationship IF: a) The *relationship or interest relates* to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the *document*; or b) The *company/entity* (with whom the relationship exists) makes a drug, drug class, or device addressed in the *document*; or c) The *person or a member of the person's household*, has a reasonable potential for financial, professional or other personal gain or loss as a result of the issues/content addressed in the document.

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply. Section numbers pertain to those in the full-text guideline.

†Indicates significant relationship.

DSMB indicates Data Safety Monitoring Board; EP, electrophysiology; NYU, New York University; PARADIGM, a Multicenter, Randomized, Double-blind, Parallel Group, Active-controlled Study to Evaluate the Efficacy and Safety of LCZ696 Compared to Enalapril on Morbidity and Mortality in Patients With Chronic Heart Failure and Reduced Ejection Fraction; PI, Principal Investigator; SUNY, State University of New York; UCLA, University of California, Los Angeles; and VA, Veterans Affairs.

Appendix 2. Reviewer Relationships With Industry and Other Entities (Relevant)—2013 ACCF/AHA Guideline for the Management of Heart Failure

Reviewer	Representation	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness
Nancy Albert	Official Reviewer— ACCF/AHA Task Force on Practice Guidelines	Kaufman Center for Heart Failure—Senior Director of Nursing Research	 BG Medicine Medtronic Merck† 	None	None	None	None	None
Kathleen Grady	Official Reviewer—AHA	Bluhm Cardiovascular Institute— Administrative Director, Center for Heart Failure	None	None	None	None	None	None
Paul Hauptman	Official Reviewer—AHA	St Louis University School of Medicine— Professor of Internal Medicine, Division of Cardiology	 BG Medicine BioControl Medical Otsuka* 	None	None	None	• EvaHeart†	None
Hector Ventura	Official Reviewer— ACCF Board of Governors	Ochsner Clinic Foundation— Director, Section of Cardiomyopathy and Heart Transplantation	• Otsuka	Actelion	None	None	None	None
Mary Norine Walsh	Official Reviewer— ACCF Board of Trustees	St. Vincent Heart Center of Indiana— Medical Director	• United Healthcare	None	None	None	None	None
Jun Chiong	Organizational Reviewer—ACCP	Loma Linda University—Associate Clinical Professor of Medicine	None	None	None	None	• Otsuka (DSMB)	None
David DeLurgio	Organizational Reviewer—HRS	The Emory Clinic— Associate Professor, Director of EP Laboratory	None	None	None	None	None	None
Folashade Omole	Organizational Reviewer—AAFP	Morehouse School of Medicine—Associate Professor of Clinical Family Medicine	None	None	None	None	None	None
Robert Rich, Jr	Organizational Reviewer—AAFP	Bladen Medical Associates—Family Practice	None	None	None	None	None	None
David Taylor	Organizational Reviewer—ISHLT	Cleveland Clinic, Department of Cardiology— Professor of Medicine	None	None	None	None	 Biotronix† Genentech† HeartWare† ISHLT Novartis† St. Jude's Medical† 	None
Kimberly Birtcher	Content Reviewer—ACCF Cardiovascular Team Council	University of Houston College of Pharmacy—Clinical Professor	None	None	None	None	None	None
Kay Blum	Content Reviewer—ACCF Cardiovascular	Medstar Southern Maryland Hospital Center—Nurse	None	None	None	None	None	None
	Team Council	Practitioner						(continued

Appendix 2. Continued

Reviewer	Representation	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness
Michael Chan	Content Reviewer— ACCF Cardiovascular Team Council	Royal Alexandra Hospital— Co-Director, Heart Function Program; University of Alberta—Associate Clinical Professor of Medicine	None	None	None	None	Medtronic	None
Jane Chen		Washington University School of Medicine— Assistant Professor of Medicine		None	None	None	None	None
Michael Clark	Content Reviewer— ACCF Cardiovascular Team Council	North Texas Cardiology and EP— Associate Professor	None	 Abbott Pharma 	None	None	None	None
Marco Costa		University Hospital for Cleveland—Professor of Medicine	 Abbott Vascular Boston Scientific Cardiokinetix* Medtronic St. Jude Medical 	 Daiichi- Sankyo Eli Lilly Sanofi 	None	None	 Abbott Vascular* Boston Scientific Cardiokinetix† Medtronic* St. Jude Medical 	None
Anita Deswal	Content Reviewer	Baylor College of Medicine—Associate Professor of Medicine	None	None	None	 Amgen† Novartis†	None	None
Steven Dunn	Content Reviewer— ACCF Prevention Committee	University of Virginia Health System— Clinical Pharmacy Specialist	None	None	None	None	None	None
Andrew Epstein	Content Reviewer	University of Pennsylvania— Professor of Medicine	 Biotronic Boehringer Ingelheim Medtronic Zoll 	None	None	 Biosense Webster* Boston Scientific* Cameron Health* 	 Boston Scientific* St. Jude Medical* 	None
Justin Ezekowitz	Content Reviewer—AHA	Mazankowski Alberta Heart Institute— Director, Heart Function Clinic	 Abbott Labs AstraZeneca Pfizer	None	None	 Amgen Bristol-Myers Squibb 	None	None
Gerasimos Filippatos	Content Reviewer	University of Athens—Department of Cardiology	None	None	None	None	CortheraVifor	None
Linda Gillam		Morristown Medical Center—Professor of Cardiology	None	None	None	None	Edwards Lifesciences†	None
Paul Heidenreich	Content Reviewer	Stanford VA Palo Alto Medical Center— Assistant Professor of Medicine	None	None	None	Medtronic†	None	None
Paul Hess	Content Reviewer— ACCF EP Committee	Duke University School of Medicine—Fellow	None	None	None	None	None	None

Appendix 2. Continued

Reviewer	Representation	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness
Sharon Ann Hunt	Content Reviewer	Stanford University Medical Center— Professor, Department of Cardiovascular Medicine	None	None	None	None	None	None
Charles McKay	Content Reviewer— ACCF Council on Cardiovascular Care for Older Adults	Harbor-UCLA Medical Center—Professor of Medicine	None	None	None	None	None	None
James McClurken	Content Reviewer— ACCF Surgeons' Scientific Council	Temple University School of Medicine—Director of Cardiothoracic Perioperative Services	None	None	None	None	None	None
Wayne Miller	Content Reviewer— ACCF Heart Failure and Transplant Council	Mayo Clinic— Professor of Medicine	None	None	None	None	None	None
Rick Nishimura	Content Reviewer	Mayo Clinic— Professor of Medicine	None	None	None	None	None	None
Donna Petruccelli	Content Reviewer— ACCF Heart Failure and Transplant Council	Lehigh Valley Health Network—Heart Failure Nurse Practitioner/Clinical Nurse Specialist, Center for Advanced Heart Failure	None	None	None	None	None	None
Geetha Raghuveer	Content Reviewer— ACCF Board of Governors	Children's Mercy Hospital—Associate Professor of Pediatrics	None	None	None	None	None	None
Pasala Ravichandran	Content Reviewer— ACCF Surgeons' Scientific Council	Oregon Health & Science University— Associate Professor	None	None	None	None	None	None
Michael Rich	ACCF Council on	Washington University School of Medicine— Professor of Medicine	None	None	None	None	None	None
Anitra Romfh	Content Reviewer— ACCF Adult Congenita and Pediatric Cardiology Council	Children's Hospital I Boston—Clinical Fellow in Pediatrics	None	None	None	None	None	None
Andrea Russo	Content Reviewer— ACCF Task Force on Appropriate Use Criteria	Cooper University Hospital—Professor of Medicine	 Biotronik Boston Scientific Cameron Health Medtronic St. Jude Medical 	None	None	 Cameron Health Medtronic 	None	None
Dipan Shah	Content Reviewer— ACCF Imaging Council	Methodist I DeBakey Heart Center—Director	None	 AstraZeneca* Lantheus Medical Imaging 	< None	None	 Astellas Pharma Siemens Medical Solutions* 	None
							()	continued

Appendix 2. Continued

Reviewer	Representation	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness
Randy Starling	Content Reviewer	Cleveland Clinic, Department of Cardiovascular Medicine—Vice Chairman	• Novartis	None	None	None	BiotronikMedtronic	None
Karen Stout	Content Reviewer— ACCF Adult Congenital and Pediatric Cardiology Council	University of Washington— Director, Adult Congenital Heart Disease Program	None	None	None	None	None	None
John Teerlink	Content Reviewer	San Francisco VA Medical Center— Professor of Medicine	 Amgen* Anexon CardioMEMS* Cytokinetics Novartis* Scios/Johnson & Johnson St. Jude Medical* Trevena 	None	None	None	 Amgen* Merck Novartis* 	None
Robert Touchon	Content Reviewer— ACCF Prevention Committee	Marshall University, Joan C. Edwards School of Medicine— Professor of Medicine	None	None	None	None	None	None
Hiroyuki Tsutsui	Content Reviewer	Hokkaido University—Professor of Medicine	 Daiichi-Sankyo* Novartis* Pfizer Takeda* 	None	None	None	None	None
Robert Vincent	Content Reviewer— ACCF Adult Congenital and Pediatric Cardiology Council	Emory University School of Medicine— Professor of Pediatrics	None	None	None	None	• AGA	None

This table represents the relationships of reviewers with industry and other entities that were disclosed at the time of peer review and determined to be relevant to this document. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \geq 5% of the voting stock or share of the business entity, or ownership of \geq \$10000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person's gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.

According to the ACCF/AHA, a person has a *relevant* relationship IF: a) The *relationship or interest* relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the *document*; or b) The *company/entity* (with whom the relationship exists) makes a drug, drug class, or device addressed in the *document*, or makes a competing drug or device addressed in the *document*; or c) The *person or a member of the person's household*, has a reasonable potential for financial, professional or other personal gain or loss as a result of the issues/content addressed in the *document*.

*Significant relationship.

†No financial benefit.

AAFP indicates American Academy of Family Physicians; ACCF, American College of Cardiology Foundation; ACCP, American College of Chest Physicians AHA, American Heart Association; DSMB, data safety monitoring board; EP, electrophysiology; HRS, Heart Rhythm Society; ISHLT, International Society for Heart and Lung Transplantation; UCLA, University of California, Los Angeles; and VA, Veterans Affairs.

2013 Heart Failure Guideline Data Supplements

(Section numbers correspond to the full-text guideline.)

Table of Contents

Data Supplement 1. HFpEF (Section 2.2)	
Data Supplement 2. NYHA and AHA/ACC Class (Section 3)	
Data Supplement 3. Prognosis – Mortality (Section 4.1)	5
Data Supplement 4. Health-Related Quality of Life and Functional Capacity (Section 4.4)	7
Data Supplement 5. Stress Testing (Initial and Serial Evaluation) of the HF Patient (Section 6.1.1)	
Data Supplement 6. Clinical Evaluation – History (Orthopnea) (Section 6.1.1)	
Data Supplement 7. Clinical Evaluation – Examination (Section 6.1.1)	
Data Supplement 8. Clinical Evaluation – Risk Scoring (Section 6.1.2)	16
Data Supplement 9. Imaging Echocardiography (Section 6.4)	
Data Supplement 10. Biopsy (Section 6.5.3)	
Data Supplement 11. Stage A: Prevention of HF (Section 7.1)	
Data Supplement 12. Stage B: Preventing the Syndrome of Clinical HF With Low EF (Section 7.2)	
Data Supplement 13. Stage C: Factors Associated With Outcomes, All Patients (Section 7.3)	
Data Supplement 14. Nonadherence (Section 7.3.1.1)	
Data Supplement 15. Treatment of Sleep Disorders (Section 7.3.1.4)	
Data Supplement 16. Cardiac Rehabilitation-Exercise (Section 7.3.1.6)	
Data Supplement 17. Diuretics Versus Ultrafiltration in Acute Decompensated HF (Section 7.3.2.1)	
Data Supplement 18. ACE Inhibitors (Section 7.3.2.2)	76
Data Supplement 19. ARBs (Section 7.3.2.3)	
Data Supplement 20. Beta Blockers (Section 7.3.2.4)	
Data Supplement 21. Anticoagulation (Section 7.3.2.8.1)	
Data Supplement 22. Statin Therapy (Section 7.3.2.8.2)	
Data Supplement 23. Omega 3 Fatty Acids (Section 7.3.2.8.3)	
Data Supplement 24. Antiarrhythmic Agents to Avoid in HF (7.3.2.9.2)	
Data Supplement 25. Calcium Channel Blockers to Avoid in HF (Section 7.3.2.9.3)	
Data Supplement 26. NSAIDs Use in HF (Section 7.3.2.9.4)	
Data Supplement 27. Thiazolidinediones in HF (Section 7.3.2.9.5)	
Data Supplement 28. Device-Based Management (Section 7.3.4)	
Data Supplement 29. CRT (Section 7.3.4.2)	
Data Supplement 30. Therapies, Important Considerations (Section 7.4.2)	
Data Supplement 31. Sildenafil (Section Section 7.4.2) © American College of Cardiology Foundation and American Heart Association, Inc.	

Data Supplement 32. Inotropes (Section 7.4.4)	123
Data Supplement 33. Inotropic Agents in HF (Section 7.4.4)	135
Data Supplement 34. Mechanical Circulatory Support (Section 7.4.5)	136
Data Supplement 35. LVADs (Section 7.4.5)	138
Data Supplement 36. Transplantation (Section 7.4.6)	149
Data Supplement 37. Comorbidities in the Hospitalized Patient (Section 8.1)	159
Data Supplement 38. Worsening Renal Function, Mortality and Readmission in Acute HF (Section 8.5)	161
Data Supplement 39. Nesiritide (Section 8.7)	165
Data Supplement 40. Hospitalized Patients – Oral Medications (Section 8.8)	177
Data Supplement 41. Atrial Fibrillation (Section 9.1)	186
Data Supplement 42. HF Disease Management (Section 11.2)	187
Data Supplement 43. Telemonitoring (Section 11.2)	189
Data Supplement 44. Quality Metrics and Performance Measures (Section 12)	191
References	192

Data Supplement 1. HFpEF (Section 2.2) **Patient Population** Study Name, Aim of Study Study Type Study Endpoints **Statistical Analysis Study Limitations Findings/ Comments** Author, Year (Results) Size Inclusion Criteria Exclusion Criteria Masoudi JACC To assess factors 19,710 Medicare beneficiary; No documentation of Preserved LVSF Multivariable logistic Limited to Medicare Factors associated with Cross LVEF 2003:41:217associated with sectional hospitalized with population; limited to preserved LVSF, which regression to assess 223 preserved LVSF in factors associated with cohort study principal discharge hospitalized pts; missing included gender, advanced 12535812 (1) diagnosis of HF; acute LVEF in a portion of the age, HTN, AF; and absence pts with HF preserved LVSF care hospitalization; of coronary disease population hospitalized between 4/1998-3/1999 Owan NEJM Define temporal Retrospective 4.596 Consecutive pts admitted No documentation of Proportion of pts with Linear regression and Limited to Olmsted County. Overall, more than half the 2006:355:251-MN; limited to hospitalized trends in prevalence to Mayo Clinic hospitals; LVEF population had preserved cohort study preserved LVSF: survival analysis 259 of HF with preserved Discharge code for HF: pts; missing LVEF in a LVSF; this proportion survival 16855265 (2) LVEF over 15 v 1987-2001 portion of the population increased overtime; survival in pts with HFpEF was only period slightly better than for those with HFrEF (HR:0.96) Bhatia NEJM 2.802 Pts admitted to 103 31% had HFpEF: HFpEF Evaluate the Retrospective No documentation of Death within 1 v: Multivariable survival Limited to Ontario: limited 2006:355:260-LVEF epidemiological cohort study Ontario hospitals: readmission for HF analysis to hospitalized pts: missing more often female. older. with LVEF in a portion of the 269 features and 4/1999-3/2001: AF. and HTN: Unadjusted 1685<u>5266 (</u>3) discharge diagnosis of outcomes of pts with population mortality similar (22% for HFpEF vs. HFrEF HF HFpEF vs. 26% for HFrEF); adjusted mortality also similar (aHR:1.13); readmission rates also similar between groups. 534 N/A Lee Circulation Retrospective Framingham Factors associated Multivariable logistic Limited to Framingham Assess the Factors associated with 2009:119:3070contribution of risk cohort study participants; incident HF with HFpEF; Mortality regression (risk cohort; relatively small HFpEF included female factors and disease factors); multivariable gender; elevated SBP; AF; 3077 sample size 19506115 (4) survival analysis and absence of CAD. Longpathogenesis to HFpEF (mortality) term prognosis equally poor (overall cohort median survival of 2.1 y; 5-y mortality 74%).

Kane JAMA 2011;306:856- 863 <u>21862747 (</u> 5)	diastolic function and assess the relationship between diastolic abnormalities and HF	2042	Random sample from Olmsted County MN in 1997; age ≥45; participating in baseline and follow up assessments	N/A	Diastolic function grade; incident HF	Multivariable survival analysis	following up for 2 nd examination	follow-up, prevalence of diastolic dysfunction increased from 23.8% to 39.2%. Diastolic dysfunction associated with incident HF	
	risk							(HR:1.81)	l

AF indicates atrial fibrillation; CAD, coronary artery disease; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HTN, hypertension; LVEF, left ventricular ejection fraction; LVSF, left ventricular systolic function; MN, Minnesota; N/A, not applicable; pts, patients, and SBP, systolic blood pressure.

Data Supplement 2. NYHA and AHA/ACC Class (Section 3)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Pop	oulation	Endj	points	Statistical Analysis (Results)	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
Madsen BK, 1994 <u>8013501 (</u> 6)	Predict CHF mortality	Longitudinal registry	190	N/A	Must be ambulatory	Death	N/A	Kaplan-Meier Mortality increased with increased NYHA class and with decreased EF	N/A	Conducted primarily outside U.S.
Holland R, 2010 20142027 (7)	Predict CHF mortality using self-assessed NYHA class	Longitudinal registry	293	Adults with CHF after CHF admission	N/A	Readmission over 6 mo	MLHF questionnaire and death	Survival analysis Readmission rate increased with higher NYHA class	No clinician assessment to compare to pt assessment	Conducted primarily outside U.S.
Anmar KA, 2007 <u>17353436 (</u> 8)	Measure association of HF stages with mortality	Cross- sectional cohort	2,029	Residents of Olmsted Co, MN	N/A	5-y survival rates	BNP	Survival analysis HF stages associated with progressively worsening 5-y survival rates	Retrospective classification of stage	N/A
Goldman L, 1981 <u>7296795 (</u> 9)	Reproducibility for assessing CV functional class	Longitudinal registry	75	All those referred for treadmill testing	N/A	Reproducibility testing	N/A	NYHA classification	N/A	Reproducibility only 56%

BNP indicates B-type natriuretic peptide; CHF, congestive heart failure; CV, cardiovascular; EF, ejection fraction; HF, heart failure; MLHF, Minnesota Living with Heart Failure; N/A, not applicable; NYHA, New York Heart Association; and pt, patient.

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient	Population	Enc	dpoints	Statistical Analysis (Results)	P Values & 95% CI:	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint				
The Seattle HF Model: Prediction of Survival in HF Levy, Wayne Circ 2006 <u>16534009</u> (10)	Develop and validate a risk model for 1,2,and 3-y mortality	Cohort	Derivation: 1,125 Validation: 9,942	Derivation Cohort: EF <30%, NYHA class III-IV Validation Cohort: EF <40%, NYHA class II-IV Both derivation and validation cohorts primarily out-pts (both clinical trial populations)	N/A	Prediction of 1,2,3-y mortality	N/A	Predicted vs. actual survival for 1, 2, and 3 y: 88.2% vs 87.8%, 79.2% vs 77.6%, 71.8% vs. 68.0%	ROC: 0.729; 95% Cl: 0.714- 0.744	Population not representative of HF population in general: clinical trial populations, restricted to HF with LVSD. Estimation of risk score is complex and requires computer/calculator.	24 variables included in risk score
Predicting Mortality Among Pts Hospitalized with HF (EFFECT) Lee, Douglas JAMA 2003 <u>14625335 (</u> 11)	Develop and validate a risk model for 30-d and 1-y mortality	Cohort	Derivation: 2,624 Validation: 1,407	No EF requirement; Community-based pts hospitalized with HF in Canada (met modified Framingham HF criteria)	Pts who developed HF after admit, transferred from different facility, over 105 y, nonresidents	30-d and 1-y mortality	N/A	Derivation Cohort: in-hospital mortality: 8.9%, 30-d mortality: 10.7%; 1-y mortality: 32.9% Validation cohort: in-hospital mortality: 8.2%, 30-d mortality: 10.4%; 1-y mortality:30.5%	ROC: 0.79 for 30-d mortality; ROC; 0.76 for 1-y mortality	N/A	Variables in Model: age, SBP, resp rate, Na <136, Hbg <10, BUN, CVD, COPD, dementia, cirrhosis, cancer
Predictors of Mortality After Discharge in pts Hospitalized w/ HF (OPTIMIZE- HF) O'Connor, Christopher AHJ 2008 <u>18926148</u> (12)	Develop models predictive of 60 and 90 d mortality	Cohort study/registry	4,402	No EF criteria (49% with LVSD), pts hospitalized with HF at institutions participating in OPIMIZE- HF performance- improvement program	N/A	Death at 60- 90 d	Hospitalization; death or rehospitalization	60-90 d mortality: 8.6%; death or rehospitalization: 36.2%	c index: 0.735; bias- corrected c index: 0.723	Validity - assessed by bootstraping	Developed a nomogram. Variables included in score: Age, weight, SBP, sodium, Cr, liver disease, depression, RAD

Data Supplement 3. Prognosis - Mortality (Section 4.1)

Predictors of Mortality and Morbidity in Pts with Chronic HF Pocock, Stuart EHJ 2006 <u>16219658</u> (13)	Develop prognostic models for 2-y mortality	Cohorts: used pts in the CHARM program	7,599	No EF criteria; out-pts; symptomatic HF	K >5.5; Cr >265 umol/L; MI or stroke in prior 4 wk; noncardiac disease limiting survival	Mortality	CV death or hospitalization	N/A	ROC:0.75, bias corrected: 0.74; ROC: 0.73 in low EF and in preserved EF cohorts	Population studied not representative of HF in general (pts enrolled in CHARM); validity - assessed by bootstrapping; laboratory data not available.	23 variables included in model
Risk Stratification for Inhospital Mortality in Acutely Decompensated HF: Classification and Regression Tree Analysis Fonarow, Gregg JAMA 2005 15687312 (14)	Estimate mortality risk in pts hospitalized with HF	Cohort/registry	Derivation:33,046 Validation: 32,229	Pts admitted with HF to hospital participating in the ADHERE registry; no EF criteria;	None	In-hospital mortality	N/A	Classification and regression tree analysis; In-hospital mortality: 4.1%; 95% CI:2.1%- 21.9%	N/A	N/A	Classifies pts into 5 risk categories. Discriminating nodes: BUN; SBP; Cr
A validated risk score of in- hospital mortality in pts with HF from the AHA GWTG Program Peterson, Pamela CircCQO 2010 20123668 (15)	Develop a risk score for inhospital mortality	Cohort/registry	Derivation:27,850; Validation:11,933	Pts admitted with HF to hospitals participating in the GWTG-HF program	Transfers, missing LVEF data	Inhospital mortality		Inhospital mortality 2.86%; C index 0.75	N/A	Validation cohort from same population. GWTG is a voluntary registry	Variables included in risk score: SBP, BUN, Sodium, age, heart rate, race, COPD
Predictors of inhospital mortality in pts hospitalized for HF. Insights from OPTIMIZE-HF Abraham, William JACC 2008 <u>18652942</u> (16)	Develop a clinical predictive model of in- hospital mortality	Cohort/registry	40,201	Pts admitted to hospital participating in OPTIMIZE- HF (registry/performance improvement program); no EF criteria (LVSD in 49% of those with measured EF); included those admitted with different diagnosis than the discharge diagnosis of HF	N/A	Inhospital mortality		Inhospital mortality: 3.8%; C index 0.77	N/A	Validity - assessed by bootstrapping	Risk prediction nomogram: age, HR, SBP, sodium, Cr, primary cause for admit, LVSD
Predictors of fatal and non-fatal outcomes in the CORONA:	Develop prognostic models in elderly pts and	Cohort	3,342	Pts enrolled in the CORONA study. Pts ≥60 y; NYHA class II-IV HF; investigator reported	Recent CV event or procedure/operation, acute or chronic liver disease or ALT >2x ULN; BUN >2.5 mg/dL;	Composite: CV mortality, nonfatal MI or nonfatal	All-cause mortality; CV mortality; fatal or nonfatal MI;	Total mortality: C index of 0.719; death due to HF: C index of 0.80;	N/A	Used a clinical trial population; limited to ischemic etiology	Elderly pts on contemporary HF therapy; NT- proBNP added

incremental value of apolipoprotein A-1, high- sensitivity C- reactive peptide and NT proBNP Wedel, Hans EJHF 2009 <u>19168876</u> (17)	evaluate the relative prognostic significance of new biomarkers			ischemic etiology; EF ≤40% (or 35% if NYHA II)	chronic muscle disease or unexplained CK >2.5x ULNI; TSH >2x ULN; any condition substantially reducing life expectancy	stroke (time to event)	death from any cause or hospitalization for HF	all-cause mortality or HF hospitalization: C index of 0.701 (all models included NT-proBNP)			predictive information
Comparison of Four Clinical Prediction Rules for Estimating Risk in HF Auble, Thomas E Annals of Emergency Medicine 2007 <u>17449141</u> (18)	Examine the performance of 4 clinical prediction rules (ADHERE decision tree, ADHERE regression model, EFFECT, Brigham and Women's Hospital rule) for inpatient death, 30-d death, and inhospital death or serious complications	Cohort	33,533	Pts with primary ICD-9 discharge diagnosis of HF admitted at one of 2 Pennsylvania hospitals from the ED	N/A	Inhospital mortality; in- hospital mortality or serious complication; 30-d mortality	N/A	Inhospital mortality: 4.5%; Inhospital mortality or serious medical complication: 11.2%; 30-d mortality: 7.9% ADHERE rules could not be used in 4.1% because BUN or SCr were N/A.	N/A	N/A	Variability among rules in the number of pts assigned to risk groups and the observed mortality within risk group. EFFECT identified pts at the lowest risk, ADHERE tree identified largest proportion of pts in the lowest risk group

ADHERE indicates Acute Decompensated Heart Failure National Registry; AHA, American Heart Association; BUN, blod urea nitrogen; CHARM, Candesartan in Heart Failure: Assessment of Reduction in Mortality and morbidity; COPD, chronic obstructive pulmonary disease; CORONA, Controlled Rosuvastatin Multinational Trial in HF; CV, cardiovascular; CVD, cardiovascular disease; ED, emergency department; EF, ejection fraction; EFFECT, Enhanced Feedback for Effective Cardiac Treatment; GWTG, Get With the Guidelines; HF, heart failure; Hgb, hemoglobin; HR, heart rate; ICD-9, international classification of diseases; LVSD, left ventricular systolic dysfunction; MI, myocardial infarction; NA, sodium, N/A, not applicable; NT-proBNP; n-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; OPIMIZE-HF, Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure; pts, patients; RAD, reactive airway disease; ROC, receiver operating characteristic curve; SBP, systolic blood pressure; SCr, serum creatinine; TSH, thyroid stimulating hormone; ULN, upper limit of normal.

Data Supplement 4. Health-Related Quality of Life and Functional Capacity (Section 4.4)

Study Na Author, Y	ne,	Aim of Study	Study Type	Study Size	Patient Po	opulation	Endp	oints	Statistical Analysis (Results)	Study Limitations	Findings/Comments
					Inclusion	Exclusion	Primary	Secondary			

				Criteria	Criteria	Endpoint	Endpoint			
Improvement in HRQoL after hospitalization predicts event- free survival in pts with advanced HF. Moser et al 2009 <u>19879462</u> (19)	To determine the frequency, durability, and prognostic significance of improved HRQoL after hospitalization for decompensated HF.	Secondary analysis of data from the ESCAPE trial	425	Hospitalized for NYHA class IV, at least 1 sign of fluid overload EF <30% history of prior HF hospitalization or chronic high maintenance diuretic doses survived to discharge from index admission	Significant comorbid condition that could shorten life (e.g. cancer), pulmonary artery catheter, mechanical circulatory or ventilatory support, IV milrinone within 48 h, dobutamine/ dopamine within 24 h, listed for CTX	HRQoL measured with the MLHFQ	Event-free survival	At baseline HRQoL was severely impaired but improved on average at 1 mo (74.2 \pm 17.4 vs 56.7 \pm 22.7) and improved most at 6 mo. HRQOL worsened in 51 (16.3%) pts and remained the same in 49 (15.7%). OR: 3.3; p<.009 The only characteristic that distinguished among these groups was whether or not the pt was too ill to perform the 6-min walk. There was a group by time interaction; the degree of improvement across time differed between pts who survived without an event and those who died or were rehospitalized by 6 mo. Pts with events between 1 and 6 mo did not experience as much improvement in HRQoL. A decrease in MLHFQ of >5 points predicted better event-free survival. (p<.0001 group time interaction)	Potential for survivor bias. Self-reported HRQoL. Relatively short follow-up period of 6 mo.	In pts hospitalized with severe HF decompensation, HRQoL is seriously impaired but improves substantially within 1 mo for most pts and remains improved for 6 mo. Pts for whom HRQoL does not improve by 1 mo after hospital admission merit specific attention both to improve HRQoL and to address high risk for poor event-free survival
QoL and depressive symptoms in the elderly: a comparison between pts with HF and age and gender matched community controls. Lesman- Leegte et al, 2009. <u>19181289</u> (20)	To examine whether there are differences in QoL and depressive symptoms between HF pts and an age and gender matched group of community- dwelling elderly and determine how chronic comorbid conditions qualify the answer	Secondary analysis of COACH trial data plus enrollment of a community sample from Netherlands	781	NYHA II-IV, ≥18 y, structural heart disease. Community sample randomly selected from population ≥55 y and not living at same address. 45% response rate.	Enrollment in a study requiring additional research visits or invasive intervention within last 6 mo or next 3 mo, terminal disease, active psychiatric diagnosis.	QoL measured with Medical Outcome Study 36-item General Health Survey and Cantril Ladder of Life. Depressive symptoms with CES-D.	Chronic conditions abstracted from chart of pts, self- reported by community sample.	QoL significantly impaired in HF pts compared to matched elderly. Largest differences were in physical functioning and vitality. Role limitations due to physical functioning very low in HF pts. QoL was lower in HF pts with COPD or diabetes. Depressive symptoms higher in HF pts (39% vs 21%) all p<0.001.	Manner in which comorbid conditions were assessed differed between HF pts and controls. List used was not all inclusive.	HF has a large impact on QoL and depressive symptoms, especially in women with HF. Differences persist, even in the absence of common comorbidities. Results demonstrate the need for studies of representative HF pts with direct comparisons to age- and gender-matched controls.

Ethnic Differences in QoL in Persons With HF. Riegel et al 2008 <u>18226772</u> (21)	To compare HRQoL in non- Hispanic white, black, and Hispanic adults with HF	Longitudinal comparative study with propensity scoring	1,212	Established diagnosis of chronic HF	Recent MI, USA, cognitive impairment, severe psychiatric problems, homeless, or discharged to an extended care or skilled nursing facility	HRQoL measured with the MLHFQ	N/A	HRQoL improved over time (baseline to 3- and 6-mo) in all groups but most dramatically among Hispanics. Hispanics improved more than whites (p<0.0001). Hispanics improved more than blacks (p=0.004).	Secondary analysis of existing data. Hispanic sample was primarily Mexican so results cannot be generalized to all Hispanics. Samples received different treatments at various sites; treatment was controlled in the analysis. Other factors that could explain these differences were not measured. Cultural bias in the data obtained from the MLHFQ is possible.	Cultural differences in the interpretation of and response to chronic illness may explain why HRQoL improves more over time in Hispanic pts with HF compared with white and black pts.
The impact of chronic HF on HRQoL data acquired in the baseline phase of the CARE-HF study. Calvert, Melanie. 2005 <u>15701474 (</u> 22)	To assess the QoL of pts with HF, due to LV dysfunction, taking optimal medical therapy using baseline QoL assessments from the CARE- HF trial, and to evaluate the appropriateness of using the EQ- 5D in pts with HF.	RCT	813	NYHA II-IV HF	None specified	QoL Euroquol EQ-5D and MLHFQ	N/A	There is a relationship between the EQ-5D score and gender, on average females enrolled had a worse QoL than male participants. r=-0.08; 95% CI: -0.13 to -04; p=0.00004 Mean EQ-5D score for NYHA III pts was higher than for NYHA IV pts (mean difference 0.17) p<0.0001; 95% CI: 0.08-0.25 Association between MLWHF and EQ-5D scores (increasing MLWFH associated with a decrease in EQ-5D) r=-0.00795; 95% CI: (-0.00885 to -0.00706); p<0.0001 HF is shown to have an important impact on all aspects of QoL but particularly on pts mobility and usual activities and leads to significant reductions in comparison with a representative sample of the UK population.	Pts assessed in the study are not a random sample of pts with severe HF. CARE-HF is an int'l study but used available normative data from a representative sample of the UK population to evaluate burden of disease. A study comparing UK and Spanish time trade-off values for EQ-5D health states demonstrated that although the general pattern of value assignation was similar, there were differences in values assigned to a number of health states	The impact of HF varies amongst pts but the overall burden of disease appears to be comparable to other chronic conditions such as motor neurone or Parkinson's disease. The EQ-5D appears to be an acceptable valid measure for use in pts with HF although further evidence of the responsiveness of this measure in such pts is required.

Characterization of HRQoL in HF pts with preserved vs low EF in CHARM, Lewis et al, 2007 <u>17188020 (</u> 23)	To characterize HRQoL in a large population of HF pts with preserved and low LVEF and to determine the factors associated with worse HRQoL.	Secondary analysis of data from the CHARM trial	2,709	"CHARM- Alternative" pts: LVEF ≤40% and not receiving an ACE-I; "CHARM- Added" pts: LVEF ≤40% and taking ACE-Is. Pts in NYHA class II required admission to hospital with a CV problem in prior 6 mo (which increased proportion of NYHA class III/IV in CHARM-Added. "CHARM- Preserved" pts had LVEF >40% with or without ACEI	N/A	QoL	N/A	9 independent clinical determinants of worse HRQoL: younger age, higher BMI, lower SBP, female sex, worse NYHA class, angina, PND, rest dyspnea, lack of ACE-I. Characteristics did not differ by group. LVEF was NS.	Population was healthy enough to enroll so may have fewer comorbidities. Asymptomatic pts were excluded. Only enrolled in Canada and US. Groups without ACE-I therapy may have affected HRQoL. No gold standard for measuring HRQoL.	Independent factors associated with worse HRQoL in both populations included female sex, younger age, higher BMI, lower SBP, greater symptom burden, and worse functional status.
The enigma of QoL in pts with HF. Dobre D, 2008 <u>17400313 (</u> 24)	To review RCTs that assessed the impact of pharmacologic treatments on QoL	Brief communicatio n	N/A	Clinical trials	N/A	QoL	Survival	N/A	N/A	Life prolonging therapies, such as ACE-Is and ARBs improve modestly or only delay the progressive worsening of QoL in HF. Beta blockers do not affect QoL in any way. Therapies that improve QoL (e.g., inotropic agents) do not seem beneficial in relation to survival.

QoL in individuals with HF. Harrison, Margaret. 2002 <u>12021683</u> (25)	To evaluate whether the use of usual providers and a reorganization of discharge planning and transition care with improved intersector linkages between nurses, could improve QoL and health services utilization for individuals admitted to hospital with HF.	Prospective randomized trial	192	Admitted to hospital with a diagnosis of CHF Residing in the regional home care radius. Expected to be discharged with home nursing care English or French speaking Admitted for more than 24 h to the nursing units	Cognitively impaired (score ≥8 on Short Portable Mental Status Exam)	HRQoL (MLWHF), symptom distress and function at 6- and 12-wk postdischarge	The no. of all- cause ED visits, hospital readmissions, and QoL measured with a generic measure, Medical Outcome Study Short Form	The overall MLHFQ score was better among the Transitional Care pts than the usual care pts: At 6 wk after hospital discharge (p=0.002) At 12 wk after hospital discharge (p<0.001) The MLHFQ's Physical Dimension subscale score was better among the Transitional Care pts than the usual care pts: At 6 wk after hospital discharge (p=0.01) At 12 wk after hospital discharge (p<0.001) The MLHFQ's Emotional Dimension subscale score was better among the Transitional Care pts than the usual care pts at 6 wk after hospital discharge (p=0.006) 46% of the Usual Care group visited the ED compared with 29% in the Transitional Care group (p=0.03) At 12 wk postdischarge, 31% of the Usual Care pts had been readmitted compared with 23% of the Transitional Care pts (p=0.26).	Conducted the trial in a naturalistic manner in the usual setting of care with usual providers. Possibility of contamination with the hospital nurses providing usual care. Pts may have inadvertently alerted the research coordinators of their assignment to usual care or transitional care. With multiple interventions it's not easy to assess neither the relative contribution of each component nor the synergistic effect of the sum of the parts.	Transitional Care has an important role to play in altering the course of pts hospitalized with HF. Our results suggest that with modest adjustments to usual discharge and transition from hospital-to- home, pts with CHF can experience improved QoL, and decreased use of ED, for 3 mo after hospitalization. This approach will provide the needed adjunct to current management of HF.
--	---	------------------------------------	-----	---	--	--	---	---	--	---

ACEI; angiotensin-converting-enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; CARE-HF Cardiac Resynchronisation in Heart Failure; CES-D, Center for Epidemiological Studies-Depression scale; CHARM, Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity; CHF, congestive heart failure; COACH, Comparative study on guideline adherence and patient compliance in heart failure patients; CTX, chest x-ray; CV, cardiovascular; ED, emergency department; EF, ejection fraction; ESCAPE, Evaluation Study of Congestive Heart Failure and PulmonaryArtery Catheterization Effectiveness; HF, heart failure; HRQoL, health-related quality of life; MI, myocardial infarction; MLHFQ score, Minnesota Living With Heart Failure; N/A, not applicable; NYHA, New York Heart Association; pts, patients; PND, Paroxysmal nocturnal dyspnea; QoL, quality of life; RCT, randomized control trial; and SBP, systolic blood pressure.

Data Supplement 5. Stress Testing (Initial and Serial Evaluation) of the HF Patient (Section 6.1.1)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient Po	opulation	Seve	erity	End	lpoints	Morta	ality	Trial Duration	Statistical Analysis (Results)	Study Limitations
				N (Total)				Severity	Study							
			Pre-trial	n	Ischemic/			of HF	Entry							
			standard	(Experimental)	Non-	Inclusion	Exclusio	Sympto	Sverity	Primary	Secondary	Annualize	1st Year			
			treatment.	n (Control)	Ischemic	Criteria	n Criteria	ms	Criteria	Endpoint	Endpoint	d Mortality	Mortality			

Defining the Optimal Prognostic Window for CPX in Pts with HF. Arena et al. Circ Heart Fail 2010; 3: 405-411 20200329 (26)	Assess the change in prognostic characteristic s of CPX at different time intervals	Cohort	1 year	791	51% ischemic	HF and LV dysfunction		NYHA 2.4 +/- 0.67	N/A	Major cardiac events - mortality, LV device implantatio n, urgent heart transplant	Cardiac mortality	N/A	75 deaths (of 791)	36 mo FU	For 24 mo post CPX (high vs. low Ve/VCO2): cardiac events p<0.001 (95% Cl: 2.1 - 5.5); cardiac mortality p<0.001 (95% Cl: 2.2 - 5.8) HR:dichotomou s3.4; 3.5	Observation al
Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory pts with HF. Mancini et al. Circulation 1991;83;778- 786 1999029 (27)	To determine if maximal exercise testing and measurement of PKVO2 identifies pts in whom heart transplant can be safely deferred	Observati onal prospectiv e cohort	Focus on hemodynami c and NYHA class	122 52 (PKVO2>14) 35 (PKVO2=<14)	46% ischemic	Ambulatory pts referred for heart transplant	Unable to perform exercise testing due to angina	70% NYHA III	N/A	Survival	N/A	N/A	94% survival in those with high PKVO2 vs. 70% for those with low PKVO2	2 y FU	p<0.005	Wide complex tachycardia in 1 pt
Peak Oxygen Consumption as a Predictor of Death in Pts With HF Receiving Beta Blockers. O'Neill JO et al. Circulation 2005;111;2313- 2318 15867168 (28)	To determine whether PKVO2 is a reliable indicator of prognosis in the beta blocker era	Observati onal prospectiv e cohort	Cutoff of 14 mL/kg1	2,105; n=909 on beta blocker; n=1,196 no beta blocker	52% ischemic	Referral for HF with LVEF<35%	Age <20, ESRD, prior OHT	N/A	N/A	Death	Death or transplantatio n	N/A	N/A	N/A	Pts on beta blockers: Death p<0.001, (95% Cl: 1.18– 1.36); death and transplant p<0.001, (95% Cl: 1.18– 1.32) aHR: 1.26; 1.25 per 1- mL/min/kg	N/A

CPX indicates cardiopulmonary exercise testing; EF, ejection fraction; ESRD, end-stage renal disease; FU, follow up; HF, heart failure; pts, patients; LVEF, left ventricular ejection fraction; N/A, not applicable; NYHA, New York Heart Association; OHT, orthotopic heart transplantation; PKVO2; peak oxygen consumption; and RCT, randomized control trial.

Data Supplement 6. Clinical Evaluation – History (Orthopnea) (Section 6.1.1)

Study Name, Author, Year	Study Type	Study Size	Patient Population	Utility in Detecting Elevated PCWP
Stevenson, LW; Perloff JAMA 1989:261:884-888 2913385 (29)	Single center, prospective	50	Stage D	Orthopnea within preceding wk 91% of 43 pts with PCWP ≥22 0/7 pts with PCWP <22
Chakko et al; Am J Medicine 1991:90:353-9 <u>1825901</u> (30)	Single center, prospective	42	Stage D	For PCWP >20 Sensitivity 66%, Specificity 47%, PPV 61%, NPV 37%
Drazner et al Circ HF 2008:1:170-177 <u>19675681</u> (31)	Multicenter substudy of ESCAPE	194 (with PAC)	Stage D	Orthopnea (≥ 2 pillows) OR 2.1 (95% CI: 1.0-4.4); PPV 66%, NPV 51%; +LR 1.15, (-) LR 1.8; all for PCWP>22 OR 3.6 (95% CI: 1.02 -12.8) for PCWP>30

ESCAPE indicates Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness; LR, likelihood ratio; NPV, negative predictive value; OR, odds ratio; PAC, pulmonary artery catheter; PCWP, Pulmonary Capillary Wedge Pressure; PPV, positive predictive value; and pts, patients.

Data Supplement 7. Clinical Evaluation - Examination (Section 6.1.1)

Study Name, Author, Year	Study Type	Study Size	Patient Population	Utility in Detecting Elevated PCWP
Jugular venous pres	ssure for assessin	g right atrial pre	essure	
Stevenson, LW; Perloff JAMA 1989:261:884-888 <u>2913385</u> (29)	Single center, prospective	50	Stage D	21/28 (75%) of pts with RAP ≥10 had elevated JVP
Butman et al JACC 1993:22:968-974 <u>8409071</u> (32)	Single center, prospective	52	Stage D	RAP associated with JVD and HJR –HJR,-JVD: RAP 4 (2) +HJR, -JVD: RAP 8 (5) +HJR, +JVD: RAP 13 (5)
Stein et al AJC 1997;80:1615-1618 <u>9416951</u> (33)	Single center	25	Class 3-4	RAP estimated from JVP vs. measured RA: r=0.92. Clinical estimates underestimate elevated JVP. Interaction between utility of estimated RAP and measured RAP (more of an underestimate as measured RAP increased). Bias 0.1 (RAP 0-8), 3.6 (RAP 9-14), 5 (RAP ≥15).
Drazner et al Circ HF 2008:1:170-177 <u>19675681</u> (31)	Multicenter substudy of ESCAPE	194 (with PAC)	Stage D	Estimated RAP for RAP >12 AUC 0.74

Jugular Venous Pre	essure for Detecting	g Elevated PCV	VP	
Stevenson, LW; Perloff JAMA 1989:261:884-888 <u>2913385</u> (29)	Single center, prospective	50	Stage D	Elevated JVP associated with PCWP ≥22 58% sensitivity 100% specificity (0/7 with PCWP ≤18 mm Hg) However 8/18 pts with PCWP ≥35 mm Hg without elevated JVP
Chakko et al Am J Medicine 1991;90:353-359 <u>1825901</u> (30)	Single center, prospective	52	Stage D	"High JVP" for PCWP >20 mm Hg Sensitivity 70%, Specificity 79%, PPV 85%, NPV 62%
Butman et al JACC 1993:22:968-974 <u>8409071</u> (32)	Single center, prospective	52	Stage D	JVD at rest or with HJR for PCWP>18 mm Hg: Sens 81%, Spec 80%, PPV 91%, NPV 63%
Badgett et al JAMA 1997; 277:1712- 1719 <u>9169900</u> (34)	Literature review "Rational Clinical Examination" series	NA	Stage D citing above 3 studies	Suggested algorithm: If known low LVEF, and population with high prevalence of increased filling pressure, then elevated JVP is "very helpful" and associated with >90% chance of elevated filling pressures
Drazner et al Circ HF 2008:1:170-177 <u>19675681</u> (31)	Multicenter substudy of ESCAPE	194 (with PAC)	Stage D	JVP≥12 mm Hg for PCWP>22 Sensitivity: 65%, Specificity: 64%, PPV 75%, NPV 52%, +LR 1.79, (-)LR 1.8
Prognostic Utility o	f JVP			
Drazner et al NEJM 2001;345:574-81 <u>11529211</u> (35)	Retrospective analysis of SOLVD Treatment Trial	2569	Stage C	Multivariate analysis for elevated JVP Mean f/u 32 months Death RR 1.15 (95% CI: 0.95-1.38) HF hospitalization 1.32 (95% CI: 1.08-1.62) Death/HF hospitalization 1.30 (95% CI: 1.11-1.53)
Drazner et al Am J Med 2003;114:431-437 <u>12727575</u> (36)	Retrospective analysis of SOLVD Prevention Trial	4102	Stage B	Multivariate analysis for elevated JVD Mean follow-up 34 mo Development of HF RR 1.38 (95% CI: 1.1-1.7) Death or Development of HF RR 1.34 (95% CI: 1-1,1.6)

Drazner et al Circ HF 2008:1:170-177 <u>19675681</u> (31)	Multicenter substudy of ESCAPE	194 (with PAC)	Stage D	Multivariate analysis Enrollment estimated RAP associated with survival outside hospital at 6 mo (Referent RAP<13) RAP 13-16 HR 1.2 (95% CI: 0.96-1.5)
Meyer et al AJC 2009 103:839-844 19268742 (37)	Retrospective analysis of DIG trial	7788	Stage C	RAP >16 HR 1.6 (95% CI: 1.2-2.1) Mean follow-up 34 mo <u>Univariate analysis</u> Elevated JVP associated with Death: HR 1.7 (95% CI: 1.54-1.88) All-cause hosp: HR 1.35 (95% CI: 1.25-1.47) <u>After adjusting for propensity score</u> associations no longer significant; aHR: 0.95 (death), aHR:0.97 (hosp), p>0.5
Utility of Valsalva M	aneuver for Detect	ting Elevated	PCWP	p=0.0
Schmidt et al AJC 1993;71:462-5 8430644 (38)	Prospective single center	38	Unknown (%HF not stated)	Utility of square wave for LVEDP ≥15 mm Hg: sens 100%, spec 91%, PPV 82%, NPV 100%
Rocca et al Chest 1999; 116:861-7 <u>10531144</u> (39)	Single center, prospective study	45	Stage C	Pulse amplitude ratio by Valsalva correlated with BNP (r=0.6, p<0.001)
Givertz et al AJC 2001 1213-1215 <u>11356404</u> (40)	Single center, prospective study of Vericor system	30 men	Class 3/4	Predicted PCWP by Valsalva vs measured PCWP: r=0.9, p<0.001. Mean difference 0.07 ±2.9 mm Hg Predicted PCWP had sensitivity: 91%, specificity: 100% for PCWP ≥18 mm Hg
Sharma et al Arch Intern Med 2002:162:2084- 2088 <u>12374516</u> (41)	Prospective study of commercial device (VeriCor) at 2 centers	57 pts (2 women)	Unknown Majority pts with CAD	Pulse amplitude ratio correlated with LVEDP (r=0.86) 84% of measurements within 4 mm Hg of LVEDP
Felker et al Am J Medicine 2006;119:117-132 <u>16443410</u> (42)	Review paper	N/A	N/A	Significant correlation between CV response to Valsalva and LV filling pressures

AUC indicates area under the concentration curve; BNP, B-Type Natriuretic Peptide; CAD, coronary artery disease; CV, cardiovascular; DIG, Digitalis Investigation Group; f/u, follow-up; ESCAPE, Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness HJR, hepatojugular reflux; LVEF, left ventricular ejection fraction; LVEDP, Left Ventricular End-Diastolic Pressure; JVD, jugular venous distension; JVP, jugular venous pressure; N/A, not applicable; NPV, negative predictive value; PCWP, Pulmonary Capillary Wedge Pressure; PPV, positive predictive value, Pts, patients; r, Pearson's correlation coefficient; RAP, right arterial pressure; and SOLVD, Studies of left ventricular dysfunction.

Data Supplement 8. Clinical Evaluation – Risk Scoring (Section 6.1.2)

Study Name, Author, Year	Study Type	Study Size	Patient population	Variables	Utility
Stage C		·			
Levy et al Circulation 2006;113:1424-1433 Seattle HF score <u>16534009</u> (10)	Derivation cohort (PRAISE 1); then tested in 5 additional trial databases	1125 (Derivation) 9942 (Validation)	Largely Stage C	Available on website	2 year survival for scores 0, 1,2,3,4 was: 93%, 89%, 78% 58%, 30%, 11% AUC 0.729 (0.71 to 0.74)
Pocock et al Eur Heart J 2006;27:65-75 CHARM <u>16219658</u> (13)	Analysis of CHARM	7,599	Stage C HF	21 variables	2 year mortality Lowest to highest deciles 2.5% to 44% C statistic 0.75
Stage D					
Aaronson et al Circulation 1997;95:2660-7 HF Survival Score <u>9193435</u> (2)	Derivation and Validation 2 transplant centers	268 (Derivation) 199 (Validation)	Stage D	Ischemic cardiomyopathy, resting heart rate, LVEF, IVCD (QRS duration 0.12 sec of any cause), mean resting BP, peak O2, and serum sodium PCWP (invasive)	3 strata Event-free survival rates at 1 y for the low-, medium-, and high-risk HFSS strata were 93±2%, 72±5%, and 43±7% AUC 1 y 0.76-0.79
Lucas et al Am Heart J 2000;140:840-7 "Congestion Score" <u>11099986</u> (43)	Retrospective, single center	146	Stage D	Congestion score: orthopnea, JVD, edema, weight gain, new increase diuretics	Post discharge (4-6 wk) score vs. 2 y death 0: 54% 1-2: 67% 3-5: 41%
Nohria et al JACC 2003:41:1797-1804 "Stevenson profiles" <u>12767667</u> (44)	Prospective, single center	452 pts	Stage D	Stevenson classification Profiles A,B,C,L	Profile B associated with death+urgent transplant in multivariate analysis (HR: 2.5, p=0.003).
Drazner et al Circ HF 2008;1:170-7 "Stevenson profiles" <u>19675681</u> (31)	Substudy of ESCAPE	388	Stage D	Stevenson classification	Discharge profile "wet or cold" HR 1.5 (1.1, 2.1) for number of d alive outside hosp at 6 mo in multivariate analysis
Levy et al J Heart Lung Tx	Retrospective analysis of REMATCH	129 REMATCH	Stage D	Seattle HF Score	The 1-y ROC was 0.71 (95% CI: 0.62-0.80).

2009:28: 231-236. Seattle HF Score <u>19285613</u> (45) Gorodeski et al Circ Heart Fail 2010;3:706-714 Seattle HF Score <u>20798278</u> (46) Hospitalized Patients	Single center study of ambulatory pts presented to transplant committee	215 (between 2004-2007)	Stage D	Seattle HF score	ACM, VAD, Urgent HT 2 y f/u C index 0.68 (1 yr), 0.65 (2 yr) Calibration overestimated survival among UNOS 2 pts
Lee et al JAMA 2003:290:2581-2587 <u>14625335</u> (11)	Retrospective study of multiple hospitals in Ontario Canada	2624 (derivation 1999-2001) 1407 (validation 1997-1999)	Hospitalized pts	Age, SBP, RR, Na<136, Hgb <10, BUN, CVA, Dementia, COPD, cirrhosis, Cancer	Predicted and observed mortality rates matched well 30 d mortality AUC derivation 0.82 Validation 0.79 1 y mortality AUC Derivation 0.77 Validation 0.76
Fonarow et al JAMA 2005:293:572-580 ADHERE 15687312 (14)	CART analysis of ADHERE national registry 2001-2003	33,046 (derivation) 32,229 (Validation)	Hospitalized pts	BUN ≥43, SBP<115, SCr ≥2.75	In-hospital mortality AUC 67-69% Morality ranges from 1.8(low risk) to ~25% (high risk)
Rohde et al J Cardiac Failure 2006;12:587-593 "HF Revised Score" <u>17045176</u> (47)	Single center study 2000- 2004	779	Hospitalized pts	Cancer, SBP ≤124, Cr >1,4m BUN>37, Na <136, Age>70	In-hospital mortality Bootstrap C=0.77 (0.689-0.85) 6 increasing groups: 0,5%, 7%, 10%, 29%, 83%
Abraham et al JACC 2008;52:347-356 OPTIMIZE-HF <u>18652942</u> (16)	Analysis of OPTIMIZE-HF registry 2003-2004	48,612 pts Validated in ADHERE	Hospitalized pts	19 variables	In-hospital mortality C statistic 0.77 Validation C statistic 0.746 Excellent reliability for mortality

Peterson et al Circ Cardiovasc Qual Outcomes 2010:3:25-32 GWTG <u>20123668</u> (15)	Analysis of GWTG admitted 2005-2007	27,850 (Derivation) 11,933 (Validation)	Hospitalized pts	Age, SBP, BUN, HR, Na, COPD, nonblack race	In-hospital mortality C index 0.75 Predicted probability mortality over deciles ranged from 0.4% - 9.7% and corresponded with true mortality
Other	·				
Gheorghiade et al Eur J of Heart Failure 2010:12:423-433 ESC Congestion Score <u>20354029</u> (48)	Scientific Statement from Acute HF Committee of HF Association of ESC	N/A	N/A	Congestion score Bedside assessment (Orthopnea, JVD, HM, Edema) Lab (BNP or NT proBNP) Orthostatic BP 6 min walk test Valsalva	Needs to be tested

ACM indicates all cause mortality; ADHERE, Acute Decompensated Heart Failure National Registry; AUC, area under the curve; BNP, B-type natriuretic peptide; BP, blood pressure; BUN, blood urea nitrogen; CART, Classification and regression trees; CHARM, Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity; COPD, chronic obstructive pulmonary disease; CVA, Cerebrovascular Accident; ESC, European Society of Cardiology; ESCAPE, Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness; GWTG, Get With the Guidelines; HF, heart failure; HFSS, heart failure survival score; Hgb, hemoglobin; HR, heart rate; HT, heart transplantation; HM, hepatomegaly; IVCD, intraventricular conduction delay; JVD, jugular venous distension; LVEF, left ventricular ejection fraction; N/A, not applicable; Na, sodium; NT proBNP, n-terminal pro-B-type natriuretic peptide; OPTIMIZE-HF, Organized Program to Initiate Lifesaving Treatment in Hospitalized Pts with HF; PCWP, Pulmonary Capillary Wedge Pressure; PRAISE, Prospective Randomized Amlodipine Survival Evaluation; pts, patients; REMATCH, Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure; ROC, receiver operating characteristic curve; RR, respiratory rate; SBP, systolic blood pressure; SCr, serum creatinine; UNOS, United Network of Organ Sharing; and VAD, ventricular assist device.

Data Supplement 9. Imaging Echocardiography (Section 6.4)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Population		Endpoints	Statistical Analysis (Results)	Study Limitations
				Inclusion Criteria	Exclusion Criteria			
IS. Syed 2010 <u>20159642</u> (49)	Evaluate LGE-CMR in identifying CA; investigate associations between LGE and clinical, morphologic, functional, and biochemical features.	Observational	120 (35 with positive cardiac histology, 49 without cardiac histology but with echo evidence of CA, 36 without histology or echo evidence of CA)	Histologically proven amyloidosis and, in the case of AL amyloidosis, confirmatory evidence of monoclonal protein in the serum or urine and/or a monoclonal population of plasma cells in the bone marrow.	Prior MI, myocarditis, prior peripheral blood stem cell transplantation, or prior heart transplantation	LGE-CMR presentation in pts with amyloidosis; associations between LGE and clinical, morphologic, functional, and biochemical features.	Of the 35 pts with histology, abnormal LGE was present in 97% of the 49 with echo evidence, abnormal LGE was present in 86% of the 36 without histology or ECHO evidence of CA, abnormal LGE was present in 47%. In all pts, LGE presence and pattern was associated with NYHA functional class, ECG voltage, LV mass index, RV wall thickness, troponin-T, and BNP levels.	No control group, cardiac histology was only present in a subset of pts contraindication to the use of Gd

V Rizzello 2009 <u>19443475</u> (50)	Evaluate the prognosis of viable pts with and without improvement of LVEF after coronary revascularisation.	Observational	90; group 1: viable pts with LVEF improvement (n=27); group 2, viable pts without LVEF improvement (n=15), group 3, non-viable pts (n=48)	Pts were already scheduled for coronary revascularization according to clinical criteria of reduced LVEF (40%), symptoms of HF and/or angina, presence/absence of ischemia and presence of critical coronary disease at angiography. Only pts who had undergone coronary revascularisation alone were included in the study	Pts who had undergone mitral valvuloplasty or aneurismectomy in association with revascularisation were excluded.	Cardiac events were evaluated during a 4-y follow-up (cardiac death, new MI, admission to hospital for HF)	Cardiac event rate was low (4%) in group 1, intermediate (21%) in group 2 and high (33%) in group 3. After revascularization, the mean (SD) LVEF improved from 32 (9)% to 42 (10)% in group 1, but did not change significantly in group 2 and in group 3, p,0.001 by ANOVA. HF symptoms improved in both groups 1 (mean (SD) NYHA class from 3.1 (0.9) to 1.7 (0.7)) and 2 (from 3.2 (0.7)-1.7 (0.9)), but not in group 3 (from 2.8 (1.0)-2.7 (0.5)), p=0.001 by ANOVA. The difference in event rate was not statistically significant between groups 1 and 2 -small number of pts- but it was significant between the 3 groups using Kaplan–Meier p=0.01	N/A
Kevin C Allman 2002 <u>11923039</u> (51)	Examines late survival with revascularization vs medical therapy after myocardial viability testing in pts with severe CAD and LV dysfunction	Meta-analysis of observational studies	3,088 (viability demonstrated in 42%)	Pts with CAD and LV dysfunction who were tested for myocardial viability with cardiac imaging procedures from 24 viability studies reporting pt survival using thallium perfusion imaging, F-18 fluorodeoxyglucose metabolic imaging or dobutamine ECHO.	Those not reporting deaths or where deaths could not be apportioned to pts with vs without viability were excluded	Annual mortality rates, pts followed for 25±10 mo.	For pts with defined myocardial viability, annual mortality rate was 16% in medically treated pts but only 3.2% in revascularized pts (χ^2 =147, p<0.0001). This represents a 79.6% relative reduction in risk of death for revascularized pts. For pts without viability, annual mortality was not significantly different by treatment method: 7.7% with revascularization vs 6.2% for medical therapy (p=NS).	The individual studies are observational, nonrandomized, unblinded and subject to publication and other biases. In this metaanalysis, viability could only be interpreted as "present" or "absent" based on individual studies' definitions
Beanlands RS. 2002 <u>12446055</u> (52)	Whether the extent of viability or scar is important in the amount of recovery of LV function and to develop a model for predicting recovery after revascularization that could be tested in a randomized trial.	Prospective multicenter cohort	82; Complete follow-up was available on 70 pts.	Pts CAD and severe LV dysfunction with EF 35% by any quantitative technique, who were being scheduled for revascularization	PTs with MI within the preceding 6 wk, severe valve disease requiring valve replacement, requirement for aneurysm resection, and inability to obtain informed consent.	Absolute change in EF determined by radionuclide angiograms 3 mo postrevascularization	Amount of scar was a significant independent predictor of LV function recovery after revascularization. Across tertiles of scar scores (I, small: 0% to 16%; II, moderate: 16% to 27.5%; III, large: 27.5% to 47%), the changes in EFs were 9.0±1.9%, 3.7±1.6%, and 1.3±1.5% (p=0.003: I vs. III), respectively.	Pt population in this study included pts who were predominantly men, predominately between 53- 71 y of age (1 SD from the mean), had multivessel disease, and had bypassable vessels. Although improvement in LV function has been noted at 3 mo of follow-up in many previous studies, recent data suggest that more recovery may be observed with longer follow-up time

Paul R. Pagley 1997 <u>9264484</u> (53)	Hypothesized that pts with poor ventricular function and predominantly viable myocardium have a better outcome after bypass surgery compared with those with less viability.	Retrospective cohort	70	Pts with EFs <40% without significant valvular disease who were referred for a first coronary bypass surgery and underwent preoperative quantitative planar 201Tl imaging for viability determination.	Prior CABG, coexisting valvular disease and underwent concurrent aortic or MV replacement, or those with SPECT imaging	CV death or cardiac transplantation; median time to follow-up was 1177 d (range, 590 to 1826)	The viability index was significantly related to 3-y survival free of cardiac event (cardiac death or heart transplant) after bypass surgery (p=0.011) and was independent of age, EF, and number of diseased coronary vessels. Survival free of cardiac death or transplantation was significantly better in group 1 pts on Kaplan-Meier analysis (p=0.018).	N/A
Senior R, 1999 <u>10362184</u> (54)	To evaluate the effect of revascularization on survival in pts with CHF due to ischemic LV systolic dysfunction based on the presence of myocardial viability	Observational prospective	87	CHF (NYHA class II-IV) for at least 3 mo that was treated medically; LVEF ≤35%; clinical evidence of CAD	Significant valvular disease, unstable angina, MI within three months, sustained ventricular tachycardia or AF	Cardiac deaths were defined as those resulting from acute MI, refractory CHF or occurring suddenly and not being attributed to other known causes after a mean follow-up of 40 ± 17 mo	Pts with at least 5 segments showing myocardial viability underwent revascularization, mortality was reduced by an average of 93% which was associated with improvement in NYHA class as well as LVEF. Pts with <5 segments showing myocardial viability who underwent revascularization (and thus, showing mostly scar), and those with at least 5 segments demonstrating myocardial viability who were treated medically, had a much higher mortality. (95% CI: 22%-99%)	Single-center study where selection bias is unavoidable. Selection bias may have favored taking one group to surgery over another.
Kwon DH 2009 <u>19356530</u> (55)	To determine whether the extent of LV scar, measured with DHE-CMR predicts survival in pts with ischemic cardiomyopathy ICM and severely reduced LVEF.	Observational	349	Pts with documented ICM (on the basis of 70% stenosis in at least 1 epicardial coronary vessel on angiography and/or history of MI or coronary revascularization), who were referred for the assessment of myocardial viability with CMR	Pts with standard CMR contraindications including severe claustrophobia, AF, and the presence of pacemakers, defibrillators, or aneurysm clips	All-cause mortality was ascertained by social security death index after a mean of follow-up 2.6 ± 1.2 y (median 2.4 y)	Mean scar percentage and transmurality score were higher in pts with events vs those without (39±22 vs 30±20, p=0.003, and 9.7±5 vs. 7.8±5, p=0.004). *On Cox proportional hazard survival analysis, quantified scar was greater than the median (30% of total myocardium), and female gender predicted events (RR: 1.75; 95% CI: 1.02-3.03 and RR:1.83; 95% CI: 1.06- 3.16, respectively, both p=0.03).	Selection bias of an observational study conducted at a large tertiary referral center. Only the pts with no contraindications to CMR underwent the examination.
Ordovas KG. 2011 <u>22012903</u> (56)	N/A	Review paper	N/A	N/A	N/A	N/A	An international multicenter study (54) reported a sensitivity of 99% for detection of acute infarction and 94% for detection of chronic infarction. Delayed enhancement occurs in both acute and chronic (scar) infarctions and in an array of other myocardial processes that cause myocardial necrosis, infiltration, or fibrosis. These include myocarditis, hypertrophic cardiomyopathy, amyloidosis, sarcoidosis, and other myocardial conditions. In several of these diseases, the presence and extent of delayed enhancement has prognostic implications.	N/A

AF, atrial fibrillation; AL, Amyloid Light-chain; ANOVA, analysis of variance; CA, cardiac amyloidosis; CABG, coronary artery bypass graft; CAD, coronary artery disease; CHF, congestive heart failure; CMR, cardiovascular magnetic resonance; CV, cardiovascular; DHE-CMR, delayed hyperenhancement cardiac magnetic resonance; ECHO, echocardiography; EF, ejection fraction; Gd, gadolinium; ICM, ischemic cardiomyopathy; LGE-CMR, late gadolinium enhancement cardiac magnetic resonance; LV, left ventricular; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; NS, not significant; NYHA, New York Heart Association; pts, patients; RV, right ventricular; SD, standard deviation; and SPECT, single-photon emission computed tomography.

Data Supplement 10. Biopsy (Section 6.5.3)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Population	Results
Cooper LT, Baughman KL, Feldman AM et al. The role of endomyocardial biopsy in the management of CV disease: Circulation 2007 November 6;116(19):2216-33. <u>17959655 (</u> 57)	Role of endomyocadial biopsy for management of CV disease	A scientific statement from the AHA, ACC, & ESC	N/A	N/A	N/A
Kasper EK, Agema WR, Hutchins GM, Deckers JW, Hare JM, Baughman KL. The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive pts. <i>J Am Coll Cardiol</i> 1994 March 1;23(3):586-90. <u>8113538 (</u> 58)	To document causes of DCM in a large group of adult HF pts	Retrospective Cohort	673	DCM pts with symptoms within 6 mo, evaluated at Johns Hopkins Hospital 1982-1991	Most common causes of DCM: idiopathic (47%), myocarditis (12%) and CAD (11%), other causes (31%)
Fowles RE, Mason JW. Endomyocardial biopsy. Ann Intern Med 1982 December;97(6):885-94. 6756241 (59)	Complication risk with RV biopsies	Review	N/A	N/A	Complication rate of 1% in 4000 biopsies (performed in transplantation and CMP pts) 4 tamponade (0.14%), 3 pneumothorax, 3 AF, 1 ventricular arrhythmia, and 3 focal neurological complications
Deckers JW, Hare JM, Baughman KL. Complications of transvenous right ventricular endomyocardial biopsy in adult pts with cardiomyopathy: a seven-year survey of 546 consecutive diagnostic procedures in a tertiary referral center. <i>J Am Coll Cardiol</i> 1992 January;19(1):43-7. <u>1729344</u> (60)	To determine the incidence, nature and subsequent management of complications occurring during RV endomyocardial biopsy in pts with cardiomyopathy	Prospective Cohort	546	546 consecutive biopsies for DCM pts at single center,	 33 total complications (6%): 15 (2.7%) during catheter insertion: 12 arterial punctures (2%), 2 vasovagal reactions (0.4%) and 1 prolonged bleeding (0.2%), 18 (3.3%) during biopsy: 6 arrhythmias (1.1%), 5 conduction abnormalities (1%), 4 possible perforations (0.7%) and 3 definite perforations (0.5%). 2 (0.4%) of the 3 pts with a perforation died
Ardehali H, Qasim A, Cappola T et al. Endomyocardial biopsy plays a role in diagnosing pts with unexplained cardiomyopathy. Am Heart J 2004 May;147(5):919-23. <u>15131552</u> (61)	To evaluate the utility of RV biopsy in confirming or excluding a clinically suspected diagnosis	Retrospetive chart review	845	Pts with initially unexplained cardiomyopathy (1982- 1997) at The Johns Hopkins Hospital.	Clinical assessment of the etiology inaccurate in 31% EMBx helps establish the final diagnosis in most
Holzmann M, Nicko A, Ku ⁻ hl U, et al. Complication rate of right ventricular endomyocardial biopsy via the femoral approach. A retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation 2008;118:1722–8.	To determine complication rate of RV biopsy	Cohort	2415	1919 pts underwent 2505 endomyocardial biopsy retrospectively (1995- 2003), and 496 pts underwent 543	Major complications cardiac tamponade requiring pericardiocentesis or complete AV block requiring permanent pacing rare: 0.12% in the retrospective study and 0% in the prospective study. Minor complications such as pericardial effusion, conduction abnormalities, or arrhythmias in 0.20% in the retrospective study

<u>18838566 (</u> 62)				endomyocardial biopsy prospectively (2004- 2005) to evaluate unexplained LV dysfunction	and 5.5% in the prospective study
Elliott P, Arbustini E. The role of endomyocardial biopsy in the management of CV disease: a commentary on joint AHA/ACC/ESC guidelines. <i>Heart</i> 2009 May;95(9):759-760. <u>19221107</u> (63)	N/A	Commentary	N/A	N/A	Emphasizes genetic causes of CMP

ACC indicates American College of Cardiology; AHA, American Heart Association; AF, atrial fibrillation; AV, atrioventricular; CAD, coronary artery disease; CMP, cardiomyopathy; DCM, dilated cardiomyopathy; EMBx, endomyocardial biopsy; ESC, European Society of Cardiology; LV, left ventricular; N/A, not applicable; pts, patients; and RV, right ventricular.

Data Supplement 11. Stage A: Prevention of HF (Section 7.1)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient P	opulation	Endpoints	Trial Duration (Years)	Statistical Analysis (Results)	Study Limitations
Lloyd-Jones et al, The lifetime risk for developing HF; Circulation, 2002; 106:3068-3072 12473553 (64)	Examine lifetime risk of developing CHF among those without incident or prevalent disease	Prospective cohort	N (Total) n (Experimental) n (Control) 8229	Inclusion Criteria Free of CHF at baseline	<i>Exclusion Criteria</i> N/A	N/A	N/A	Lifetime risk is 1 in 5 for men and women; significant association between MI and HTN in lifetime risk of CHF.	Subjects mostly white and results not generalizable to other races.
Vasan et al, Residual lifetime risk for developing HTN in middle-aged women and men; JAMA, 2002:287:1003-1010. <u>11866648</u> (65)	Quantify risk of HTN development	Prospective cohort	1298	Ages 55-65 y and free of HTN at baseline.	N/A	N/A	N/A	Residual lifetime risk for developing HTN was 90%. Risk did not differ by sex or age, lifetime risk for women vs men aged 55 y, HR: 0.91 (95% CI, 0.80-1.04); for those aged 65 y, HR:0.88 (95% CI, 0.76-1.04)	Measured HTN in middle age, when a large portion of people develop HTN at younger ages so actual risk may be different for younger people. Did not take into account other risks for HTN like obesity, family history of high BP, dietary sodium and potassium intake, and alcohol consumption
Levy et al, The progression from HTN to CHF; JAMA, 1996;275:1557-62 <u>8622246</u> (66)	Analysis of expected rates of HF associated with diagnosis of HTN	Prospective cohort	5,143	Free of CHF at baseline.	N/A	Developmen t of HF	20	Those with HTN at a higher risk for CHF: Men, HR: 2.04; 95% CI: 1.50- 2.78; Women, HR: 3.21; 95% CI: 2.20- 4.67	Subjects mostly white and results not generalizable to other races. Possible misclassification bias as some subjects diagnosed w/HTN before use of echocardiography.

Wilhelmsen et al, HF in the general population of men: morbidity, risk factors, and prognosis; J Intern Med	Identification of risk associated with HTN	Population- based intervention trial	7,495	N/A	N/A	Developmen t of HF	27	PAR for CHF in those with HTN: 39% for men and 59% in women. CAD and HTN were the most common concomitant diseases in HF pts (79.1%).	N/A
2001;249:253-261 <u>11285045</u> (67) Kostis, et al, Prevention of HF by antihypertensive drug treatment in older persons with isolated systolic HTN; JAMA 1997;278:212-216. <u>9218667</u> (68)	To assess the effect of antihypertensive care on the incidence of HF in older pts with systolic HTN	RCT	4,736; 2,365; 2,371	Age ≥60y, Isolated systolic HTN: SBP 160-219 mm Hg with DBP <90 mm Hg.	Recent MI, CABG, DM, alcohol abuse, demential stroke, AF, AV block, multiform premature ventricular contractions, bradycardia <50 beats/min; diuretic therapy.	Fatal and non-fatal HF	4.5	49% reduction RR: 0.51; 95% CI: 0.37-0.71; p<.001	Noteworthy that pts with prior MI had an 80% risk reduction.
Staessen, Wang and Thijs; CV prevention and BP reduction: a quantitative overview updated until 1 March 2003; J Hypertens 2003;21:1055-1076 <u>12777939</u> (69)	Assessment of various drugs and their reduction of HF	Meta analysis	120,574	N/A	N/A	CV events	N/A	CCB, resulted in better stroke protection than older drugs: including (-8%, p=0.07) or excluding verapamil (-10%, p=0.02), as well as ARB (-24%, p=0.0002). The opposite trend was observed for ACEI (+10%, Pp=0.03). The risk of HFwas higher (p< 0.0001) on CCB (+33%) and alpha blockers (+102%) than on conventional therapy involving diuretics	N/A
Sciaretta, et al; Antihypertensive treatment and development of HF in hypertension: a Bayesian network meta- analysis of studies in pts with HTN and high CV risk. Arch Intern Med. 2011 Mar 14;171(5):384-94. <u>21059964</u> (70)	Compare various drugs and risk for HF	Meta analysis	223,313	Studies had to be RCTs from 1997- 2009; pts with HTN or a population characterized as having a "high" CV risk profile and a predominance of pts with HTN (>65%); the sample size ≥200 pts; and information on the absolute incidence of HF and	N/A	HF	N/A	Diuretics vs. placebo: OR: 0.59; 95% Crl: 0.47-0.73; ACE-I vs. placebo: OR: 0.71; 95% Crl: 0.59-0.85; ARB: OR: 0.71; 95% Crl: 0.59- 0.85. Beta blockers and CCB less effective	N/A

				other major CV events					
Lind et al, Glycaemic control and incidence of HF in 20985 pts with type 1 diabetes: an observational study. Lancet 2011; Jun 24. 21705065 (71)	Assessment of glycemic control and risk for HF	Meta analysis	20,985 or higher A1C <6.5%	Type 1 DM	N/A	HF	N/A	A1C ≥10.5% vs A1C <6.5%: aHR: 3.98; 95% CI: 2.23-7.14; p<.001;	Used hospital admissions and did not include asymptomatic HF pts, so true incidence of HF underestimated.
Pfister, et al, A clinical risk score for HF in pts with type 2 diabetes and macrovascular disease: an analysis of the PROactive study. Int J Cardiol. 2011;May 31. 21636144 (72)	Identification of risk associated with DM	RCT	4,951	Type 2 DM	N/A	HF	3	Medium risk: HR: 3.5; 95% CI: 2.0-6.2; p<0.0001 High risk: HR: 10.5; 95% CI: 6.3- 17.6; p<0.0001	HF was pre-defined by investigator, but rather reported as SAE in the trial. Trial population may not be generalizable to clinical population.
Kenchaiah et al, Obesity and the risk of HF. NEJM, 2002;347:305-313. 12151467 (73)	Assessment of HF risk associated with obesity	Prospective cohort	5,881	≥30 y; BMI ≥18.5;free of HF at baseline	N/A	HF	14	Women, HR: 2.12; 95% CI: 1.51- 2.97 Men, HR: 1.90; 95% CI: 1.30-2.79	Possible misclassification of HF and subjects mostly white and results not generalizable to other races.
Kenchaiah, Sesso, Gaziano, Body mass index and vigorous physical activity and the risk of HF among men. Circulation, 2009;119:44-52. <u>19103991</u> (74)	Assessment of risk associated with obesity and effect of exercise	Prospective cohort, secondary analysis of RCT	21,094	Free of known heart disease at baseline.	N/A	Incidence of HF	20.5	Every 1 kg/m2 increase in BMI is associated with 11% (95% CI: 9- 13) increase in risk of HF. Compared to lean active men: Lean inactive: HR:1.19; 95% CI: 0.94-1.51, Overweight active: HR:1.49; 95% CI: 1.30-1.71), Overweight inactive: HR: 1.78; 95% CI: 1.43- 2.23), Obese active: HR: 2.68; 95% CI: 2.08-3.45, Obese inactive: HR: 3.93; 95% CI: 2.60-5.96	Low incidence of HF as cohort comprised of physicians who are healthier than the general population. BMI measures and physical activity were self-reported. These measures were only taken at baseline and tend to change over time. This cohort consisted only of men and results not generalizable to women.

Verdecchia et al, Effects of telmisartan, ramipril and their combination on LVH in individuals at high vascular risk in ONTARGET and TRANSCEND. Circulation 2009;120:1380-1389. <u>19770395</u> (75)	Evaluate effects of ACE, ARB, or both on development of LVH in pts with atherosclerotic disease.	RCT	23,165 for ONTARGET, 5,343 in TRANSCEND	Hx of CAD, PAD, cerebrovascular disease.	N/A	LVH	5	Telmisartan vs placebo: OR: 0.79; 95% Cl: 0.68-0.91; p=0.0017. Telmisartan vs. ramipril: OR: 0.92; 95% Cl; 0.83-1.01; p=0.07 Telmisartan + ramipril vs. ramipril: OR: 0.93; 95% Cl: 0.84-1.02; p=0.12) Telmisartan vs telmisartan + ramipril: OR: 1.01; 95% Cl: 0.91-1.12	Diagnosis of LVH was based on ECG, which is less sensitive than echocardiography and was binary (yes/no) instead of quantitative.
Braunwald et al; ACE inhibition in stable coronary artery disease. NEJM 2004;351:2058- 2068. 15531767 (76)	Evaluate the effect of trandolapril on vascular events	RCT	8,290; 4,158 (trandolpril); 4,132 (placebo)	Stable CAD	N/A	Major CV events	4.8	HR: 0.95; 95% CI: 0.88-1.06; p=0.43	Results not significant possibly because the pts enrolled were at lower risk for CV events compared to other trials of ACEI.
Mills et al, Primary prevention of cardiovascualr mortality and events with statin treatments. J Am Coll Cardiol; 2008;52:1769- 1781 19022156 (77)	Evaluation of primary prevention of CV events with statins	Meta analysis	53,371	N/A	N/A	Major CV events	N/A	RR: 0.84; 95% CI: 0.77-0.95; p=0.004	N/A
Taylor et al, Statins for the primary prevention of CV disease. Cocrane Database Syst Rev, 2011; CD004816 <u>21249663</u> (78)	Assess benefit and risk of statins for prevention of CVD	Meta analysis	34,272	RCTs of statins with minimum duration of 1 y and f/u of 6 mo, in adults with no restrictions on their total LDL or HDL cholesterol levels, and where ≤10% had a hx of CVD, were included.	N/A	All-cause mortality and fatal/nonfatal CVD	N/A	All-cause mortality: RR: 0.84; 95% CI: 0.73-0.96) Fatal/non-fatal CVD: RR: 0.70, 95% CI: 0.61-0.79	N/A
Abramson et al; Moderate alcohol consumption and risk fo HF among older persons. JAMA, 2001;285:1971-1977. <u>11308433</u> (79)	Assessment of risk associated with alcohol use in older adults.	Prospective cohort	2,235	Age ≥65 y; lived in New Haven, Conn, and free of HF at baseline	Heavy alcohol consumption (>70 oz.)	New HF	N/A	No alcohol: aRR: 1.00 (referent), 1-20 oz: aRR: 0.79; 95% CI: 0.60- 1.02), 21-70 oz: aRR: 0.53; 95% CI: 0.32-0.88. (p for trend=0.02)	Observational study, could not account for all possible confounders, alcohol consumption was self-reported.

Walsh et al; Alcohol consumption and risk for CHF in the Framingham Heart Study. Ann Intern Med, 2002; 136:181-191. <u>11827493</u> (80)	Assessment of risk associated with alcohol use	Community based cohort	7,223	N/A	N/A	New CHF	N/A	Compared to men who consumed <1 drink/wk, men who consumed 8-14 drinks/wk: HR for CHF: 0.41; 95% CI: 0.21-0.81. In women: those who consumed 3-7 drinks/wk HR: 0.49; 95% CI: 0.25-0.96, compared with those who consumed <1 drink/wk.	Self-reported alcohol consumption.
Choueiri et al, CHF risk in pts with breast cancer treaated with bevacizumab. J Clin Oncol, 2011; 29:632- 638. 21205755 (81)	Risk of CHF pts with breast cancer receiving bevacizumab	Meta analysis	3,784	RCTs published between January 1966-March 2010 in English.	N/A	New CHF	N/A	RR: 4.74; 95% CI; 1.84-12.19; p=0.001)	Data on other risk factors for CHF were not collected or unavailable.
Du et al; Cardiac risk associated with the receipt of anthracycline and trastuzumab in a alarge nationwide cohort of older women with breast cancer, 1998-2005. Med Oncol, 2010;Oct 22. 20967512 (82)	New HF	Registry	47,806	Women with breast cancer ≥65 y	N/A	New HF	N/A	HR: 1.19 anthracycline alone, HR: 1.97 trastuzumab alone, HR: 2.37 combo	N/A
Sawaya et al; Early detection and prediction of cardiotoxicity in chemotherapy treated pts. Am J Cardiol, 2011; 107:1375-80. <u>21371685</u> (83)	To assess whether early ECHO measurements of myocardial deformation and biomarkers (hsTnl and NT-proBNP) could predict the development of chemotherapy-induced cardiotoxicity in pts treated with anthracyclines and trastuzumab.	Prospective cohort	43	>18 y of age diagnosed with HER- 2-overexpressing breast cancer and either scheduled to receive treatment including anthracyclines and trastuzumab or scheduled to receive trastuzumab after previous anthracycline treatment.	Pts with LVEFs ≤50%	Cardiotoxicit y	N/A	Elevated hsTnI at 3 mo (p =0.02) and a decrease in longitudinal strain between baseline and 3 mo (p =0.02) remained independent predictors of later cardiotoxicity. Neither the change in NT-proBNP between baseline and 3 mo nor an NT-proBNP level higher than normal limits at 3 mo predicted cardiotoxicity	Small sample size

McKie et al; The prognostic value of NT- proBNP for death and CV events in healthy normal and stage A/B HF subjects. J Am Coll Cardiol, 2010;55:2140- 2147. 20447539 (84)	NT-proBNP as a predictor of death, CV events	Cohort	1,991	Age ≥45 y, lives in Olmsted County, Minnesota	Symptomatic HF (stages C and D HF)	Death, HF, CVA, MI	8.9 years	HR:1.26 per log increase in fully adjusted model in stage A/B pts (95% CI: 1.05–1.51; p=0.015). NT-proBNP was not predictive of death or CV events in the healthy normal subgroup.	Underpowered to detect association of NT-proBNP with adverse outcomes in the healthy normal subgroup.
Velagaleti et al; Multimarker approach for the prediction of HF incidence in the community. Circulation, 2010;122:1700-1706. 20937976 (85)	Evaluation of markers for HF development in the community	Cohort	2,754	Free of HF	N/A	HF	N/A	BNP: aHR: 1.52; 95% CI: 1.24– 1.87; p<0.0001 UACR: aHR: 1.35; 95% CI: 1.11– 1.66; p=0.004	Subjects mostly white and results not generalizable to other races.
Blecker et al; High normal albuminuria and risk of HF in the community. Am J Kidney Dis, 2011; 58:47-55. <u>21549463</u> (86)	Evaluation of albuminuria as risk for new HF	Cohort	10,975	Free of HF	N/A	HF	8.3	aHR: 1.54 (95% CI,:1.12-2.11) UACR normal to intermediate- normal; aHR: 1.91 (95% CI: 1.38- 2.66) high-normal; aHR: 2.49 (95% CI: 1.77-3.50) micro; aHR: 3.47 (95% CI: 2.10-5.72) macro (p<0.001)	N/A
deFilippi et al; Association of serial measures of cardiac troponin T using a sensitive assay with incident HF and CV mortality in older adults. JAMA, 2010; 304:2494- 2502. <u>21078811</u> (87)	Assessment as to whether baseline cTnT or changes predict HF	Cohort	4,221	N/A	N/A	HF	11.8	Complex >99th percentile at baseline: 6.4; change from neg to pos: 1.61 increase.	Samples were available in ~3/4 of the cohort at baseline, and differential absence of cTnT measures may have introduced bias into the estimates of associations with HF and CV death.
Heidenreich, et al, Cost- effectiveness of screening with BNP to identify pts with reduced LVEF. J Am Coll Cardiol, 2004;43:1019- 1026. <u>15028361</u> (88)	Cost effectiveness of BNP screening	Cost benefit analysis	N/A	Asymptomatic pts.	N/A	N/A	N/A	BNP testing followed by echocardiography is a cost- effective screening strategy for men and possibly women at age 60 y - for every 125 men screened,1 y of life would be gained at a cost of \$23,500.	Did not evaluate other blood tests such as pro-BNP as prevalence and outcome data were not available.

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; AV, atrioventricular; BMI, body mass index; BP, blood pressure; CABG, coronary artery bypass graft; CAD, coronary artery disease; CCB, calcium channel blocker; CHF, congestive heart failure; cTnT, cardiac troponin T; CV, cardiovascular; CVA, cerebrovascular accident; CVD, cardiovascular disease; DM, diabetes mellitus; DBP, diastolic blood pressure; ECG, electrocardiography; HDL, high density lipoprotein; HF, heart failure; hsTnI,

high-sensitivity troponin I; HTN, hypertension; LDL, low density lipoprotein; Hx, history; LVH, left ventricular hypertrophy; MI, myocardial infarction; N/A, not applicable; N-terminal pro–B-type natriuretic peptide; ONTARGET, Ongoing Telmisartan Along and in Combination with Ramipril Global Endpoint Trial; PAD, peripheral arterial disease; PAR, population attributable risk; pro-BNP, pro–B-type natriuretic peptide; pts, patients; RCT, randomized clinical trial; SAE, serious adverse event; SBP, systolic blood pressure; TRANSCEND, Telmisartan Randomized Assessment Study in ACE Intolerant Subjects with CV Disease; and UACR, urinary albumin-to-creatinine ratio.

Data Supplement 12. Stage B: Preventing the Syndrome of Clinical HF With Low EF (Section 7.2)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient F	Population	End	points	Statistical Analysis (Results)	P Values & 95% CI:	OR: HR: RR:	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint					
ACE Inhibitors												
Effect of Captopril on Mortality and Morbidity in Pts with LVD after MI Pfeffer, Marc A; NEJM 1992 (SAVE) <u>1386652</u> (89)	Investigate whether captopril could reduce morbidity and mortality in pts with LVSD after an MI	RCT	2,331	Within 3-60 d of MI; EF <u><</u> 40%; no overt HF or ischemic symptoms; age 21-80 y;	Cr > 2.5 mg/dL; relative contraindication to ACEI; need for ACEI to treat symptomatic HF or HTN; other conditions limiting survival; "unstable course" after MI	All-cause mortality; CV mortality; mortality & derease in EF of 9 units; development of overt HF (despite diuretics and digoxin therapy); hospitalization for HF; fatal or nonfatal MI; mean f/u 42 months	N/A	N/A	Risk Reduction: All-cause mortality CI: 3-32% p=0.019) death from CV caus CI: 5-35%; p<0.001 development of sev (95% CI: 20-50%; p HF hospitalization 2 4-37%; p= 0.019); r 25% (95% CI: 5-40); se 21% (95%); vere HF 37% o<0.001); 22% (95% CI: recurrent MI	Low rate of beta blocker use; Recruitment 1987- 1990: significant changes in revascularization strategies	Reduction in severe HF and HF hospitalization among pts with MI and LVSD without symptoms of HF
Effect of Enalapril on Mortality and the Development of HF in Asymptomatic Pts with Reduced LVEF. The SOLVD Investigators. NEJM 1992 (SOLVD Prevention) <u>1463530</u> (90)	Study the effect of an ACEI, enalapril, on outcomes in pts with LVSD not receiving drug therapy for HF	RCT	4228	EF <u><</u> 35%; not receiving diuretics, digoxin or vasodilators for HF (asymptomatic LVSD)	N/A	All-cause mortality; mean f/u 37.4 months	Development of HF & mortality; HF hospitalization & mortality	N/A	Risk Reduction: All-cause mortality 95% Cl -8 - 21%; p mortality 12% (95% 26%; p=0.12); mortality & develop 29% (95% Cl: 21-3 p<0.001); mortality & HF hosp 20% (95% Cl: 9-30	=0.3); CV o CI: -3 - ment of HF 6%; pitalization	Low rate of beta- blocker use	Reduction in combined endpoints of development of HF & mortality and HF hospitalization and mortality among pts with asymptomatic LVSD

Effect of enalapril on 12-y survival and life expectancy in pts with LVSD: a follow-up study. Jong, P Lancet 2003 <u>12788569 (</u> 91)	12-y follow-up of SOLVD to establish if the mortality reduction with enalapril among pts with HF was sustained and wheather susequent reduction in mortality would emerge among those with asymptomatic ventricular dysfunction	Cohort	5,165	SOLVED prevention and treatment trial populations alive at completion of RCTs	N/A	All-cause mortality	N/A	In combined trials (Prevention and Treatment), enalapril extended median survival 9.4 mo (95% Cl 2.8-16.5; p=0.004)	In the Prevention Trial mortality 50.9% in enalapril group vs. 56.4% in placebo group; p=0.001. In overall cohort, HR for mortality 0.9 (0.84-0.95); p=0.0003 for enalapril vs. placebo	N/A	Mortality benefit of enalapril among pts with asymptomatic LVSD
Intensive Statin Therapy and the Risk of Hospitalization for HF After an ACS in the PROVE IT-TIMI 22 Study Scirica, Benjamin M JACC 2006 <u>16750703 (</u> 92)	Determine whether intensive satin therapy reduces hospitalization for HF in high risk pts (intensive statin therapy simvastatin 80 vs. moderate statin therapy pravastatin 40mg)	RCT	4,162	ACS (AMI or high- risk UA) within 10 d; total cholesterol <240 mg/dL; stable condition;	Life-expectancy <2 y; PCI within the prior 6 mo (other than for qualifying event); CABG within 2 mo; planned CABG	Hospitalization for HF (time to first HF hospitalization that occurred 30 d or longer after randomization)	MI	Meta-analysis of 4 large RCTs of statin therapy (TNT, A to Z, IDEAL, PROVE- IT) N=27,546 Reduction in HF hospitalization: OR: 0.73; 95% CI: 0.63-0.84; p<0.001 [x2 for heterogeneity = 2.25, p=0.523)	Atorvastatin 80mg associated with reduction in HF hospitalization: 1.6% vs. 3.1%; HR 0.55; 95% CI: 0.35-0.85; p=0.008 when adjusted for history or prior HF HR 0.55; 95% CI: 0.35- 0.36; p=0.008	Sub-study of PROVE IT-TIMI 22. Did not exclude those with prior HF (low rates)	In pts with ACS, intensive statin therapy reduced new onset HF Also perfomred meta-analysis of 4 large statin trials (2 ACS, 1 hx of MI, 1 clinically evident CHD) demonstrating benefit of intensive stating therapy in preventing HF hospitalizaiton
Early Intensive vs a Delayed Conservative Simvastatin Strategy in Pts with ACS. Phase Z of the A to Z Trial.	To compare early initiation of an intensive statin regimen with delayed initiation of a less intensive regimen in pts	RCT	4,479	STEMI or NSTEMI; total cholesterol ≤250 mg/dL; age 21-80; at least 1 high-risk characteristic (>70, DM, hx of CAD, PVD or	Receiving statin therapy, planned CABG, PCI planned within 2 wks of enrollment, ALT level >20% ULN, Cr >2.0mg/dL,	Composite: CV death, non-fatal MI, readmission for ACS, stroke	Individual components of primary endpoint and reascularization due to documented ischemia, all-cause	N/A	New onset HF reduced with intensive therapy: 5% vs 3.7%; HR 0.72; 95% CI: 0.53-0.98; p=0.04 Primary endpoint did not achieve significance: 16.7% vs 14.4%; HR 0.89; 95% CI: 0.76- 1.04; p=0.14	Development of HF was a secondary endpoint Did not achieve primary endpoint	In pts with ACS, intensive statin therapy reduced new onset HF

de Lemos, James	with ACS	stroke, elevated	concomitant	mortality, new-		
A. JAMA		CKMB or	therapy with	onset HF		
2004		trooponin levels,	agents known to	(requiring		
<u>15337732 (</u> 93)		recurrent angina	enhance myopathy	medications or		
		with ST changes,	risk; prior hx of	hospitalization),		
		ECG evidence of	non-exercise	CV hosptialization		
		ischemia on pre-	related elevations			
		discharge stress	in CK or			
		test, multivessel	nontraumatic			
		disease)	rhabdomyolysis			

ACEI indicates angiotensin-converting-enzyme inhibitor; ACS acute coronary syndrome; ALT, alanine aminotransferase; AMI, acute myocardial infarction; CABG, coronary artery bypass surgery; CAD, coronary artery disease; CHD, chronic heart disease; CKMB, creatine kinase-MB; Cr, creatinine; CV, cardiovascular; DM, diabetes mellitus; ESG, electrocardiogram; EF, ejection fraction; f/u, follow-up; HF, heart failure; HTN, hypertension; hx, history; LVSD, left ventricular systolic dysfunction; LVD, left ventricular dysfunction; MI, myocardial infarction; NSTEMI, non-ST elevation mysocardial infarction; PCI, Percutaneous coronary intervention; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy -- Thrombolysis in Myocardial Infarction 22; Pts, patients; PVD, Peripheral artery disease; RCT, randomized control trial; SAVE, The Survival and Ventricular Enlargement trial; SOVLD, Studies of Left Ventricular Dysfunction; STEMI, ST elevation myocardial infarction; UA, unstable angina; and ULN, upper limit of normal.

Data Supplement 13. Stage C: Factors Associated With Outcomes, All Patients (Section 7.3)

Study Nam Author, Yea	Study Type	Study Size	Patient Po	Patient Population		points	Statistical Analysis (Results)	Study Limitations	Findings/Comments
			Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
Education									

Long-term prospective RCT using repetitive education at 6-mo intervals and monitoring for the adherence in HF outpt (The REMADHE Trial). Bocchi, Edimar Alcides. 2008 <u>12196335 (</u> 94)	To determine whether a disease management program with repeated multidisciplinary education and telephone monitoring benefits HF outpt already under the care of a with HF experience cardiologist.	RCT	350	Diagnosed with HF	N/A	Combined death or unplanned first hospitalization and QoL changes	Hospitalization, death and adherence.	In the intervention group: QoL improved and Lower: deaths (p<0.003) or unplanned hospitalizations (p=0.008; 95% CI: 0.43- 0.88) , hospitalizations(p<0.001) , total hospital d during follow-up (p<0.001), and ED visits (p<0.001) No difference in estimated total mortality (p=ns; 95% CI: 0.55-1.13) or death during hospitalization (p=ns; 95%CI: 0.53-1.41)	Absence of blinding. Perception of better QoL in the intervention group due healthcare provider support as needed. Confouding by social conditions.	Despite modest adherence program reduced unplanned hospitalization, total hospital d, the need for emergency care and improved QoL.
Effect of discharge instructions on readmission of hospitalized pts with HF: do all of the joint commission on accreditation of healthcare organizations HF core measures reflect better care? VanSuch, M. 2006 <u>17142589</u> (95)	To determine whether documentation of compliance with any or all of the 6 required discharge instructions is correlated with readmissions to hospital or mortality.	Retrospective study	782	Age ≥18 y, principal diagnosis of HF, hypertensive heart disease with HF, or hypertensive heart and renal disease with HF, discharged to home, home care or home care with IV treatment	Pts discharged to skilled nursing facilities or other acute- care hospitals.	Time to: death and readmission for HF or readmission for any cause	N/A	 68% of pts received all instructions, and 6% received no instructions. Pts with all instructions (compared to those who missed at least one type of instruction) were significantly less likely to be readmitted for any cause or HF (p= 0.003) Documentation of discharge instructions was correlated with reduced readmission rates. No association between documentation of discharge and instructions and mortality. 	Discharge instructions given but not documented. Discharge instructions could be a surrogate indicator for another intervention such as higher quality nursing care. Pt factor could have influenced confounding results. Generalizability limited. No active follow-up. Not all quality of care outcomes were assessed.	Documentation of discharge information and pt education appears to be associated with reductions in both mortality and readmissions.

Discharge education improves clinical outcomes in pts with chronic HF. Koelling, T. 2005 <u>15642765</u> (96)	To assess whether a pt discharge education program (the study intervention) improves clinical outcomes in chronic HF pts.	RCT	223	Admitted to hospital with a diagnosis of HF and documented left ventricular systolic dysfunction (EF <u><</u> 40%)	Evaluation for cardiac surgery, Noncardiac illness likely to increase 6-mo mortality or hospitalization risk, Inpatient cardiac transplantation evaluation	Total number of d hospitalized or dead in the 180-d follow-up period.	Clinical events, symptoms, and self-care practices.	The intervention group versus controls had fewer d hospitalized or dead in the 180-d follow-up period (p= 0.009), lower risk of rehospitalization or death (RR: 0.65; 95% CI: 0.45-0.93, p= 0.018), as well as lower costs of care, including cost of the intervention (lower by \$2823 per pt, p= 0.035).	May not be generalizable- only 223 (38%) participated. pts being evaluated for transplantation not studied. Pts followed by the UMHFP not enrolled. Nurse coordinator unblined. Lack of reliability of self-reported self-care measures.	A 1-h teaching session at the time of hospital discharge resulted in improved clinical outcomes, increased self- care and adherence, and reduced cost of care in pts with systolic HF.
Effects of an interactive CD- program on 6 mo readmission rate in pts with HF- a RCT. Linne, A. 2006 <u>16796760</u> (97)	To evaluate the impact of added CD-ROM education on readmission rate or death during 6 mo.	RCT	230	Diagnosis of HF (either LVEF < 40% by ECHO or at least 2 of these criteria: pulmonary rates, peripheral edema, a 3rd heart sound and signs of HF on chest x-ray).	Somatic disease, physical handicap with difficulty communicating or handling technical equipment, inability to speak Swedish, incompliance due to alcohol/drug abuse or major psychiatric illness, Participation in another trial	Difference in rate of all cause readmission and death within 6 mo after discharge.	N/A	Intervention group achieved better knowledge and a marginally better outcome (p=NS).	Only 37% completed questionnaire, pts had to come twice to the CD-based education, first as inpts, then 2 wk after discharge. Returning to the hospital may have discouraged participation, especially in sicker pts.	Additional education of HF pts with an interactive program had no effect on readmission rate or death within 6 mo after discharge.

Computer-based education for pts with chronic HF. A randomized, controlled, multicenter trial of the effects on knowledge, compliance and QoL. Stromberg, A. 2006 <u>16469469</u> (98)	To evaluate the effects of a single-session, interactive computer-based educational program on knowledge, compliance and QoL in HF pts. To assess gender differences.	RCT	154	Diagnosis of HF	None specified	Knowledge of HF, treatment compliance, self- care and QoL.	N/A	Computer-based group (intervention), knowledge increased: After 1 mo: p= 0.07, After 6 mo: p= 0.03 Women: significantly lower QoL and did not improve after 6 mo as men did (p= 0.0001). No differences between groups in compliance, self-care or QoL.	Data on knowledge collected through questionnaire, small sample size.	Computer-based education increased knowledge about HF compared to traditional teaching alone.
Long-term result after a telephone intervention in chronic HF. Ferrante, D. 2010 <u>20650358</u> (99)	To assess rate of death and hospitalization for HF 1 and 3 y after a randomized trial of telephone intervention with education to improve compliance in stable HF pts with HF.	Follow-up after a RCT	1,518	Outpt with stable, chronic HF	None specified	Death and hospitalization for HF, 1 and 3 y after intervention ended.	Long term benefits	Rate of death or hospitalization for HF lower in the intervention group: 1 y: RR: 0.81; p= 0.013 95% CI: 0.69- 0.96 3 y : RR: 0.72; p= 0.0004 95% CI: 0.60-0.87 Benefit caused by a reduction in admission for HF after 3 y Functional capacity better in intervention group Pts who showed improvement in 1 or more of 3 key compliance indicators (diet, weight control, and medication) had lower risks of events (p< 0.0001).	Classification bias of events due to open trial design.	Benefit observed during the intervention period persisted and was sustained 1 and 3 y after the intervention ended. This maybe due to the intervention impact on pt behavior and habits.
HF self- management education: a systematic review of the evidence. Boren, S. 2009 21631856 (100)	To identify educational content and techniques that lead to successful self- management and improve outcomes.	Systematic review of RCTs	7,413 pts from 35 trials	RCTs evaluating a self- management education program with patient-specific outcome measures.	Not randomized, No control group, Not in English, Failure to identify the content of the program, Providing similar educational content in all study arms,	Satisfaction, learning, self- care behavior, medication, clinical improvement, social functioning, hospital admissions and readmissions, mortality, and	N/A	Programs incorporated 20 educational topics in 4 categories- knowledge and self-management, social interaction and support, fluid management, and diet and activity. 113 unique outcomes were measured and 53% showed significant improvement in at least one study. Education on: sodium restriction associated with decreased mortality (p=0.07), appropriate follow-up associated with decreased cost	Unable to combine all the results. Difficult to compare interventions due to poor descriptions, and lack of transparency. All interventions not reproducible.	Review supports the benefits of educational interventions in chronic HF and suggests that some topics are related to certain outcomes.

Effect of sequential education and monitoring groups in factor and analysis from continuing groups and toleword by a cardiologist with PF. Our, Fahringham oriene for a data due to monitoring due to the control of the						Did not identify educational techniques used, Measured only knowledge as an outcome.	cost.		(p=0.10), management and recognition of worsening function associated with lower social functioning (p= 0.10). Discussion of fluids associated with increased hospitalization (p=0.01) and increased cost (p=0.10).		
	education and monitoring program on QoL components in HF. Cruz, Fatima das Dores. 2010	a DMP applied over the long- term could produce different effects on each of the QoL	analysis (Extension of REMADHE	412	ambulatory care in a tertiary referral center and followed by a cardiologist with experience in HF. Age ≥18 Irreversible HF based on the modified Framingham criteria for at	educational sessions or who could not be monitored due to lack of transportation, or social or communication barriers, MI or unstable angina within past 6 mo, cardiac surgery or angioplasty within past 6 mo, hospitalized or recently discharged, any severe systemic disease that could impair expected survival, procedures that could influence follow-up, pregnancy or child-bearing	components	QoL score at baseline on pt	group: Global QoL scores: p<0.01 Physical component: p<0.01	Loss of data due to morality during follow-up may have influenced QoL scores. Retrospective analysis of	fundamental target for the success of treatment of pts with HF. Specific components of the QoL assessment can behave differently over time and should stimulate the identification and development of new strategies and interventions. Targeting male pts and the emotional components of the QoL assessment in DMPs may be important in order to achieve a greater early

Long-term effect of social relationships on mortality in pts with CHF. Murberg, Terje. 2004 <u>15666956</u> (102)	To evaluate the effects of social relationships on morality risk in pts with stable, symptomatic HF.	Follow-up study	119	Diagnosed with HF	Unable to complete the questionnaires due to mental debilitation, previous heart transplantation	Perceived social support and isolation.	N/A	Social isolation a significant predictor of mortality (controlling for neuroticism, HF severity, functional status, gender, age): RR= 1.36; 95% CI: 1.04-1.78; p<0.03	Small sample size	Perceived social isolation an independent predictor of mortality in HF pts during a 6-y follow-up period. Experience of social isolation seems to be more critical than lack of social support.
The importance and impact of social support on outcomes in pts with HF: An overview of the literature. Luttik, M.L. 2005 <u>15870586</u> (103)	To review the literature on what is scientifically known about the impact of social support on outcomes in pts with HF.	Review	17 studies	Studies that investigated the relationship between social support and different outcomes in HF.	None specified	Social support and different outcomes in HF (readmission, mortality, QoL and depression).	N/A	4 studies found clear relationships between social support and rehospitalizations and mortality; the relationship between QoL and depression was less clear.	None noted	Social support is a strong predictor of hospital readmissions and mortality in HF pts. Emotional support in particular is important. Some studies show that support is also related to the prevalence of depression and with remission of major depression in HF. Less evidence to support a relationship between social support and QoL.
Social deprivation increases cardiac hospitalisations in chronic HF independent of disease severity and diuretic non-adherence. Struthers, A. 2000 <u>10618326</u> (104)	To examine whether social deprivation has an independent effect on emergency cardiac hospitalization in pts with chronic HF.	Cohort study	478	Admitted with an MI between January 1989- December 1992 and subsequently admitted for chronic HF between January 1989- December 1992, ≥3 diuretic prescriptions had to have been dispensed between January 1993- January 1994.	None specified	Emergency hospital admissions (all causes and for cardiac causes only)	N/A	Social deprivation significantly associated with an increase in the number of cardiac hospitalizations (p=0.007). Effect mainly caused by increasing the proportion of pts hospitalized in each deprivation category. 26% in deprivation category 1–2 vs. 40% in deprivation category 5–6 (p= 0.03). Effect of deprivation: independent of disease severity (as judged by the dose of prescribed diuretic), death rate, and duration of each hospital stay. Non-adherence with diuretic treatment could not account for these findings either.	Assessed adherence by whether pt had enough tablets in the house to cover the appropriate time period- measuring pt's maximum possible level of adherence. Poor adherence was associated with being male versus female but not with age, social deprivation, or diuretic dose. It is possible that diuretics caused more troublesome urinary symptoms in men because of prostatism, leading to poorer adherence.	Social deprivation increases the chance of rehospitalization independent of disease severity. Possible explanations are that doctors who look after socially deprived pts have a lower threshold for cardiac hospitalization or that social deprivation alters the way a HF pt accesses medical care during decompensation. Understanding how social deprivation influences both doctor and pt behavior in the prehospital phase is crucial to reduce the amplifying effect that social deprivation has

										cardiac hospitalizations.
Social support and self-care in HF. Gallager, R. 2011 <u>21372734</u> (105)	To determine the types of social support provided to HF pts and the impact of differing levels of social support on HF pts' self-care	Cross- sectional, descriptive (COACH sub- study)	333	Admitted to hospital for HF at least once before the initial hospitalization of the original study Age ≥18 y NYHA II-IV; evidence of underlying structural heart disease	Undergone cardiac surgery or PCI in the previous 6 mo, or if these procedures or heart transplantation was planned, Unable to participate in the COACH intervention or to complete the data collection forms	Self-care and social support	N/A	High level of support, compared to low or moderate levels reported significantly better self-care (p= .002) High level of social support, compared medium or low levels, significantly more likely to: consult with a health professional for weight gain (p= 0.011), limit fluid intake (p= 0.02), take their medication (p= 0.017), get a flu shot(p= 0.001), and exercise on a regular basis (p< 0.001).	Secondary analysis. Social support not prespecified in COACH trial. The measure and categories of social support have not been used previously either separately or as a composite measure. It is likely that other important factors influence HF self-care behavior as the multivariate model was not adequate.	The presence of social support by a partner is not sufficient to influence HF pts' self-care. Social support provided by partners needs to be of a quality and content that matches HF pts' perception of need to influence self-care.
Comorbidities	1			I	I	1				
A qualitative meta- analysis of HF self- care practices among individuals with multiple comorbid conditions. Dickson, V. 2011 <u>21549299</u> (106)	To explore how comorbidity influences HF self-care	Qualitative meta-analysis	99 pts from 3 trials	Mixed method studies. Included pts with HF with at least 1 comorbid condition	None specified	Perceptions about HF and HF selfcare	N/A	Narrative accounts revealed the most challenging self-care skills: adherence to diet, symptom monitoring, and differentiating symptoms of multiple conditions. Emerging themes included: 1) attitudes drive self-care prioritization and 2) fragmented self-care instruction leads to poor self-care integration and self-care skill deficits.	Generalizability limited due to homogeneous sample. Interpretation of findings relied on interview data available from the primary studies. Findings may be baised because samples were recruited from HF specialty settings, possibly better managed clinically than community samples.	Individuals with multiple chronic conditions are vulnerable to poor self-care because of difficulties prioritizing and integrating multiple protocols. Adherence to a low-salt diet, symptom monitoring, and differentiating symptoms of HF from other chronic conditions are particularly challenging. Difficulty integrating self-care of different diseases and fragmented instructions regarding those conditions may contribute to poor outcomes.

Psychiatric comorbidity and greater hospitalization risk, longer length of stay and higher hospitalization costs in older adults with HF. Sayers, Steven. 2007 <u>17714458</u> (107)	To explore associations between psychiatric comorbidity and rehospitalization risk, length of hospitalization, and costs in adults with HF.	Cohort study	21429	Medicare beneficiaries hospitalized during 1999.	HF was not a primary cause of any admission during 1999, Comorbid dementia or organic brain syndrome diagnosis	Psychiatric comorbidity and rehospitalization risk, length of hospitalization, and costs.	N/A	Overall, 15.8% of pts hospitalized for HF had a coded psychiatric comorbidity. Most commonly coded comorbid psychiatric disorder was depression (8.5% of the sample) (p< 0.001). Most forms of psychiatric comorbidity were associated with greater inpatient utilization, including risk of additional hospitalizations, d of stay, and hospitalization charges (p< 0.001). Additional hospitalization costs associated with psychiatric comorbidity ranged up to \$7,763, and additional length of stay ranged up to 1.4 d (p< 0.001).	Claims usage based administrative data. Information unavailable regarding the severity of HF in the sample. The possibility that outcomes may be worse for pts with coded comorbid psychiatric diagnoses as opposed to the presence of the conditions themselves cannot be excluded. Cross- sectional design.	Psychiatric comorbidity appears in a significant minority of pts hospitalized for HF and may affect their clinical and economic outcomes. The associations between psychiatric comorbidity and use of inpatient care are likely to be underestimated because psychiatric illness is known to be under detected in older adults and in hospitalized medical pts.
The relevance of comorbidities for HF treatment in primary care: A European survey. Sturm, H. 2006 <u>16084761</u> (108)	To determine the impact of pt characteristics and comorbidities on chronic HF management, and to identify areas of prescribing that could be improved.	Descriptive study	11,062	Diagnosis of chronic HF and/or a history of MI during a 2- mo period in 1999	None specified	Influence of pt characteristics on drug regimens	27	Combined drug regimens given to 48% of HF pts (2.2 drugs on average). Pt characteristics accounted for 35%, 42% and 10% of the variance in 1-, 2- and 3-drug regimens, respectively. MI, AF, DM, HTN, and lung disease influenced prescribing most (OR=1.3; 95% CI: 1.2-1.4) AF made all combinations containing beta blockers more likely. For single drug regimes, MI increased the likelihood of non-recommended beta blocker monotherapy while for combination therapy, recommended regimes were most likely. For both HTN and DM, ACEI were the most likely single drug, while the most likely second drugs were beta blockers in HTN and digoxin in DM.	Drug regimens defined to make comparisons within levels of similar treatment intensity possible. Adherence rates depend on the indicators used.	Pt characteristics have a clear impact on prescribing in European primary care. Up to 56% of drug regimens were rational, taking pt characteristics into account. Situations of insufficient prescribing, such as pts post MI, need to be addressed specifically.

Frequent non-	To discuss in	Review	37	None specified	None specified	N/A	N/A	About 50% of pts with untreated HTN	No limitations addressed.	This review of the literature
cardiac	more detail the		studies					will develop HF. Pressure overload		clearly demonstrates that
comorbidities in pts	impact of co-							leads to the development of LV		noncardiac comorbidities are
with chronic HF.	existing							hypertrophy and diastolic dysfunction.		common in pts with HF and
Dahlstrom, Ulf.	HTN, DM,									that it is important to
2005	COPD in pts							DM occurs in about 20–30% of pts		recognize these conditions
	with HF.							with HF.		and
<u>15718170</u> (109)										take them into consideration
								COPD occurs in approximately 20-		when selecting treatment for
								30% of HF pts.		these pts. Appropriate
										treatment of the HF as well
								Anemia occurs in 20–30% of HF pts		as the concomitant diseases
								and is associated with functional		will improve the prognosis of
								impairment and increased mortality		these pts.
								and morbidity. Combined treatment		
								with erythropoietin and intravenous		
								iron has shown beneficial effects on		
								clinical symptoms and morbidity.		

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; CHF, congestive heart failure; COACH, Community Outreach and Cardiovascular Health; DM, diabetes mellitus; DMP, disease management program; ECHO, echocardiogram; ED, emergency department; EF, ejection fraction; HF, heart failure; HTN, hypertension; IV, intravenous; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; NS, not significant; NYHA, New York Heart Association; PCI; percutaneous coronary intervention; pts, patients; QoL, quality of life; RCT, randomized control trial; REHMADE, Repetitive Education at Six-Month Intervals and Monitoring for Adherence in Heart Failure; UMHFP, University of Michigan Heart Failure Program

Data Supplement 14. Nonadherence (Section 7.3.1.1)

Study Name,			Study							Findings/
Author, Year	Aim of Study	Study Type	Size	Patient Po	opulation	Endr	oints	Statistical Analysis (Results)	Study Limitations	Comments
						-				
				Inclusion	Exclusion	Primary	Secondary			
				Criteria	Criteria	Endpoint	Endpoint			
							-			
Noncompliance										

Use of telehealth by older adults to manage HF. Dansky, K. 2008 20078015 (110)	To investigate the influence of telehealth on self-management of HF in older adults.	RCT	284	Admitted to a home health agency, Primary or secondary diagnosis of HF	None specified	Self-management of HF.	N/A	Confidence is a predictor of self- management behaviors. Pts using a video-based telehealth system showed the greatest gain in confidence levels with time (p= 0.035).	Small sample size. The home health agencies may have limited the external validity of the study. Examination of the effects of the telehealth interventions on specific behaviors was not possible.	Confidence is a positive predictor of self-management, which should encourage the development of interventions that focus on building self- care confidence in HF pts. These results contradict the stereotype that older adults are unable or unwilling to use technology.
Characteristics and inhospital outcomes for nonadherent pts with HF: findings from GWTG-HF. Ambardekar, A. 2009 <u>19781426</u> (111)	To determine the characteristics, treatments, quality of care, and inhospital outcomes of pts nonadherent to dietary and medication advice as precipitating factors for HF hospitalization.	Cohort study	54,322	Ages >18, pts reported in the GWTG-HF database from January 1, 2005- December 30, 2007	Pts with new diagnoses of HF	2 groups: Those in whom nonadherence contributed to HF admission and those without nonadherence.	Hospital outcomes and quality of care among nonadherent pts vs. those who were adherent.	Multivariate analysis of characteristics of nonadherence: Younger age (per y decrease) p<0.0001; 95% CI: 1.019-1.026; Male gender (vs. female) p<0.0001; 95% CI: (1.196-1.358); Nonwhite race (vs. white) p<0.0001; 95% CI: 1.358-1.632 No health insurance (vs. insurance) p<0.0001; 95% CI: 1.236-1.633 Multivariate analysis of outcomes with vs. without nonadherence: Mortality 1.55% v. 3.49%; p<0.0001 95% CI: 0.51-0.86 Mean length of stay 4.99 d vs. 5.63 p= 0.0017; 95% CI: 0.92-0.97	Rates of nonadherence may be underestimated due to self reporting and biased based on pt characteristics. GWTG-HF is a voluntary program so could over-represent high-performing hospitals. Data collected by chart reviews, only in-hospital measures were tracked so long term follow-up unknown.	Nonadherence is a common precipitant for HF admission. Medication nonadherence greater in younger pts, ethnic minorities and uninsured whereas dietary nonadherence was observed in older, overweight and diabetic pts. Nonadherent pts present with evidence of lower EF and greater volume overload yet have an inhospital course characterized by a shorter LOS and lower mortality. Care of nonadherent pts conformed with Joint Commission core measures but at lower rates with other

									guideline-based therapies.
Utilization of and adherence to drug therapy among Medicaid beneficiaries with CHF. Bagchi, A. 2007 <u>17919558</u> (112)	To determine the number of Medicaid beneficiaries with HF, identify the rate of HF drug use, estimate adherence rates, examine factors associated with HF drug use and treatment adherence, and explore policy implications.	N/A 45,572	Living in Arkansas, California, Indiana or New Jersey, enrolled in fee-for service Medicaid with pharmacy benefit coverage during 1998 and 1999 or until death HF (hospitalized and diagnosed during 1998 or diagnosed on ≥ 2 ambulatory visits during 1998)	Stays in nursing home facilities at any time during 1999	Adherence based on: MPR (no. of d a pt is supplied with ≥1 HF drug in relation to the no. of dbetween the pt's first and last prescription dates), MP (no.of d of continuous use of HF medications per mo)	N/A	Odds of having a HF prescription claim were <u>higher</u> with people: Age 65-74 vs. <65: p<0.01; 95% CI: 1.193- 1.344 Age 75-84 vs. <65: p<0.01; 95% CI: 1.458- 1.676 Age \geq 85 vs. <65: p<0.01; 95% CI: 1.466-1.580 Disabled: p<0.01; 95% CI: 1.466-1.580 Disabled: p<0.01; 95% CI: 1.388-1.537 Had CAD : p<0.01; 95% CI: 3.309-3.676 Had DM: p<0.01 95% CI: 2.085- 2.284 Hospitalized for HF in 1998: p<0.01; 95% CI: 1.579-1.701 Odds of having a HF prescription claim were <u>lower</u> among - Blacks vs. whites: p<0.01; 95% CI: 0.735-0.795 Other /unknown ethnic group vs. whites: p<0.01 95% CI: 0.840,-0.919 Men vs. women: p<0.01 95% CI: 0.722-0.775 Adherence better among age \geq 85 y than \leq 64 y, men than women, racial and ethnic minorities, dual	Measures of use and adherence are proxies based on prescriptions filled versus observations; findings may overestimate adherence to HF medications. Diagnoses recorded in claims may be incomplete, resulting in the omission of some pts from the study. Limited number of states may lead to biased results if Medicaid beneficiaries in study states are different than other states.	15.2% of diagnosed beneficiaries were not using any HF medications. Adults <65 y, men, ethnic minorities with hospital admissions for conditions other than HF, and beneficiaries with high CDPS scores had lower adherence.

								eligible and disabled, those with CAD or DM, those with HF related hospitalization (p<0.01). Adherence lower among those with larger proportions of claims for generic HF drugs, higher CDPS risk scores and those with non-HF- related Hospitalizations (p<0.01).		
Drug copayment and adherence in chronic HF: effect on cost and outcomes. Cole, A. 2006 <u>16863491</u> (113)	To measure the associations among prescription copayment, drug adherence and subsequent health outcomes in pts with HF	Retrospective Cohort Study	5,259 receiving ACE inhibitor 5,144 receiving Beta Blockers 2,373 receiving both	In Ingenix Research Data Mart, diagnosed with HF, and enrolled in commercial and/or Medicare supplemental plans in 2002; ≥2 physician visits or hospitalizations related to HF in 2002; \$100-10,000 in costs associated with HF diagnoses in 2002; continuously enrolled in health plan for all of 2002 and at least 1 d in 2003. ACEI and/or beta blockers dispensed at least twice.	Receiving 1 dispensing of ACEI, receiving 1 dispensing of beta blockers, had switched ACEI, had switched beta blockers, MPR <20% or >120%, had conflicting data in their dispensing records	Total cost of health care and hospitalization for HF MPR: proportion of d a pt was exposed to a drug while receiving a regimen	N/A	For pts taking ACEI, a \$10 increase in copayment was associated with a 2.6% decrease in MPR (95% CI: 2.0 - 3.1%) This change in adherence was associated with: a predicted 0.8% decrease in medical costs (95 %CI: -4.2 - 2.5%) a predicted 6.1% increase in the risk of hospitalization for chronic HF (95% CI: 0.5 - 12%). For pts taking beta blockers, a \$10 increase in copayment was associated with a 1.8% decrease in MPR (95% CI: 1.4 - 2.2%) This change in adherence was associated with: a predicted 2.8% decrease in medical costs (95% CI: -5.9 - 0.1%). a predicted 8.7% increase in the risk of hospitalization for chronic HF (95% CI: 3.8 - 13.8%)	Using prescription dispensing data to assess drug adherence eliminates pts to whom a drug is dispensed only once so may have contributed to high adherence observed. Dispensing data does not capture actual usage. ACEI more expensive than beta blockers resulting in higher copayment. Total medical costs might have been insensitive to specific changes in adherence to HF therapies.	Among pts with HF, higher drug copayments were associated with poorer adherence, although the magnitude of change was small and did not affect total health care costs. It was sufficient to increase risk of hospitalization for HF though.

The impact of perceived adverse effects on medication changes in HF pts. De Smedt, R. 2010 20142025 (114)	To evaluate the impact of perceived adverse HF drug effects	Retrospective Cohort Study	754	Hospitalized for symptomatic HF NYHA class II-IV Age_18 Evidence of structural underlying heart disease	Invasive procedures in the mo before or planned within 3 mo after baseline Already enrolled in other studies Follow-up treatment at another HF clinic	Impact of perceived adverse effects on likelihood and type of changes of potential causal cardiovascular medication & initiation of medication to alleviate the adverse effect.	 Risk of a related medication change significantly increased after dry cough, nausea, dizziness, or diarrhea. Dry cough showing the highest increase in risk (83%; 95% Cl: 1.35-2.49) Pts with gout had a 4-fold higher likelihood of having alleviating medication started or intensified (95% Cl: 2.23-8.05) With dry cough, a 10-fold increase in the likelihood of having ACE inhibitor switched to an ARB (95% Cl: 3.2-35.55) Pts with gout had a 3-fold higher likelihood of having diuretics temporarily discontinued and reinitiated at a lower dosage (95% Cl: 1.09-10.04) 	Cannot be certain that the reported problems resulted from medication. Focused on specific medication changes and did not take all possible adequate actions into account. Recall bias possible- pts may not have reported all perceived problems in the questionnaires.	A considerable number of HF pts perceived possible AEs. The likelihood of medication being changed after pts perceived AEs was low. A high number of pts perceive medication AE.
Associations between outpt HF process-of-care measures and mortality. Fonarow, G. 2011 <u>21464053</u> (115)	To examine the relationships between adherence to several current and emerging outpt HF process measures and clinical outcomes.	Longitudinal/ Registry	15,177	Clinical diagnosis of HF or post-MI, LVEF ≤35%, ≥2 office visits with a cardiologist in the last 2 y	Noncardiovascular medical condition associated with an estimated survival of ≤1 y, received cardiac transplantation	Process-of-care HF measures: ACE inhibitor or ARB use, beta blocker use, aldosterone antagonist use, anticoagulant therapy for AF or flutter, CRT with defibrillator or pacemaker, ICD, and HF education for eligible pts.	Each 10% improvement in composite care was associated with a 13% lower odds of 24-mo mortality (p <0.0001; 95% CI: 0.84- 0.90) All process measures, except aldosterone antagonist use, were each independently associated with improved 24-mo survival (p <0.01 for all except aldosterone antagonist use).	Errors and omissions in the medical chart review process could have occurred. NYHA functional status was not quantified in many of the records, and was instead based on qualitative description. This study analyzed medications prescribed rather than actual pt adherence. Follow-up on vital status was not achieved for all pts. Race/ethnicity, socioeconomic status or pt adherence may be confounding variables. Findings may not apply to practices that differ from the IMPROVE HF outpt cardiology practices in this	These data demonstrate that adherence to HF process measures for ACEI/ARB, beta blocker, anticoagulation for AF, and HF education is significantly associated with survival in outpts with HF. These HF measures may be useful for assessing and improving HF care.

									study.	
A nurse-based management program in HF pts affects females and persons with cognitive dysfunction most. Karlsson, M. 2005 <u>16009290</u> (116)	To assess the effect of a nurse-based management program aimed at increasing HF pts' knowledge about disease and self-care and to relate the results to gender and cognitive function.	Substudy of the OPTIMAL project- a RCT	208	Age >60 Systolic dysfunction EF <45% NYHA II-IV	None specified	Pt knowledge of HF and self-care.	N/A	At baseline men knew more about HF compared to women (p<0.01). Females in the intervention group increased their knowledge of self- care between baseline and 6 mo compared to the female control group (p <0.05). Pts with cognitive dysfunction (MMSE <24) presented lower scores on knowledge as compared to those with a MMSE of >24 at baseline. These differences disappeared after the intervention (p<0.01).	Some pts were included one d after hospitalization and some the d before discharge; condition improvement may explain low number of pts scoring low on the MMSE; The drop-out rate was high in the MMSE sub-study.	Nurse-based outpt clinic with specially trained nurses effective in increasing pt knowledge about self-care. Females and those with cognitive impairment gain from such programs.

Pharmacist intervention to improve medication adherence in HF. Murray, M. 2007 <u>10030506</u> (117)	To determine whether a pharmacist intervention improves medication adherence and health outcomes compared with usual care for low- income pts with HF.	RCT	314	Age ≥50 y, confirmed diagnosis of HF, regularly used at least 1 CV medication for HF, not using or not planning to use a medication container adherence aid, access to a working telephone, and adequate hearing	Dementia	Medication adherence (tracked by using electronic monitors) and clinical exacerbations that required visits to the ED or hospitalization.	Health-related QoL, satisfaction with pharmacy services, and total direct health care costs.	Medication adherence greater in the intervention group 78.8% vs. 67.9% usual care group (95% CI: 5.0-16.7). At 3 mo, adherence decreased 70.6% in intervention and 66.7 in usual care (95% CI: -5.9-6.5). Medications were taken on schedule 47.2% in the usual care and 53.1% in the intervention group (95%CI: 0.4-11.5). At the end of intervention, taking of medication on schedule decreased 48.9% for usual care and 48.6% in intervention (95% CI: -5.9-6.5) ED visits and hospital admissions were 19.4% less in the intervention group (95% CI: 0.73-0.93). Annual direct health care costs were lower in the intervention group (95% CI: \$-7603-\$1338)	Pts were not permitted to use medication container adherence aids. Intervention involved 1 pharmacist and a single study site that served a large, indigent, inner-city population of pts. Because the intervention had several components, results could not be attributed to a single component.	A pharmacist intervention for outpts with HF can improve adherence to cardiovascular medications and decrease health care use and costs, but the benefit probably requires constant intervention because the effect dissipates when the intervention ceases.
Short and long-term results of a program for the prevention of readmissions and mortality in pts with HF: are effects maintained after stopping the program? Ojeda, S. 2005 <u>16051519</u> (118)	To evaluate whether improvement obtained during an intervention program were maintained after the program was stopped.	RCT	153	Discharged with a primary diagnosis of HF from the hospital cardiology ward.	Terminal disease, expected survival <6 mo, possibility of specific etiology treatment, wait list for heart transplant	Decrease in readmissions due to HF and in all- cause mortality event-free survival, defined on the basis of time to death or HF readmission.	Changes in pharmacological treatment and changes in quality of life MLHFQ	During the 16 <u>+8</u> mo treatment period, intervention group had: Lower rate of HF readmissions (p <0.01), and Less all-cause mortality Improvement in QoL (p=0.03) 1 y after the intervention, there were no differences between the groups (p=0.03).	Results cannot be extrapolated to all HF pts since the study included pts discharged from a cardiology service, who are usually younger and with fewer co-morbidities.	This intervention can reduce HF morbidity and mortality and improve quality of life but favorable effects decrease after program ends. Long- term programs are required to maintain beneficial effects.

Excessive daytime sleepiness is associated with poor medication adherence in adults with HF. Riegel, et al 2011 21440873 (119)	To determine if medication adherence differs in adults with HF and EDS compared to those without EDS and to test cognition as the mechanism of the effect.	Prospective cohort comparison study	280	Chronic stage C HF confirmed, able to complete the protocol (vision, hearing, English literacy), no more than mild cognitive impairment	Living in a long term care setting, working nights or rotating shifts, renal failure requiring dialysis, imminently terminal illness, plans to move out of the area, history of serious drug or alcohol abuse in prior y, major depression	Self-reported medication adherence	Cognition measured with a battery of neuropsychological tests	62% were nonadherent with medication regimen. Medication nonadherence was significantly more common in those with EDS Subjects with EDS and cognitive decline were >2 times more likely to be nonadherent (aOR 2.36, 95%Cl: 1.12-4.99; p=.033). Secondary models using the Epworth Sleepiness score: The odds of nonadherence increased by 11% for each unit increase in ED (aOR 1.11, 95%Cl: 1.04-1.19; p=.025). Subjects with EDS and mild cognitive decline were 1.6 times more likely to be nonadherent over 6 mo follow-up (aOR 1.61; 95%Cl: 1-03-2.50; p=.001). The group with EDS but without cognitive decline was twice as likely to be nonadherent (p=.014). 9% increase in the odds of nonadherence for each unit increase in EDS (p=.001). Lack of cognitive vigilance associated with nonadherence. (p=.024)	Medication adherence was self-reported.	HF pts who are sleepy have difficulty paying attention and thus forget to take their medications.
---	---	--	-----	---	---	--	---	---	--	---

Compliance with non- pharmacological recommendations and outcome in HF pts, van der Wal et al, 2010 20436049 (120)	To investigate the association between compliance with non- pharmacological recommendations (diet, fluid restriction, weighing, exercise) and outcome in pts with HF.	Secondary analysis of data from the COACH trial	830	Recently hospitalized for symptomatic HF, confirmed by the cardiologist, with evidence for underlying heart disease.	Invasive intervention within the last 6 mo or planned for the next 3 mo, inclusion in another study with additional visits to provider, or evaluation of CTX.	Composite of death or HF readmission and the number of unfavorable d.	mortality and readmission for HF	Pts non-compliant with ≥ 1 recommendations had a higher risk of mortality or HF readmission (p=0.01). Non-compliance with exercise was associated with an increased risk for mortality or HF readmission (p<0.01). Non-compliance with daily weighing was associated with an increased risk of mortality (p=0.02). Non-compliance (overall) and non- compliance with exercise were associated with a higher risk for HF readmission (p<0.05). Pts who were overall non- compliant or with weighing and exercise had more unfavourable d than compliant pts (p= 0.01).	Almost half had a first diagnosis of HF during the index hospitalization and then compliance was evaluated 1 mo after discharge, which could have influenced rates. 'Unfavorable d' difficult to evaluate. Self-report instrument used to measure compliance. Socially desirable responses possible.	HF pts who follow prescribed nonpharmacologic therapy have better outcomes than those who do not. Exercise and monitoring of daily weights are particularly important.
Nonpharmacologic Measures and Drug Compliance in Pts with HF: Data from the EuroHF Survey, Lainscak et al, 2007 <u>17378994</u> (121)	To describe the recall of and adherence to nonpharmacologic advice of pts enrolled in the European HF Survey	Descriptive survey of pts from 115 hospitals from 24 European countries	2,331	Clinical diagnosis of HF		Self-reported adherence to nonpharmacologic advice		After hospitalization for HF, pts recalled receiving 4.1 ± 2.7 items of advice with some regional differences. Recall of dietary advice was higher (63%) than for influenza vaccination (36%) and avoidance of NSAIDS (17%). Among those who recalled the advice, many did not follow it completely (cholesterol and fat intake 61%; dietary salt 63%; influenza vaccination 75%; avoidance of NSAIDS 80%). A few indicated they ignored the advice completely. Pts who recalled >4 items versus <4 items were younger and more often received ACE-I (71% vs 62%), beta blockers (51% vs 38%), and spironolactone (25% vs 21%).	Younger pts who were more mobile and had greater social support were more likely to attend interview. Possible response bias.	Younger age and prescription of appropriate pharmacologic treatment are associated with higher rates of recall and implementation.

ACEI indicates angiotensin-converting-enzyme inhibitor; AE, adverse event; AF, atrial fibrillation; ARB, angiotensin receptor blocker; CAD, coronary artery disease; CDPS, Chronic illness and disability payment system; CHF, congestive heart failure; COACH, Community Outreach and Cardiovascular Health; CTX, chest x-ray; CRT, Cardiac resynchronization therapy; CV, cardiovascular; DM, diabetes mellitus; ED, emergency department; EDS, excessive daytime sleepiness; EF, ejection fraction; GWTG-HF; Get with the Guidelines-Heart Failure; HF, heart failure; ICD, implantable cardioverter-defibrillator; IMPROVE-HF, The Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting; LOS, length of stay; LVEF, left ventricular © American College of Cardiology Foundation and American Heart Association, Inc. 46

ejection fraction; MI, myocardial infarction; MLHFQ, Minnesota Living with Heart Failure questionnaire; MMSE, Mini Mental State Examination; MP, Medication Persistence; MPR, medication possession ratio, N/A, not applicable; NSAID, nonsteroidal antiinflammatory drugs; NYHA, New York Heart Association; OPTIMAL, optimising congestive heart failure outpatient clinic project; pts, patients; QoL, quality of life; and RCT, randomized clinical trial.

Data Supplement 15. Treatment of Sleep Disorders (Section 7.3.1.4)

Study Name, Author, Year	Aim of study	Study Type	Study Size	Patient Population		Endpoints		Statistical Analysis (Results)	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
Continuous positive airway pressure for central sleep apnea and HF (CANPAP). Bradley, T.D. et al 2005 <u>16282177</u> (122)	To test the hypothesis that long-term treatment of CSA with CPAP in HF pts receiving optimal medical therapy reduces the combined rates of death and heart transplant.	11 center RCT	258	18-79 y, NYHA II-IV, HF due to ischemia, HTN, or idiopathic DCM, stable condition, optimal medical therapy for 1+ mo, LVEF <40%, CSA with ≥15 apnea- hypopnea index (AHI) and >50% of AHI had to be central.	Pregnancy, MI, USA, cardiac surgery within prior 3 mo, OSA	Death and heart transplantation	Hospitalizations, EF, exercise capacity, QoL, neurohormones	No difference between control (n=130) and CPAP (n=128) groups in number of hospitalizations, QoL, ANP levels. No difference in overall event rates (p=0.54).	Underpowered because trial stopped early for low enrollment	CPAP did not extend life, decrease transplant rate in CSA but may be indicated for OSA.
Suppresion CSA by CPAP and transplant- free survival in HF. Arzt, M. 2007 <u>17562959</u> (123)	To investigate whether suppression of CSA below threshold by CPAP would improve LVEF and heart transplant– free survival.	Post-hoc analysis of a randomized trial.	210	Age 18 to 79 y, NYHA II-IV HF due to ischemic, hypertensive, or idiopathic DCM, stabilized with optimal medical therapy for at least 1 month LVEF <40%, Central sleep apnea	Pregnancy, MI, Unstable angina, cardiac surgery within 3 mo of enrollment, OSA	Combined rate of all- cause mortality or heart transplantation	Apnea-hypopnea index (AHI) mean nocturnal SaO2, and LVEF	Despite similar CPAP pressure and hours of use in the 2 groups, CPAP-CSA– suppressed subjects, compared to controls, experienced: A greater increase in LVEF at 3 mo (p=0.001) Significantly better transplant- free survival (HR: 0.37; 95% CI: 0.142-0.967; p=0.043)	Stratification of CPAP-treated pts based on polysomnogram performed 3 mo after randomization. Because suppressed and unsuppressed status could not be ascertained until completion of PSG, events that occurred during the first 3 mo could not be included; more deaths occurred in the pts randomized to CPAP than control (5 vs. 3). The CPAP-CSA-	These results suggest that in HF pts, CPAP may improve both LVEF and heart transplant–free survival if CSA is suppressed soon after it begins.

Effect of continuous positive airway pressure on sleep structure in heart failure pts with central sleep apnea. Ruttanaumpawan, P. 2009 <u>19189783</u> (124)	To determine whether attenuation of CSA by CPAP in pts with HF reduces the frequency of arousals from sleep or improves sleep structure.	RCT	205	Age 18 to 79 y; NYHA II -IV HF due to ischemic, hypertensive, oridiopathic DCM, stabilized on optimal medical therapy ≥ 1 mo, LVEF <40% by radionuclide angiography, CSA	Pregnancy, MI, UA or cardiac surgery within 3 mo of enrollment, obstructive sleep apnea	Apnea-hypopnea index and frequency of arousals.	N/A	In controls, there no change in AHI or frequency of arousals. In CPAP group, AHI decreased significantly but neither the frequency of arousals nor sleep structure changed significantly (p<0.001).	suppressed group was younger, had a lower AHI, and had a slightly lower proportion of central events than the CPAP CSA– unsuppressed group Did not classify arousals as being respiratory or non- respiratory related, and did not examine their timing.	Attenuation of CSA by CPAP does not reduce arousal frequency in HF pts. Arousals not mainly a consequence of CSA and may not have been a defense mechanism to terminate apneas in the same way they do
				defined as an AHI ≥ 15, with >50% of apneas and hypopneas central in nature						in OSA.
Relationship between beta blocker treatment and the severity of CSA in chronic HF. Tamura, A. 2007 <u>17218566</u> (125)	To examine the relationship between use of beta blockers and the severity of CSA in HF.	Cohort study	45	Chronic HF NYHA II-III LVEF <50%.	Previous cerebrovascular disease, Recent (<6 mo) acute coronary syndrome, chronic respiratory disease	Polysomnography, echocardiography, plasma BNP levels	N/A	Pts receiving beta blockers compared to pts not receiving beta blockers had: lower AHI, lower CAI. Negatively correlated with the dose of carvedilol were: AHI CAI Multiple regression analysis selected no use of beta blockers as an independent factor of CAI. In 5 pts with CAI >5 who underwent serial sleep studies, CAI decreased significantly after 6 mo of treatment with carvedilol.	Small sample size. Did not measure central chemosensitivity to CO2.	In pts with chronic HF, CAI was lower according to the dose of beta blockers. No use of beta blockers was independently associated with CAI. 6 mo of treatment with carvedilol decreased CAI. These results suggest that beta blocker therapy may dose-dependently suppress CSA in pts with chronic HF.
Influence of CRT on different types of SDB. Oldenburg, O. 2007 <u>17467333</u> (126)	To investigate the influence of CRT on SDB in pts with severe HF.	Prospective non- randomized study	77	Eligible for CRT, present with dyspnea, NYHA III-IV LBBB with QRS ≥150	None specified.	Cardiorespiratory polygraphy. NYHA class, frequency of nycturia,	N/A	CSA was documented in 36 (47%) pts, OSA in 26 (34%), and no SDB in 15 (19%).	Categorization of hemodynamic response based on a novel scoring system	In pts with severe HF eligible for CRT, CSA is common and can be influenced by CRT.

msec, LVEDD ≥60mm, LVEF of ≤35%, peak VO2 during standardized cardiopulmonary exercise testing, ≤18 ml/kg/min, during initial testing of several LV- lead positions (posterolateral veins), RV-stimulation sites (apex vs. RVOT) and LV vs. biventricular pacing, pulse pressure as a surrogate	cardiopulmonary exercise, 6-min walk test, and echocardiography parameters.	Sleep disordered parameters improved in CSA pts only: AHI, SaO2min, Desaturation (p< 0.001) Daytime capillary pCO2 was significantly lower in CSA pts compared to those without SDB with a trend towards increase with CRT (p=0.02). After classifying short term	not prospectively validated. Prospectively followed CRT pts without calculating statistical power needed to show results for pts without SDB, those with OSA, or CSA in advance.	Improvement depends on good clinical and hemodynamic response to CRT.
---	---	--	--	--

AHI indicates apnea hypopnoea index; ANP, atrial natriuretic peptide; BNP, B-Type natriuretic peptide; CAI, central apnea index; CPAP, continuous positive airway pressure; CRT, cardiac resynchronisation therapy; CSA, central sleep apnea; DM, dilated cardiomyopathy; EF, ejection fraction; HF, heart failure; HTN, hypertension; LBBB, left bundle branch block; LVEDD, left ventricular end diastolic diameter; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; NYHA, New York Heart Association; OSA, obstructive sleep apnea; pts, patients; QoL, quality of life; RV, right ventricular; RVOT, right ventricular outflow tract; SDB, sleep disordered breathing; UA, unstable angina.

Data Supplement 16. Cardiac Rehabilitation-Exercise (Section 7.3.1.6)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Po	Patient Population		ts	Statistical Analysis (Results)	Findings/Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint		

Antiremodeling effect of long- term exercise training in pts with stable chronic HF. Giannuzzi, Pantaleo. 2003 <u>12860904</u> (127)	To determine whether long-term exercise training may influence LV volume and function in a large cohort of pts with stable chronic HF.	RCT	90	HF secondary to idiopathic DCM, IHD or valvular disease LVEF <35% by ECHO. Clinical stability for at least 3 mo under optimized therapy NYHA II-III Peak oxygen uptake (VO2) < 20mL/kg/min at ergospirometry Echocardiographic images of adequate quality for quantitative analysis	Any systemic disease limiting exercise, hypertrophic cardiomyopathy, Valvular disease requiring surgery, Angina pectoris, Sustained ventricular arrhythmias, Severe hypertension, Excess variability >10% at baseline cardiopulmonary exercise test	Cardiopulmonary exercise testing, 6MWT, echocardiography, and QoL.	N/A	Differences from baseline to 6 mo improved in the intervention group for: EF (p<0.001); Work capacity (p<0.001); Peak VO2 (p<0.006); Walking distance (p<0.001); QoL (p<0.01); LV volumes (diminished) (p<0.001); Trend to fewer readmissions for worsening dyspnea (p< 0.05) LV volumes increased in control group (p= 0.05)	In stable chronic HF, long-term moderate exercise training has no detrimental effect on left ventricular volumes and function; rather, it attenuates abnormal remodeling. Furthermore, exercise training is safe and effective in improving exercise tolerance and QoL.
Combined endurance- resistance training vs. endurance training in pts with chronic HF: a prospective randomized study. Beckers, Paul. 2008 <u>18515805</u> (128)	To compare the effects of combined endurance-resistance training with endurance training only on submaximal and maximal exercise capacity, ventilatory prognostic parameters, safety issues, and QoL in pts with chronic HF.	Prospective randomized study	58	Chronic HF due to ischemic or dilated cardiomyopathy LVEF <40% NYHA II-III. Optimal and stable pharmacological treatment	Recent ACS or revascularization in the past 3 mo, actively listed on the transplant list, logistic problems, exercise limited by angina or peripheral arterial occlusive disease, cerebrovascular or musculoskeletal disease preventing exercise training, respiratory limitation	Steady-state workload	VO ₂ peak, ventilatory prognostic parameters, upper and lower limb strength, and QoL	In the combined endurance-resistance training (compared to the endurance training group): SSW increased: p=0.007; Decrease in heart rate at SSW: p=0.002; VO ₂ peak halftime was reduced: p=0.001 Maximal strength in upper limbs increased: p<0.001 HRQoL improved (reported decrease of cardiac symptoms): p= 0.003; 95% CI: 1.11-12.46.	In chronic HF pts, combined endurance- resistance training had a more pronounced effect on submaximal exercise capacity, muscle strength, and quality of life. The absence of unfavorable effects on left ventricular remodelling and outcome parameters is reassuring and might facilitate further implementation of this particular training modality.

Comparison of hospital-based versus home- based exercise training in pts with HF: effects on functional capacity, QoL, psyhcological symptoms, and hemodynamic parameters. Karapolat, Hale. 2009 <u>19641843</u> (129)	To compare the effects of home- based and hospital-based exercise programs on exercise capacity, QoL, psychological symptoms, and hemodynamic parameters in HF pts.	Randomized study	74	Diagnosed with HF for at least 3 mo, HF as a result of ischemic and dilated cardiomyopathy, clinical stability for at least 3 mo, LVEF <40% NYHA II-III, optimal and standard pharmacological treatment, ability to speak and understand Turkish, absence of psychiatric disease, ability to remain stable during exercise tests	Neurological, orthopedic, peripheral vascular, or severe pulmonary disease, NYHA class IV, UA pectoris, poorly controlled or exercise-induced cardiac arrhythmias, recent ACS or revascularization (≤3 mo), significant valvular heart disease, AF, uncontrolled arterial HTN, performing exercise training at regular intervals during the previous 6 wk.	Exercise capacity, QoL, psychological symptoms, and hemodynamic parameters	N/A	After the exercise programs, significant improvement was observed in both groups (all p<0.05) including: Peak VO ₂ ; 6MWT; Subscales of physical function, general health, and vitality of short form 36 Beck Depression Inventory LVEF A comparison of the 2 exercise groups revealed no significant differences between them regarding the analyzed variables.	Both the hospital-based and home-based exercise groups improved significantly in functional capacity, QoL, depression symptoms, and LVEF. Based on these results, we believe that physicians can recommend home-based exercise under strict supervision for stable HF pts.
Endurance exercise training in older pts with HF: results from a randomized, controlled, single- blind trial. Brubaker, Peter. 2009 20121952 (130)	To determine whether exercise training improves exercise capacity and HRQoL in older persons with HFrEF.	RCT	59	Age <u>≥</u> 60 y, diagnosed with HfrEF, LVEF <u><</u> 45%	Valvular disease as the primary etiology of HFrEF, recent stroke or MI, uncontrolled HTN, any other condition limiting exercise duration	Exercise performance, LV structure and function, neuroendocrine activation and HRQoL.	N/A	Better in Exercise Training Group: Mean cycle ergometer distance per session (p=0.001) Combined walking & cycling distance (p=0.001) Peak exercise workload (watts) (p=0.007) Exercise time (seconds) on the bike (p=0.002) All other outcome measures did not show significance.	Failed to produce consistent benefits in a cohort or elderly pts with HFrEF that included a significant portion of women. Exercise time and peak workload increased but VO ₂ peak, the primary outcome, did not. Exercise training failed to provide benefits in any of the 4 primary endpoints.

on heal in pts w chronic Flynn, l 2009	e training Ith status vith	To test the effects of exercise training on health status among pts with HF.	RCT	2,331	Medically stable, HF outpt, LVEF ≤35%, NYHA II-IV, ability and willingness to undergo exercise training	Unable to exercise, already exercising regularly (>1/wk), had experienced a major CV event in the previous 6 wk	Health status (assessed by the KCCQ)		At 3 mo the KCCQ overall summary score improved by a greater degree in the exercise training group (p< 0.001; 95% CI: 0.84-3.01) At 3 mo there were no further significant changes in KCCQ score for either group (p= 0.85), resulting in sustained, greater improvement overall for the exercise group (p< 0.001). Changes from baseline to 12 mo in the KCCQ overall summary score were associated with changes in exercise time: Cardiopulmonary exercise test: (r=0.28; p< 0.001) Peak O2 consumption: (r=0.21; p< 0.001) 6-min walk distance (r=0.18; p<0.001) Based on these relationships, a 49.7-m change in distance walked corresponds to an individual's change of 5 points on the KCCQ overall summary score.	Exercise training conferred modest but statistically significant improvements in self- reported health status compared with usual care without training. Improvements occurred early and persisted over time.
6-min v distanc people chronic system review. Chueh- 2010	y increases walk ee in with e HF: a latic Hwang,	To determine if resistance training improves heart function, exercise capacity and QoL in people with chronic HF more than no intervention or usual care.	Systematic review with meta- analysis of randomized trials	241 pts from 8 trials	Adults with chronic HF Diagnosis based on clinical signs or LVEF <40%	None specified	Cardiac function, exercise capacity, QoL.	N/A	Resistance training significantly increased 6-min walk distance: WMD: 52m; 95% CI: 19-85	Resistance training increased 6-min walk distance compared to no training, but had no other benefits on cardiac function, exercise capacity, or QoL if used along or as an adjunct to aerobic training in people with chronic HF.

A randomized trial of the addition of home- based exercise to specialist HF nurse care: the Birmingham Rehabilitation Uptake Maximization study for pts with CHF (BRUM- CHF) study. Jolly, Kate. 2009 <u>19168520 (</u> 133)	To assess the effectiveness of a home-based exercise program in addition to specialist HF nurse care.	RCT	169	LVEF <40% on ECHO; had a severity of at least NYHA II in the previous 24 mo; clinically stable for 4 wk; in receipt of optimal medical treatment and in the care of a specialist HF nurse team from 2 acute hospital trusts and 1 primary care trust in the West-Midlands region, UK; not considered high-risk for a home-based exercise program.	NYHA IV MI; revascularization within the past 4 mo; hypotension; UA; ventricular or symptomatic arrhythmias; obstructive aortic valvular disease; COPD; hypertrophic obstructive cardiomyopathy; severe musculoskeletal problems preventing exercise; case-note reported dementia; current severe psychiatric disorder	Disease-specific QoL measured by the MLHFQ	Composite outcome of death or admission with HF or myocardial infarction. Psychological wellbeing, self- reported physical activity, blood pressure, generic HRQoL, and health care utilization.	At 6 mo, there was no between-group difference in the disease-specific QoL MLHFQ (95% CI: -7.87-2.80) At 12 mo, there was no between-group difference in the disease-specific QoL MLHFQ (95% CI: -5.87-4.76) The only secondary outcomes significant for exercise group: Higher generic QoL scores at 6 mo (95% CI: 0.04-0.18) Lower hospital anxiety and depression scale score at 12 mo (95% CI: -2.00 0.14) At 6 mo, the control group showed deterioration in physical activity, exercise capacity and generic QoL.	This study failed to demonstrate a benefit from the addition of a home-based exercise program in a community- based HF population. Further evidence is needed to assess the suitability of home-based exercise programs in this population.
Exercise training in older pts with HF and preserved EF. Kitzman, Dalane. 2010 20852060 (134)	To test the hypothesis that supervised exercise training in older pts with HFpEF would improve the primary outcome of peak exercise VO ₂ and the secondary outcome of disease-specific QoL.	RCT	53	Stable with no medication changes for >6 wk; HFpEF defined as history, symptoms and signs of HF Preserved LVEF (≥50%); no evidence of significant coronary, valvular or pulmonary disease or any other medical condition that could mimic HF symptoms.	Contraindication to exercise testing or training; unable to perform a valid baseline exercise test; currently exercising regularly; had known cancer; significant renal dysfunction; substance abuse; uncontrolled diabetes; dementia, History of noncompliance; any other disorder that would preclude participation in the intervention and follow-up.	Peak exercise oxygen uptake	QoL; LV morphology and function, and neuroendocrine function	Peak exercise oxygen uptake increased significantly in the exercise treatment group compared to the control group (p= 0.0002). There were significant improvements in peak power output, exercise time, 6- minute walk distance, and ventilatory anaerobic threshold (all p< 0.002). There was improvement in the physical quality of life score (but not in the total score) (p= 0.03).	This randomized, controlled, single-blind study showed that 16 wk of exercise training was safe and significantly improved peak and submaximal exercise performance in older pts with HFpEF. These results suggest that this nonpharmacological intervention may be a worthwhile consideration for pts with this common and increasingly prevalent disorder.

Effects of exercise training in pts with HF: the exercise rehabilitation trial (EXERT). McKelvie, Robert. 2002 <u>12094184</u> (135)	To examine the effects of exercise training on functional capacity in pts with HF.	RCT	181	Documented clinical signs and symptoms of HF LVEF <40%, NYHA I-III, 6MWT distance <500 meters	Inability to attend regular exercise training sessions; exercise testing limited by angina or leg claudication; abnormal blood pressure response to exercise testing; cerebrovascular or musculoskeletal disease preventing exercise testing or training; respiratory limitation; poorly controlled cardiac arrhythmias; any noncardiac condition affecting regular exercise training or decreasing survival.	6MWT	Peak oxygen uptake, dynamic muscle strength, QoL, and cardiac function	Significant increase in 6-min walk distance at 3 and 12 mo (p= 0.026) but no between-group differences (p= 0.081). Incremental peak oxygen uptake increased in the exercise group compared with control group: At 3 mo: (p=0.014); At 12 mo: (p=0.014) At 3 mo, compared with the control group, increases were seen in exercise group for: Arm Curl and Knee Extension: (p=0.014) No significant changes observed in cardiac function or QoL.	Exercise training improves peak oxygen uptake and strength during supervised training. Over the final 9 mo of the study, there was little further improvement, suggesting that some supervision is required for these pts. There were no adverse effects on cardiac function or clinical events.
--	--	-----	-----	--	--	------	--	---	---

Combined endurance and muscle strength training in femal and male pts wit chronic HF. Miche, Eckart. 2008 <u>18432395</u> (136)		Non- randomized study of men vs. women.	285	Stable chronic HF; LVEF <45%; Peak VO2 <20 ml/min/kg; capable of answering questions on HRQoL and psychological well-being.	Severe pulmonary disorders; neurological deficits; cognitive disorders and physical disabilities which prevented pts from participating in a training program.	LVEF, cardiopulmonary performance, QoL	N/A	Women had a diagnosis of non-IHD and valvular heart disease more commonly than men. LVEF increased: Female: p<0.001 LVEDV decreased: Female: p<0.05 Male: p<0.05 LVESV: Female: p<0.001 Male: p<0.001 Peak VO2: Female: p<0.001 Wattmax (W): Female: p<0.001 Wattmax (W): Female: p<0.001 Male: p<0.001 Male: p<0.001 Muscle strength training: Female: p<0.001 Muscle strength training: Female: p<0.001 Muscle strength training: Female: p<0.001 Muscle strength training: Female: p<0.001 Male: p<0.001 Physical Health: Female: p<0.001 Mental Health: Female: p<0.01 Male: p<0.05	The results of our study confirm the feasibility of a combined endurance and resistance program, especially for women. Our findings show a considerably reduced cardiopulmonary performance, negatively affecting physical health. In contrast, no essential restrictions were reported by our groups regarding mental health. This underlines the importance of a physical training program and its continuation at home following the hospital stay in order to influence performance data favorably.
---	--	--	-----	--	---	--	-----	---	--

Long-term effects of a group-based high-intensity aerobic interval- training program in pts with chronic HF. Nilsson, Birgitta. 2008 <u>18940296</u> (137)	To evaluate the long- term effects of a 4- mo, group-based, high-intensity aerobic interval training program on functional capacity and the QoL in pts with chronic HF.	RCT	80	Stable chronic HF; NYHA II-IIIB; receiving optimal medical treatment; LVEF <40% or ≥40% with clinical symptoms of diastolic HF	Acute MI within 4 wk; UA pectoris; serious rhythm disturbance; symptomatic peripheral vascular disease; severe obstructive pulmonary disease; 6MWT <550 m; workload on the cycle ergometer test >110 W; significant comorbidities that would prevent study entry due to terminal disease or an inability to exercise In a long-term care establishment	Functional capacity, evaluated by 6-min walking distance.	QoL	After 4 mo, in the exercise group: Functional capacity improved (p<0.001), QoL improved (p<0.001). After 12 mo, in the exercise group: Functional capacity still improved (p<0.001). QoL still improved (p=0.003).	The results support the implementation of a group-based aerobic interval training program to improve long-term effects on functional capacity and the QoL in pts with chronic HF.
Efficacy and safety of exercise training in pts with chronic HF. O'Connor, Christopher. 2009 <u>19351941</u> (138)	To test the efficacy and safety of exercise training among pts with HF.	RCT	2331	HF LVEF ≤35%, NYHA II-IV,despite optimal HF therapy for at least 6 wk	Major comorbidities or limitations that could interfere with exercise training, recent or planned major CV events or procedures, performance of regular exercise training, use of devices that limited the ability to achieve target heart rates.	Composite of all- cause mortality or all- cause hospitalization.	All-cause mortality, the composite of CV mortality or CV hospitalization, and the composite of CV mortality or HF hospitalization.	NS reductions in primary or secondary endpoints. In prespecificed supplementary analyses adjusting for highly prognostic baseline characteristics there were reductions in the exercise training group for: All-cause mortality or hospitalization: (p=0.03; 95% CI: 0.81-0.99) CV mortality or HF hospitalization: (p=0.03; 95% CI: 0.74-0.99)	Regular exercise training in pts with systolic HF was safe. In the protocol- specified primary analysis, exercise training resulted in nonsignificant reductions in the primary endpoint of all-cause mortality or hospitalization and in secondary endpoints. After adjustment for highly prognostic predictors of the primary endpoint, exercise training was associated with modest significant reductions for both all- cause mortality or hospitalization and CV mortality or HF hospitalization.

Exercise training meta-analysis of trials in pts with chronic HF (ExTraMATCH). Piepoli. 2004 <u>14729656</u> (139)	To determine the effect of exercise training on survival in pts with HF due to LV systolic dysfunction.	Collaborativ e meta- analysis	801 pts from 9 trials	Randomized parallel group controlled trials, evaluate exercise training without any other simultaneous intervention, study pts with stable HF (3 mo or more of stability) due to left systolic ventricular dysfunction (LVEF <50%), have an exercise program lasting 8 wks or more, utilize training involving at least both legs, have survival follow up of ≥3 mo.	Trials of arm or single leg training were excluded	Time to death.	Death or time to admission to hospital.	Exercise training significantly reduce mortality (p=0.0015; 95% CI: 0.46-0.92) Exercise training significantly reduced death or admission to hospital (p=0.01 95% CI: 0.56-0.93).	Meta-analysis of randomized trials gives no evidence that properly supervised medical training programs for pts with HF might be dangerous, and indeed there is clear evidence of an overall reduction in mortality.
Randomized trial of progressive resistance training to counteract the myopathy of chronic HF. Pu, Charles. 2001 <u>11356801</u> (140)	To evaluate whether strength training in elderly pts with chronic HF would be well tolerated and result in improved overall exercise performance without changes in central cardiac function.	RCT	96 (16 HF 80 control)	Community-dwelling, female, age ≥65 mild to moderate, stable systolic HF, NYHA I-III, resting LVEF ≤45%	NYHA class IV, MI within 6 mo, hospitalization for chronic HF within 2 mo, change of HF therapy within 1 mo, UA pectoris, fixed ventricular rate pacemaker, abdominal aortic aneurysm >4 cm, major limb amputation, symptomatic abdominal or inguinal hernias Folstein mini-mental state examination score <23, significant abnormalities on maximal treadmill testing or screening strength testing	Overall exercise capacity (6-min walk distance) and muscle function.	Muscle metabolism and histology, body composition, maximal oxygen consumption, and cardiac function,	Women with chronic HF had significantly lower muscle strength than women without chronic HF (p<0.0001). In resistance trainers (vs. controls): Strength improved (p<0.0001); Muscle endurance improved (p<0.0001); 6-minute walk distance increased (p<0.0003). Increases in type 1 fiber area and citrate synthase activity in skeletal muscle were independently predictive of improved 6-min walk distance ($r^2 =$ 0.78; p=0.0024).	High-intensity progressive resistance training improves impaired skeletal muscle characteristics and overall exercise performance in older women with chronic HF. These gains are largely explained by skeletal muscle and not resting cardiac adaptations.

The effects of physical training on workload, upper leg muscle function and muscle areas in pts with chronic HF. Senden, Jeff. 2005 <u>15823638</u> (141)	To investigate the effect of physical training on upper leg muscle area, muscle strength and muscle endurance expressed as upper leg muscle function in relation to exercise performance.	RCT	77	Chronic HF for at least 6 mo, NYHA II-III, clinically stable for at least 3 mo, received optimal medical therapy, physically able to visit the outpt clinic, LVEF <35%	Interfering disease such as COPD, fasting glucose <7.0 mmol/L (DM), neuromuscular disorders, HTN	LVEF, body composition, daily physical activity, exercise performance, upper leg muscle area and isokinetic leg muscle variables.	N/A	 Workload and peak oxygen consumption decreased in the control group and increased in the training group (p<0.05). Hamstrings area decreased in the control group and did not change in the training group (p<0.05). Upper leg muscle function improved in the training group and did not change in the control group (p<0.05). At baseline and after intervention nearly 60% of the variance in maximal workload was explained by upper leg muscle function and quadriceps muscle area. 	In chronic HF pts, home- based training in conjunction with a supervised strength and endurance training program is safe, feasible and effective and does not require complex training equipment. Physical training prevented loss of hamstrings muscle mass and improved exercise performance by enhancing muscle strength and endurance.
Antiremodeling effect of long- term exercise training in pts with stable chronic HF. Giannuzzi, Pantaleo. 2003 <u>12860904</u> (127)	To determine whether long-term exercise training may influence LV volume and function in a large cohort of pts with stable CHF.	RCT	90	HF secondary to idiopathic DCM, IHD or valvular disease, LVEF <35% by ECHO, clinical stability for at least 3 mo under optimized therapy, NYHA II-III, peak oxygen uptake (VO ₂) <20mL/kg/min at ergospirometry, echocardiographic images of adequate quality for quantitative analysis	Any systemic disease limiting exercise, hypertrophic cardiomyopathy, valvular disease requiring surgery, angina pectoris, sustained ventricular arrhythmias, severe HTN, excess variability >10% at baseline cardiopulmonary exercise test	Cardiopulmonary exercise testing, 6MWT, ECHO, and QoL.	N/A	Differences from baseline to 6 mo improved in the intervention group for: EF (p<0.001), Work capacity (p<0.001), Peak VO ₂ (p<0.006), Walking distance (p<0.001), QoL (p<0.01), LV volumes (diminished) (p<0.006), Trend to fewer readmissions for worsening dyspnea (EDV p<0.05 ESV) LV volumes increased in control group (p<0.0.01 EDV ESV)	In stable chronic HF, long-term moderate exercise training has no detrimental effect on LV volumes and function; rather, it attenuates abnormal remodeling. Furthermore, exercise training is safe and effective in improving exercise tolerance and QoL.

Exercise training reduces circulating adiponectin levels in pts with chronic HF. Van Berendoncks, An. 2010 <u>19656085</u> (142)	To assess circulating adiponectin concentrations in chronic HF pts, compare with controls, and evaluate the effects of a 4-mo exercise training program.	Prospective, non- randomized trial	80	LVEF <30%, NYHA II-III, symptoms had been stable on medical treatment for at least 1 mo prior to inclusion	Recent ACS or revascularization, valvular disease requiring surgery, exercise-induced myocardial ischemia or malignant ventricular arrhythmia, acute myocarditis or pericarditis, cerebrovascular or musculoskeletal disease preventing exercise testing or training, acute or chronic infections, allergies, cancer or inflammatory disease, DM.	Circulating adiponectin concentrations, exercise capacity, anthropometric data and NT-proBNP levels.	N/A	At baseline, adiponectin levels were significantly higher in chronic HF pts compared with healthy subjects (p=0.015). At baseline, stratification of pts according to tertiles of NT-proBNP revealed an increase in adiponectin with disease severity (p<0.001). Exercise training significantly reduced circulating adiponectin levels in the trained chronic HF group (compared to sedentary chronic HF group) (p=0.008)	Circulating adiponectin concentrations are higher in chronic HF pts compared with healthy subjects and increase with disease severity. Exercise training for 4 mo lowers circulating adiponectin levels. The present findings, together with those from other studies, suggest that dysregulation of the adiponectin pathway contributes to the observed metabolic impairment in chronic HF
Effects of exercise training on cardiac performance, exercise capacity and QoL in pts with HF. Van Tol, Benno. 2006 <u>16713337</u> (143)	To determine the effect of exercise training in pts with chronic HF on cardiac performance, exercise capacity and HRQoL.	Meta- analysis of RCTs	35 trials	RCTs, included pts with chronic HF in the control and in the intervention group (diagnosis based on clinical findings or LVEF <40%), included at least 1 treatment group receiving exercise training and 1 control group which received standard medical treatment w/o additional exercise training, evaluated outcome measures in terms of cardiac performance, exercise capacity and/or HRQoL, exercise training had to include at least one of the following training modalities: walking, cycling or resistive training of peripheral muscles.	Studies in which only respiratory muscles or one isolated muscle group was trained.	Cardiac performance, exercise capacity and HRQoL.	N/A	During maximal exercise, significant summary effect sizes were found for: SBP (p=0.03), Heart rate (p=0.011), Cardiac output (p=0.004), Peak oxygen uptake (p=0.00), Anaerobic threshold (p=0.00), 6MWT (p=0.00). The MLHFQ improved by an average of 9.7 points (p=0.00).	Exercise training has clinically important effects on exercise capacity and health- related quality of life, and may have small positive effects on cardiac performance during exercise.

6MWT indicates 6 minute walk test; ACS acute coronary syndrome; AF, atrial fibrillation; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; CV, cardiovascular; DCM, dilated cardiomyopathy; DM, diabetes mellitus; ECHO, echocardiography; EF, ejection fraction; EXERT, Exercise Rehabilitation Trial; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HRQoL, health related quality of life; HTN,

hypertension; IHD, ischemic heart disease; KCCQ, Kansas City Cardiomyopathy Questionnaire; LV, left ventricular; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; MI, myocardial infarction; MLHFQ, Minnesota Living with Heart Failure Questionaire; N/A, not applicatble; NT-proBNP, N-terminal pro-B-Type natriuretic peptide; N/A, not applicable; NS, not significant; O2, oygen; pt, patient; QoL, quality of life; r², coefficient of determination; RCT, randomized control trial; SSW, Stead-state workload; UA, unstable angina; UK, United Kingdom; and VO2, oxygen volume.

Study Name, Aim of Study Author, Year	Study Type	Study Size		atient Population	Endpoin	its	Statistical Analysis (Results)	Study Limitations	Findings/ Comments
Diuretic studies			Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
DOSE-AHF, Felker, 2011 21366472 (144) To compare high and low doses of diuretics administered over longer and shorter periods of time to determine the safest and most effective combination.	RCT	308	Prior clinical diagnosis of HF that was treated with daily oral loop diuretics for at least 1 mo; current diagnosis of HF, as defined by the presence of at least 1 symptom (dyspnea, orthopnea, or edema) and 1 sign (rales on auscultation, peripheral edema, ascites, pulmonary vascular congestion on chest radiography); daily oral dose of furosemide 80 mg- 240 mg (or equivalent); identified within 24 h of hospital admission; current treatment plan includes IV loop diuretics for at least 48 h	BNP <250 mg/mL or NT-proBNP <1000 mg/mL; IV vasoactive treatment or ultrafiltration therapy since initial presentation; treatment plan includes IV vasoactive treatment or ultra-filtration; substantial diuretic response to prerandomization diuretic dosing such that higher doses of diuretics would be medically inadvisable; SBP <90 mm Hg; SCr >3.0 mg/dL at baseline or currently undergoing renal replacement therapy; hemodynamically significant arrhythmias; ACS within 4 wk prior to study entry; active myocarditis; hypertrophic obstructive cardiomyopathy; severe stenotic valvular disease; restrictive or constrictive cardiomyopathy; complex congenital heart disease; constrictive pericarditis;. non- cardiac pulmonary edema; clinical evidence of digoxin toxicity; need for mechanical hemodynamic support; sepsis; terminal illness (other than HF) with expected survival time of <1 y; history of adverse reaction to the study drugs; use of IV iodinated radiocontrast material within 72 h prior to study entry or planned	Pt well-being, as determined by VAS; change in SCr	Weight loss; Proportion of pt free of congestion; change in the bivariate relationship of creatinine vs. weight loss; dyspnea, as determined by VAS; pt global assessment, as determined by VAS; change in SCr; Change in SCr; Change in cystatin C; worsening or persistent HF, defined as a need for rescue therapy; development of cardio-renal syndrome, defined as an increase in the SCr level >0.3 mg/dL; net fluid loss; time from study entry to discharge during index hospitalization; death or total days	Comparison of bolus vs. continuous infusion: no significant difference in either pts' global assessment of symptoms (mean AUC, 4236±1440 in the bolus vs 4373±1404 in the infusion group, p=0.47) Mean change in creatinine level (0.05 ± 0.3 mg/dL in the bolus vs 0.07 ± 0.3 mg/dL in the bolus vs 0.07 ± 0.3 mg/dL in the infusion group, p=0.45) Secondary Endpoints: No significant differences, including SCr and cystatin C levels during index hospitalization and at 60 d. Comparison of high-dose vs. low-dose strategy: no significant difference in pts' global assessment of symptoms, although there was a nonsignificant trend toward greater improvement in the high-dose group (mean AUC, 4430±1401 vs. 4171±1436; $p=0.06$; mean change in creatinine level (0.08 ± 0.3 mg/dL with the high-dose strategy and 0.04 ± 0.3 mg/dL with the low-dose strategy, p=0.21). Secondary endpoints: The high-dose strategy was associated with greater diuresis (net fluid loss and weight loss) and greater relief from dyspnea but also with transient worsening of renal function (occured in 23% of pts in the high-dose	N/A	N/A

Data Supplement 17. Diuretics Versus Ultrafiltration in Acute Decompensated HF (Section 7.3.2.1)

					or planned enrollment in another clinical trial during hospitalization; inability to comply with planned study procedures		HF; death or re- hospitalization	Clinical composite endpoint of death, rehospitalization, or ED visit during the 60-d follow-up period: HR with continuous infusion: 1.15; 95% CI: 0.83- 1.60; p=0.41, HR with high-dose strategy, 0.83; 95% CI: 0.60-1.16; p=0.28		
PROTECT, Massie, 2010 20925544 (145)	Rolofylline, an adenosine A1-receptor antagonist, would improve dyspnea, reduce the risk of WRF, and lead to a more favorable clinical course in pt with acute HF	RCT	2,033	Persistent dyspnea at rest or with minimal activity, impaired renal function (an estimated CrCl of 20-80 mL/min with the use of the Cockcroft-Gault equation), a BNP level of ≥500 pg/mL or more or an NT-pBNP level ≥2000 pg/mL, ongoing IV loop- diuretic therapy, and enrollment within 24 h after admission.	Pregnant or breast feeding; acute contrast induced nephropathy, sepsis, serum potassium <3.5mEq/L; ongoing or planned IV therapy for acute HF with positive inotropic agents, vasopressors, vasodilators, or mechanical support, with the exception of IV nitrates, BNP<500; ongoing or planned UF, hemofiltration or dialysis; severe pulmonary disease; significant stenotic valvular disease, heart transplant recipient or admitted for cardiac transplantation	Primary end point was treatment success, treatment failure, or no change in the pt's condition. Success defined as pt- reported moderate or marked improvement in dyspnea both 24 and 48 h after administration of the study drug, in the absence of any criterion for failure. Failure defined as the occurrence of any of the following: death or readmission for HF through d 7, worsening symptoms and signs of HF occurring >24 h after the initiation of the study drug requiring intervention by d 7 or discharge (if earlier), or persistent WRF, defined as an increase in the SCr level ≥0.3 mg/dL (26.5 µmolL) from randomization to d 7, confirmed at d 14, or the initiation of the study drug through d 7. Pts were classified as having unchanged treatment status if they met neither the criteria for treatment success nor the criteria for treatment failure.	Two secondary outcomes were prespecified: death from any cause or rehospitalization for cardiovascular or renal causes through d 60 and the proportion of pts with persistent renal impairment, defined as an increase in the SCr level ≥0.3 mg/dL by d 7, confirmed at d 14; the initiation of hemofiltration or dialysis through d 7; or death by d 7.	Rolofylline did not provide a benefit with respect to the primary endpoint (OR: 0.92; 95% CI: 0.78-1.09; p=0.35). Persistent renal impairment developed in 15% of pts in the rolofylline group and in 13.7% of pts in the placebo group (OR: 1.11; 95% CI: 0.85-1.46; p=0.44). By 60 d, death or readmission for cardiovascular or renal causes had occurred in similar proportions of pts assigned to rolofylline, 386 of 1356 pts (Kaplan–Meier estimate, 30.7%; 95% CI: 27.8-33.6) as compared with 195 of 677 pts assigned to placebo (Kaplan– Meier estimate: 31.9%; 95% CI: 27.4- 36.4) (HR: 0.98; 95% CI: 0.83-1.17; p=0.86). AE rates were similar overall; however, only pts in the rolofylline group had seizures, a known potential adverse effect of A1-receptor antagonists1.	Post hoc selection of the best of 3 dose groups from the pilot trial with multiple small treatment groups carries the risk that an apparent superiority may be the play of chance and may have resulted in the inability to replicate pilot study findings in this more definitive, larger study. Also, clinical relevance of endpoints has been questioned	Rolofylline did not have a favorable effect with respect to the primary clinical composite end point, nor did it improve renal function or 60- d outcomes. It does not show promise in the treatment of acute HF with renal dysfunction

Pilot continuous vs bolus infusion (Duke), L Allen, 2010 <u>20538132</u> (147)	Pilot study of furosemide by continuous infusion vs twice-d bolus injection. Hypothesis that continuous dosing of IV furosemide provides gradual diuresis with less neurohormonal activation, which would manifest as less renal dysfunction, compared to bolus dosing in the treatment of acute decompensated HF with volume overload	RCT	41	Primary diagnosis of acute decompensated HF; evidence of volume overload; could be randomized <24 h from hospital presentation	End-stage renal disease or anticipated need for renal replacement therapy; were not expected to survive hospitalization; pregnant	Change in SCr from admission to hospital d 3 or hospital discharge	Cumulative urine output and other electrolyte changes from admission to hospital d 3 as well as hospital length of stay	None of the outcomes showed a statistically significant difference between bolus and continuous dosing from admission to hospital d 3. Nonsignificant trend toward improvement in the bolus dosing arm. Decreases in serum potassium, serum sodium, and SBP showed nonsignificant trends in favor of continuous infusion	Smaller study	No statistically significant differences noted between bolus and continuous infusion
Pilot continuous vs bolus infusion (MUSC), Thomson, 2010 <u>20206891</u> (148)	Pilot study comparing the effectiveness of continuous IV with intermittent IV infusion of furosemide in pt with acute decompensated HF	RCT	56	Admission diagnosis of acute decompensated HF	Pts who had received >2 doses of IV fruosemide before randomization	Net daily urine output	Net daily urine output normalized for amount of furosemide received, total daily urine output normalized for amount of furosemide received, weight loss during the study, need for additional HF therapy, duration of study drug dministration, length of hospitalization	Mean urine output in 24 h was 2,098±1,132 mL in pt receiving continuous vs 1,575±1100 mL in the bolus group (p=0.086). Total urine output was 3726±1121 mL/24 h in the continuous group vs 2,955±1,267 mL/24 h in bolus group (p=0.019). Length of hospital stay was 6.9±3.7 d in the continuous group vs 10.9±8.3 d in the bolus group (p=0.006)	Smaller study	LOS shorter and mean urine output greater in the continuous infusion group vs bolus group
ADHERE, Peacock, 2008 <u>18480204</u> (149)	To determine the clinical and renal outcomes associated with lower vs higher IV loop diuretic dose in pts hospitalized with acute decompensated	Registry	82,540	Pts in the ADHERE registry who received IV diuretics during a hospitalization for acute decompensated	Pts receiving vasoactive drugs or dialysis. Those who received multiple types of diuretics. Pts with SCr values >6 mg/dL or hospitalizations with LOS <4 h were excluded from the analysis of change in SCr and dialysis	Increase from baseline to last available SCr > 0.5 mg/dL; decrease in GFR >10 mL/min from baseline to discharge; initiation of dialysis during	Inhospital mortality, ICU admission, ICU LOS >3 d, and hospital LOS >4 d	Both before and after risk and propensity adjustments, an increase in SCr >0.5 mg/dL occurred less frequently in LDD admissions than in HDD admissions (both p<0.0001). The prevalence of a >10 mL/min decrease in GFR from baseline to discharge was	ADHERE registry data were retrospective and observational so should be regarded as hypothesis	Among pts in the ADHERE registry, After covariate and propensity adjustments, the inhospital

	HF. This study analyzed data from the ADHERE registry to look at the impact of diuretic dosing. 62,866 pt receiving <160 mg and 19,674 pts ≥160 mg of furosemide were analyzed.			HF.	initiation. Pt with SCr values >6 mg/dL, GFR values >200 mL/min, or hospitalizations with LOS <24 h were excluded from the analysis of change in GFR.	hospitalization.		significantly lower in LDD vs HDD admissions (p <0.0001). Significant differences between cohorts present after risk and propensity adjustments. LDD treatment was associated with lower prevalence of prolonged ICU LOS (nonsignificant differences). After covariate and propensity adjustments: in-hospital mortality risk of LDD was significantly lower compared to HDD. AUC for adjusted model was 0.78. Unadjusted mortality OR 0.875; 95% CI: 0.787–0.973; p =0.01. After adjustment for covariates known to be associated with mortality – age, BUN, SBP, DBP, sodium, creatinine, heart rate and dyspnea at rest – adjusted OR was 0.888: 95% CI: 0.795– 0.993; p =0.0364	generating. Clinical reasons for initiation of IV diuretics was not collected and therefore not considered in analysis.	mortality risk of pts who received LDD was significantly lower compared to those receiving HDD.
Cohort study high vs. low dose (Brigham and Women's) Mielniczuk, 2008 <u>18514930</u> (150)	This study was a prospective observational analysis of pts in an advanced HF clinic stratified at baseline by diuretic dose (low dose ≤80 mg, high dose >80 mg furosemide equivalent) to evaluate the effect of high/low (or no) diuretic doses on outcomes.	Cohort	183	Eligible pts had to have a primary diagnosis of chronic HF and be followed by a specialist in a tertiary care HF clinic. Pts with either preserved or reduced systolic function were included	Pts were excluded if they required renal replacement therapy, had a concurrent noncardiac diagnosis expected to limit life expectancy to less than 1 y, or were unable to participate in repeat clinical assessments	All pts were followed for 1 y. The primary outcome for the analysis was time to first HF event of HF admission, cardiac transplant, MCS, or death	Secondary outcomes included individual components of the HF composite and WRF, which was defined as an increase in SCr >0.3 mg/dL from baseline	Compared with pts taking LDD (113 pts [62%]), pts taking HDD (70 pts[38%]) had more markers of increased cardiovascular risk (older, ischemic cardiomyopathy, DM and HTN) and were more likely to have a history of recent instability (33% vs 4.4% in low dose, p<.001). SCr significantly higher in pts receiving HDD vs. LDD (1.4 ± 0.5 mg/dL vs 1.1 ± 0.5 mg/dL, respectively, p < .001). 1 y cumulative HF event rates significantly greater in pts taking HDD when to low-dose/no diuretics (HF composite, 29% vs 4.5%, p<.01; HF hospitalization, 26% vs 4.5%, p<.01; MCS or transplant, 7.1% vs 2.7%, P = .02; death, 2.9% vs 0.9%, p= .4; high vs low dose for all). Among pts taking HDD, those with a history of instability had significantly greater HF event rates during a 1-y period compared with pts with recent	Smaller study, observational, single-center	HDD may be more of a marker than a cause of instability. A history of HF stability during the past 6 mo is associated with an 80% lower risk of an HF event during the next y, independently of baseline diuretic dose.

								clinical stability (HF composite, 47% vs 18%, p =.013) Independently of diuretic dose, pts with a history of clinical stability had an 80% lower risk of developing an HF event . HDD were a strong univariate predictor of subsequent HF events (HR: 3.83, 95% CI: 1.82-8.54); however, after adjustment for clinical stability, diuretic dose no longer remained significant (HR: 1.53, 95% CI: 0.58-4.03).		
PROTECT pilot, Cotter, 2008 <u>18926433</u> (151)	Pilot study was designed to identify an efficacious dose while refining inclusion criteria and endpoints	RCT	301	acute HF with an estimated CrCl of 20-80 mL/min and elevated natriuretic peptide levels were enrolled within 24 h of presentation	SBP <95 or >160 mm Hg; fever >38°C; acute contrast-induced nephropathy; resistant hypokalemia; ongoing or planned IV therapy with positive inotropic agents, vasopressors, vasodilators with the exception of IV nitrates, or mechanical support (intra-aortic balloon pump, endotracheal intubation, or ventricular assist device); severe pulmonary disease; significant stenotic valvular disease; previous heart transplant or admission for cardiac transplantation; clinical evidence of ACS <2 wk before screening; and acute HF caused by significant arrhythmias; pts at high risk of seizures	The prespecified primary analysis for this pilot phase was a trichotomous classification of pts as "success," "unchanged," or "failure" based on their changes in symptoms and renal function. This pilot phase was not powered to demonstrate statistically significant changes. The major objective was to evaluate the performance of this novel endpoint and refine it on the basis of real- world experience. Treatment success was defined as an improvement in dyspnea (reported by the pt using a 7-point Likert scale as moderately or markedly better compared with study start) determined at 24 and 48 h after the start of study drug (d 2 and 3) or d of discharge if earlier, as long as the pt did not meet any of the criteria for treatment failure. Treatment failure was defined as death, early HF readmission (occurring	Composite of death or all-cause readmission within 60 d	Pts treated with rolofylline more likely to achieve success, as evidenced by improved dyspnea (52.7% vs 37.2%), and less likely to experience failure (manifested by worsening HF, death, or renal impairment) compared with pts treated with placebo (16.2% vs 28.2%). By comparing rolofylline 30 mg with placebo, the OR estimated from the proportional odds model was 0.51 (95% CI: 0.28–0.94). In the prespecified subgroup of pts with higher natriuretic peptide levels, pretreatment BNP level \geq 500, or NT pro-BNP \geq 2000 pg/mL, most likely representing more severe acute HF, the OR from the proportional odds model was 0.59 (95% CI 0.30– 1.17). SCr increased in pts receiving placebo and remained stable or tended to decrease in those receiving rolofylline. On d 14 the absolute differences between placebo and rolofylline for change in creatinine increased with increasing rolofylline dose, reflecting the lesser increase in creatinine in rolofylline-treated pt (r = - 0.12, p=.030). Treatment with 30 mg, the dose selected for the pivotal trials, was associated with a trend toward reduced 60-d mortality or readmission for cardiovascular or renal cause (HR: 0.55; 95% CI: 0.28-1.04).	Limited by the study size and number of treatment groups. Study was not powered to quantitatively distinguish between the 3 active doses, although trends emerged suggesting a dose-related preservation of renal function and increase in diuresis, as well as a greater effect on the composite endpoint at the 30 mg dose.	The preservation of renal function associated with rolofylline, a selective renal vasodilator, is the first evidence that an intervention to prevent renal impairment may positively affect acute symptoms and 60-d outcome in pts with acute HF; however, results were not confirmed in the phase III trial.

DIG, Ahmed, 2008 <u>17532064</u> (152)	The objective of this propensity-matched study was to determine the effect of diuretics on mortality and hospitalizations in HF pts ≥65 y.	Registry	7,788	Pts who were at ≥21 y of age were eligible for the main trial if they had HF, a LVEF ≤45%, were in normal sinus rhythm, and did not meet any of 20 easily determined, not overly restrictive exclusion criteria	Age <21 yrs; baseline EF not available; MI, cardiac surgery or PTCA within 4 wk; unstable or refractory angina <1 month; II-III AV block without pacemaker; AF or flutter; cor pulmonale; constrictive pericarditis; acute myocarditis; hypertrophic cardiomyopathy; amyloid cardiomyopathy; complex CHD; tx with IV inotropic agents; K+ < 3.2 mmol/L or >5.5 mmol/L; on heart transplant list; noncardiac cause of HF; Creatinine >3.0 mg/dL or severe liver disease; unlikely to comply	within 7 d of study drug initiation), worsening HF as defined daily by the physician assessment by d 7, or persistent renal impairment as defined above. Unchanged pts were classified as unchanged if neither criteria for success or failure were met. All-cause mortality and all- cause hospitalization during 36.7 mo of median follow- up	Mortality and hospitalizations due to cardiovascular causes and HF	All-cause mortality occurred in 173 pts not receiving diuretics and 208 pts receiving diuretics respectively during 2,056 and 1,943 person-y of follow-up (HR:1.36; 95% CI: 1.08-1.71; p=0.009). All-cause hospitalizations occurred in 413 pts not receiving and 438 pts receiving diuretics respectively during 1,255 and 1,144 person-y of follow-up (HR: 1.18; 95% CI: 0.99-1.39; p=0.063). Diuretic use was associated with significant increased risk of cardiovascular mortality (HR:1.50; 95% CI:1.15-1.96; p=0.003) and HF hospitalization (HR:1.48; 95% 95% CI: 1.13-1.94; p=0.005).	Beta blockers were not approved for HF during the DIG trial and data on beta blocker use were not collected	Diuretic use associated with increased mortality among elderly in the DIG trial
EVEREST, Gheorghiade, 2007 <u>17384438</u> (153)	To evaluate short-term effects of tolvaptan when added to standard therapy in pts hospitalized with HF	RCT	2,048 (trial A) and 2,085 (trial B)	Age ≥18 y with a history of chronic HF (requiring treatment for a minimum of 30 d before hospitalization) who had been hospitalized primarily for worsening CHF and had a LVEF ≤40% (measured at any point within 1 y of admission). Entry required HF	Cardiac surgery within 60 d of enrollment, cardiac mechanical support, biventricular pacemaker placement within the last 60 d, comorbid conditions with an expected survival of less than 6 mo, acute MI at the time of hospitalization, hemodynamically significant uncorrected primary cardiac valvular disease, refractory end-stage HF, hemofiltration or dialysis, supine systolic arterial blood pressure of less than 90 mm Hg, SCr concentration >3.5 mg/dL (>309.4 µmol/L), serum potassium concentration > 5.5 mEq/L, and	Composite of changes in global clinical status based on a visual analog scale and body weight at d 7 or discharge if earlier	Dyspnea (d 1), global clinical status (d 7 or discharge), body weight (d 1 and 7 or discharge), and peripheral edema (d 7 or discharge).	Rank sum analysis of the composite primary endpoint showed greater improvement with tolvaptan vs placebo (trial A, mean [+SD], 1.06 [0.43] vs 0.99 [0.44]; and trial B, 1.07 [0.42] vs 0.97 [0.43]; both trials p<.001). Mean (+SD) body weight reduction was greater with tolvaptan on d 1 (trial A, 1.71 [1.80] vs 0.99 [1.83] kg; p<.001; and trial B, 1.82 [2.01] vs 0.95 [1.85] kg; p<.001) and day 7 or discharge (trial A, 3.35 [3.27] vs 2.73 [3.34] kg; p<.001; and trial B, 3.77 [3.59] vs 2.79 [3.46] kg; p<.001). Improvements in global clinical status were not different between groups. More pts receiving tolvaptan (684	N/A	In pts hospitalized with HF, oral tolvaptan in addition to standard therapy including diuretics improved many, though not all, HF signs and symptoms, without serious AE.

			symptoms at rest or minimal exertion and signs of congestion (≥2 of the following: dyspnea, jugular venous distention, or peripheral edema) at time of randomization.	hgb of less than 9 g/dL			[76.7%] and 678 [72.1%] for trial A and trial B, respectively) vs pts receiving placebo (646 [70.6%] and 597 [65.3%], respectively) reported improvement in dyspnea at d 1 (both trials p<.001). Edema at d 7 or discharge improved significantly with tolvaptan in trial B (p =0.02) but did not reach significance in trial A (p=0.07). Serious AE frequencies were similar between groups, without excess renal failure or hypotension		
EVEREST, Konstam, 2007 <u>17384437</u> (154)	To investigate the effects of tolvaptan initiated in pts hospitalized with HF	RCT 4,13	B Pts age ≥18 y with reduced LVEF ≤40%, signs of volume expansion, NYHA class III/IV symptoms, and hospitalization for exacerbation of chronic HF no more than 48 h earlier were eligible for the study	Cardiac surgery within 60 d of enrollment, cardiac mechanical support, biventricular pacemaker placement within the last 60 d, comorbid conditions with an expected survival of <6 mo, acute MI at the time of hospitalization, hemodynamically significant uncorrected primary cardiac valvular disease, refractory end- stage HF, hemofiltration or dialysis, supine systolic arterial bp < 90 mm Hg, SCr >3.5 mg/dL (309 µmol/L), K+ level greater than 5.5 mEq/L, and hgb <9 g/dL.	Dual primary endpoints were all-cause mortality (superiority and noninferiority) and cardiovascular death or hospitalization for HF (superiority only)	Composite of cardiovascular mortality or cardiovascular hospitalization; incidence of cardiovascular mortality; and incidence of clinical worsening of HF (death, hospitalization for HF, or unscheduled visit for HF). Additional secondary endpoints included changes from baseline in body weight at d 1, serum sodium level at d 7 or discharge in pts with a baseline serum sodium <134 mEq/L, edema score at d 7 or discharge for those with edema at baseline, pt- assessed dyspnea at d 1 for those	During a median follow-up of 9.9 mo, 537 pts (25.9%) in tolvaptan group and 543 (26.3%) in placebo group died HR for mortality: 0.98; 95% Cl, 0.87-1.11; p=.68). Kaplan-Meier estimates of mortality at 1 y were 25.0% in the tolvaptan group and 26.0% in the placebo group. Composite cardiovascular death or hospitalization for HF: 871 tolvaptan group (42.0%) and 829 placebo group (40.2%) HR: 1.04; 95% Cl: 0.95-1.14; p=.55). Secondary endpoints of CV mortality, CV death or hospitalization, and worsening HF were also not different. Tolvaptan significantly improved secondary endpoints of d 1 pt-assessed dyspnea (p<.001), with 74.3% of the tolvaptan group and 68.0% of the placebo group demonstrating an improvement in dyspnea score, as well as d 1 body weight, and d 7 edema. In pts with hyponatremia, serum sodium levels significantly increased. The KCCQ overall summary score was not improved at outpt wk 1, but body weight and serum sodium effects persisted long after discharge.	N/A	Tolvaptan initiated for acute treatment of pts hospitalized with HF had no effect on long- term mortality or HF-related morbidity.

							with dyspnea at baseline, and KCCQ overall summary score at outpt wk 1.			
DIG, Ahmed (UAB), 2006 <u>16709595</u> (155)	Non-potassium- sparing diuretics are commonly used in HF. They activate the neurohormonal system, and are potentially harmful. Yet, the long-term effects of chronic diuretic use in HF are largely unknown. This study retrospectively analysed the DIG data to determine the effects of diuretics on HF outcomes. Effects of diuretics on mortality and hospitalization at 40 mo of median follow- up were assessed using matched Cox	Registry	2,782	The DIG trial enrolled 7,788 ambulatory chronic systolic (LVEF ≤45%; n=6800) and diastolic (LVEF >45%; n=988) HF pts in normal sinus rhythm, of whom 6,076 (78%) were receiving diuretics	Age <21 y; baseline EF unavailable; MI, cardiac surgery or PTCA within 4 wk; unstable or refractory angina <1 mo; II-III AV block without pacemaker; AF or flutter; cor pulmonale; constrictive pericarditis; acute myocarditis; hypertrophic cardiomyopathy; amyloid cardiomyopathy; complex CHD; tx with IV inotropic agents; K+ < 3.2 mmol/L or > 5.5 mmol/L; on heart transplant list; noncardiac cause of HF; Creatinine > 3.0 mg/dL or severe liver disease; unlikely to comply	All-cause mortality	Mortality from worsening HF, and hospitalizations due to all causes and worsening HF	Propensity scores for diuretic use were calculated for each of the 7,788 DIG participants using a non-parsimonious multivariable logistic regression model, and were used to match 1,391 (81%) no-diuretic pts with 1,391 diuretic pts. Mean survival times for diuretic vs. no- diuretic pts: 47 (95% CI: 46–48) and 50 (95% CI: 49–51) mo. All-cause mortality was 21% for no- diuretic pts and 29% for diuretic pts (HR: 1.31; 95% CI: 1.11-1.55; p=0.002). HF hospitalizations occurred in 18% of no-diuretic pts and 23% of diuretic pts (HR: 1.37; 95% CI: 1.13-1.65; p=0.001). Mortality due to HF occurred in 6% of pts in the no-diuretic group and 9% of those in the diuretic group (HR: 1.36; 95% CI 0.99–1.87; p=0.056). Compared with 8% deaths among pts never receiving diuretics during the first 24 mo of follow-up, 19% of those who	Based on non- randomized findings, retrospective. Beta-blockers were not approved for HF during the DIG trial and data on beta-blocker use were not collected	Chronic diuretic use was associated with increased long-term mortality and hospitalizations in a wide spectrum of ambulatory chronic systolic and diastolic HF pts

	regression models							always received diuretics during the same time died from all causes (multivariable adjusted HR: 1.81; 95% Cl 1.38–2.38; p<0.0001).		
DIG, Domanski, 2006 <u>16762792</u> (156)	Investigate the associations between death, cardiovascular death, death from worsening HF, SCD, and HF hospitalization among those taking a PSD, NPSD, or no diuretic in the DIG trial	Registry	6,797	HF and LVEF ≤45% enrolled in the DIG trial. The DIG randomly assigned 6800 pts with HF and LVEF ≤45% to digoxin or placebo in a double-blinded controlled trial	Age <21 y; baseline EF not available; MI, cardiac surgery or PTCA within 4 wk; unstable or refractory angina <1 mo; II-III AV block without pacemaker; AF or flutter; cor pulmonale; constrictive pericarditis; acute myocarditis; hypertrophic cardiomyopathy; complex CHD; tx with IV inotropic agents; K+ < 3.2 mmol/L or > 5.5 mmol/L; on heart transplant list; noncardiac cause of HF; Creatinine > 3.0 mg/dL or severe liver disease; unlikely to comply	All-cause death, cardiovascular death, death from progressive HF, SCD, and HF hospitalization	N/A	For death from HF or SCD, the incident rates were not significantly different between the pts taking the PSD only versus no-diuretic group (p=.06, and p=.7, respectively); for the other 4 events (hosp for HF, death from CVD, death from all causes, hosp or death from HF), the incidence rates were all significantly lower in the no-diuretic group than in the PSD-only group (p≤.01). For all 6 events, the incidence rates for the NPSD only group were significantly higher than the PSD-only group (p≤.02). The incidence rates for the NPSD-only group and both-diuretic groups were comparable and not significantly different with the p- values ranging from .07 to .6 (date not shown). After multivariate analysis, the risks of all 6 endpoints were increased in pts taking a NPSD, whether or not they were taking a PSD after adjusting for known covariates. There was no significant difference in the risk of any of these events for pts taking only PSD and those taking no diuretics. Compared with not taking diuretic, risk of death (RR: 1.36, 95% CI: 1.17–1.59, p<.0001), cardiovascular death (RR: 1.38, 95% CI: 1.17–1.63; p=.0001), progressive HF death (RR: 1.41, 95% CI: 1.06–1.89, p=.02), SCD (RR: 1.67, 95% CI 1.23–2.27, p=.001), and HF hospitalization (RR: 1.68, 95% CI: 1.41–	Post-hoc study and doses of diuretics were not available for analysis. Also, did not analyze effects of treatment over time. Beta- blockers were not approved for HF during the DIG trial and data on beta blocker use were not collected	Among pts in the DIG trial, compared with pts not taking any diuretic or taking a PSD, pts taking non- PSD had a higher RR of death.

								1.99, p< .0001) were increased with NPSD. There was no significant difference in any endpoint for pts taking only PSD compared to no diuretic. PSD only subjects were less likely than NPSD subjects to be hospitalized for HF (RR: 0.71, 95% CI: 0.52–0.96, p=.02).		
Cohort study low vs. high dose (Cedars Sinai/ UCLA), Eshaghian, 2006 <u>16765130</u> (157)	This study sought to determine the dose- dependent relation between loop diuretic use and HF prognosis	Cohort	1,354	Study population consisted of 1,354 consecutive pts with advanced systolic HF referred to a single university medical center for HF management and/or transplant evaluation from 1985 to 2004	Pts with LVEF >40%, those with HF due to valvular disease, and those aged <18 y were excluded from the analysis	All-cause mortality	The composite endpoint of death or urgent transplant (status IA) was analyzed as a secondary endpoint	Pts with HF in the highest diuretic dose quartile were found to have significantly impaired survival compared with pts in the lowest quartile. Survival estimates at 1 y were 91%, 88%, 80%, and 69% for quartiles 1, 2, 3, and 4, respectively (p <0.0001). Survival estimates at 2 y were 83%, 81%, 68%, and 53%, respectively (p <0.0001). Death from any cause: HR: 3.4, 95% CI: 2.4-4.7 death and urgent transplantation: HR 2.7, 95% CI 2.0-3.5 death from progressive HF: HR: 3.8; 95% CI 2.1-6.8 sudden death: HR: 3.6; 95% CI: 1.9-6.8 Univariate analysis- compared with the lowest quartile, increasing loop diuretic dose quartiles were associated with a progressive increase in mortality (second quartile, HR: 1.2; 95% CI: 0.8- 1.7; third quartile, HR: 2.1, 95% CI 1.5- 2.9; and fourth quartile, HR: 3.4; 95% CI 2.4-4.7). Diuretic dose quartiles were associated with increased mortality independent of other covariates. After adjustment the highest diuretic quartile remained a significant predictor of increased mortality at 1 y (HR: 4.2; 95% CI: 1.5-11.3) and at 2 y (HR: 4.0; 95% CI 1.9-8.4)	Possible selection bias. Diuretic dose was examined at only a single point in time, without considering chnages in doses over time. Baseline characteristics and other HF treatments different among the diuretic dose quartiles. With adjustment for multiple covariates, larger loop diuretic doses could still be a surrogate for other measured and unmeasured variables that reflect more severe HF. Serum potassium and magnesium level information was unavailable. Propensity matching was not performed. So the relation between	This study suggests that in pts with advanced systolic HF, the use of higher doses of loop diuretics is associated with significantly increased all- cause mortality. Although it may appear obvious that pts with HF requiring higher loop diuretic doses to prevent fluid retention and control symptoms might be sicker than pts receiving lower doses, the powerful and independent association with mortality warrants further consideration.

									loop diuretic dose and increased mortality is causative.	
Cochrane review, 2005 <u>16034890</u> (158)	To compare the effects and adverse effects of continuous IV infusion of loop diuretics with those of bolus IV administration among pts with HF class III-IV	Meta- analysis	254	RCTs comparing the efficacy of continuous IV infusion versus bolus IV administration of loop diuretics in HF in a total of 8 RCTs.	N/A	(7 studies) urine output, cc/24 h; Electrolyte disturbances (hypokalemia, hypomagnesemia); adverse effects (tinnitus and hearing loss); (single study) duration of hospital stay and cardiac mortality; (2 studies) all cause mortality	N/A	Urine output: the output (as measured in cc/24 h) was noted to be greater in pts given continuous infusion with a WMD of 271 cc/24 h (95%CI: 93.1-449; p<0.01). Electrolyte disturbances were not significantly different in the two treatment groups : RR 1.47; 95%CI: 0.52-4.15; p=0.5. Less adverse effects (tinnitus and hearing loss) were noted with continuous infusion: RR 0.06; 95%CI: 0.01- 0.44; p=0.005. Duration of hospital stay was significantly shortened by 3.1 d with continuous infusion WMD -3.1; 95%CI - 4.06 to -2.20; p<0.0001; while cardiac mortality was significantly different in the two treatment groups, RR: 0.47; 95% CI: 0.33 to 0.69; p<0.0001. All-cause mortality was significantly different in the two treatment groups, RR: 0.52; 95% CI: 0.38- 0.71; p<0.0001.	Available data were insufficient to confidently assess the merits of the 2 methods of giving IV diuretics. The existing data did not allow definitive recommendations for clinical practice	Based on small and relatively heterogeneous studies, this review showed greater diuresis and a better safety profile when loop diuretics were given as continuous infusion.
SOLVD, Domanski, 2003 <u>12932605</u> (159)	Study sought to determine whether NPSDs in the absence of a PSD may result in progressive HF.	Registry	6,797	Symptomatic and asymptomatic pts with a LVEF fraction <0.36 were randomly assigned to double-blinded treatment with enalapril or placebo.	Only drug class was ascertained; specific medications were not recorded.	Rates of hospitalization for HF, death from cardiovascular disease, death from all causes, and either hospitalization or death due to worsening HF	N/A	The risk of hospitalization from worsening HF in those taking a PSD relative to those taking only a non-PSD was 0.74; 95% CI 0.55-0.99; p= 0.047. The RR for cardiovascular death was 0.74; 95% CI 0.59-0.93; p=0.011), for death from all causes 0.73; 95% CI: 0.59-0.90; p=0.004), and for hospitalization for, or death from, HF 0.75; 95% CI: 0.58-0.97; p=0.030). Compared with pts not taking any diuretic, the risk of hospitalization or death due to worsening HF in pts taking	This study is retrospective and, therefore, not definitive proof that NPSDs cause progressive HF. Because the diuretic dosage was not available, we cannot draw conclusions about a dose-response	This study shows that in pts with moderate or severe LV dysfunction, the use of a PSD is associated with a reduced risk of death or hospitalization due to

								non-PSDs alone was significantly increased (RR:1.31: 95% CI: 1.09-1.57; p=0.0004); this was not observed in pts taking PSDs with or without a NPSD (RR: 0.99; 95% CI: 0.76- 1.30; p=0.95).	relationship. Also, baseline data were used, and diuretic treatment status may have changed over time	progressive HF, relative to pts taking only a non-PSD.
PRAISE, Neuberg, 2002 <u>12094185</u> (152)	The prognostic importance of diuretic resistance (as evidenced by a high- dose requirement) was retrospectively evaluated in pts with advanced HF who were enrolled in the PRAISE.	Registry	1,153	LVEF <30% and NYHA functional class IIIb/IV HF despite mandatory background treatment with digoxin, diuretics, and ACE inhibitors.	Pts were excluded if their serum potassium level was <3.5 or >5.5 mmol/L and if their SCr level was >3.0 mg/dL (270 >mol/L), and/or if they met other standard exclusion criteria	Death or cardiac transplantation	N/A	HDD were independently associated with mortality, sudden death, and pump failure death (aHR: 1.37 (p=.004), aHR: 1.39 (p=.042), and aHR: 1.51 (p=.034), respectively. Use of metolazone was an independent predictor of total mortality (aHR: 1.37; p=.016) but not of cause-specific mortality. In quartiles of loop diuretic dose, total mortality increased progressively without a clear risk threshold, more than doubling from the lowest-dose group to the highest-dose group (p=.001). Unadjusted mortality rates were 20.7% (n=152), 30.7% (n=313), 36.8% (n=304), and 44.8% (n=84) for increasing dose of furosemide (40 mg, 40-80 mg, 80-120 mg, and 120 mg daily) or bumetanide (1 mg, 1-2 mg, 2-3 mg, and 3 mg daily), respectively. By proportional hazard regression, high diuretic dose was an independent predictor of total mortality (aHR: 1.37; p=0.004), sudden death (a HR: 1.39, p=0.042), and pump failure death (aHR: 1.51, p=0.034).	Retrospectiveolde r study as pts enrolled in PRAISE were not on beta blockers.	Found that high doses of loop diuretic (>80mg of furosemide or >2mg of buetanide daily) were independently associated with mortality in pts with advanced HF. When degree of congestion was considered together with its treatment, the associated risks were additive, suggesting that diuretic resistance should be considered an indicatior of prognosis in chronic HF. However, retrospective analysis does not establish harm, nor rule out a long-term

Ultrafiltratior	1									benefit of diuretic therapy.
UNLOAD substudy (Maryland), Rogers, 2008 <u>18226766</u> (160)	This study was designed to evaluate the consequences of UF and standard IV diuretic (furosemide) therapy on GFR and renal plasma flow in pts with acute decompensated HF.	RCT	19	Pts hospitalized for acute decompensated HF with an EF <40% and ≥2 signs of hypervolemia based on at least 2 of the following findings: ≥2+ pitting edema of the lower extremities, jugular venous pressure ≥10 cm H ₂ O, pulmonary edema or pleural effusion on chest radiograph consistent with decompensated congestive HF, ascites, paroxysmal nocturnal dyspnea, or ≥2 pillow orthopnea.	Pts with ACS, SCr >3.0 mg/dL, SBP ≤ 90 mm Hg, hematocrit >45%, inability to obtain venous access, or clinical instability likely to require IV nitroprusside or IV pressors, history of administration of IV diuretics and/or vasoactive drugs during the present hospitalization (except for a single dose of IV diuretics administered in the ED before hospitalization), use of iodinated radiocontrast material, contraindication to the use of anticoagulation, systemic infection, or hemodialysis were excluded from the substudy.	Urine output, GFR (as measured by iothalamate), and renal plasma flow (as measured by para- aminohippurate) were assessed before fluid removal and after 48 h.	N/A	19 pts (59 +/- 16 y, 68% were male) were randomized to receive UF (n= 9) or IV diuretics (n= 10). The change in GFR (-3.4 +/- 7.7 mL/min vs -3.6 +/- 11.5 mL/min; p= .966), renal plasma flow (26.6 +/- 62.7 mL/min vs 16.1 +/- 42.0 mL/min; p= .669), and filtration fraction (-6.9 +/- 13.6 mL/min vs -3.9 +/- 13.6 mL/min; p= .644) after treatment were not significantly different between the UF and furosemide treatment groups. No significant difference in net 48-h fluid removal between the groups (-3211 +/- 2345 mL for UF and -2725 +/- 2330 mL for furosemide, p= .682). UF removed 3666 +/- 2402 mL. Urine output during 48 h was significantly greater in the furosemide group (5786 +/- 2587 mL) compared with the UF group (2286 +/- 915 mL, p< .001).	Small single center study. Pts receiving UF tended to have worse GFR at baseline. Renal hemodynamic outcomes were measured during acute fluid removal (48 h). Unknown as to when changes in GFR or RPF occur. The present study does not assess any chronic effects of UF or diuresis.	During a 48-h period, UF did not cause any significant differences in renal hemodynamics compared with the standard treatment of IV diuretics
UNLOAD, MR Costanzo, 2007 <u>17291932</u> (161)	To compare the safety and efficacy of venovenous UF and standard IV diruetic therapy for hypervolemic HF pts	RCT	200	Pts hospitalized with primary diagnosis of acute decompensated congestive HF; evidence of fluid overload as indicated by: pitting edema (2+) of lower extremities; jugular venous distension; pulmonary edema or pleural effusion; ascites;	ACS; creatinine >3.0; SBP <90 mmHg; hematocrit >45%; prior administration of IV vasoactive drugs in the ED; clinical instability requiring pressors during hospitalization; recent use of iodinated contrast material; severe concomitant disease expected to prolong hospitalization; sepsis; on or	Total weight loss during first 48 h; change in dyspnea score during first 48 h.	Change in global assessment; change in QoL (living with HF); changes in BNP; changes in 6 min walk test; total fluid loss during first 48 h; changes in BUN and creatinine; changes in renin and aldosterone; rate of hospitalizations and	Primary efficacy endpoints: Weight loss was greater in the UF than in the standard-care group $(5.0 \pm 3.1 \text{ kg}$ vs. $3.1 \pm 3.5 \text{ kg}$; p=0.0001) Dyspnea scores were similarly improved in the UF and standard-care group at both 8 and 48 h. Primary safety endpoints: Changes in SCr were similar in the 2 groups throughout the study and % of pts with rise in SCr >0.3 mg/dL were	Population not representative of HF pts (better renal function, and excluded pts with hypotention); industry sponsored;	While weight loss was greater and rehospitalization at 90 d was lower in the UF arm, data not available on long-term effects on renal function or resource utilization. The pts in trial represented

				paroxysmal nocturnal dyspnea or 2-pillow orthopnea	requires renal dialysis; history of cardiac transplant; heparin allergy.		unscheduled clinic and ED visits in the wk after inpt treatment	similar in both groups at 24 h, 48 h and at discharge Serum potassium <3.5 mEq/l occurred in 1% of the UF group and 12% of diuretics group (p=0.018)	small trial; usual care group not very aggressively treated	hemodynamically stable/congested HF pts that respond very well to diuretics and have better outcomes vs. HF population in general.
Case-series (Mayo clinic), Liang, 2006 <u>17174232</u> (162)	Present data on UF from a series of pts treated at the Mayo clinic who were generally sicker and had failed at least 1 IV treatment	Case- series	11	HF pts admitted to Mayo clinic who have failed at least 1 IV diuresis treatment	Contraindication to UF	Change in creatinine; fluid loss; complications from UF	N/A	5 pts had significant rise in creatinine, 5 required dialysis, overall 6-mo mortality 55%, bleeding and complications related to positional flow were common.	Small study; single institution; pts with much worse prognosis vs general HF population	In high risk populations, (mean GFR of 38 mL/min) UF may not be the most appropriate choice.
RAPID-CHF, Bart, 2005 <u>16325039</u> (163)	Pilot study which compared a single 8-h UF intervention to usual care in pts admitted with decompensated HF	RCT	40	Hospitalized with primary diagnosis of HF; at least 2+ edema of the lower extremities and at least either JVP >10, pulmonary edema or pleural effusion on CXR, pulmonary rales, pulmonary wedge or LVEDP >20, ascites, or pre-sacral edema	Severe stenotic valvular disease; ACS; SBP <90; hematocrit >40% 5. poor peripheral venous access; hemodynamic instability; use of iodinated radiocontrast within 72 h of consent or anticipated use; severe concomitant disease	24-h weight loss	Total volume removal at 24 and 48 h; global HF and dyspnea assessments; serum electrolytes; and length of hospital stay	No difference in 24-h weight loss (p=0.240), significantly more fluid removal with UF (4,650 mL in UF group vs. 2,838 mL in usual care group, (p=0.001) and improved dyspnea scores (p=0.039) and no change in creatinine. Trend toward greater weight loss at 24 h in the UF group	Small study, pilot	UF group had more fluid removed, with no significant change in creatinine, however no difference in 24 h weight loss.
EUPHORIA, Costanzo, 2005 <u>16325040</u> (164)	Compared UF to historical controls in order to determine if use of UF before any IV diuretics in pts with decompensated HF and modest renal dysfunction reestablishes euvolemia and permits hospital discharge in ≤ 3 d, without hypotension, a $\geq 25\%$ increase in SCr. or other AEs.	Observat ional study	20	Volume overload; modest degree of renal dysfunction or diuretic resistance (chronic daily PO furosemide ≥80 mg, or torsemide ≥ 40mg, or bumetamide ≥ 2mg and SCr ≥1.5 mg/dl), relatively high diuretic requirement at baseline; <12 h since hospitalization, given no vasoactive drugs and <1 dose IV diuretic	Hematocrit >40%;. end- stage renal disease requiring dialysis; Hypercoagulability; SBP <85 mm Hg; Requirement for IV inotropes; Participation in another research study or previously in this trial	Weight loss; hospital length of stay	Increase in creatinine >25%, hypotension; BNP levels	An average of 8,367 ± 4,232 mL were removed with 2.6 ± 1.2, 8 h UF courses. Of the 19 pts 12 (68%) were discharged in ≤3 d	Small observational study; Single- center series	Concluded that UF decreases length of stay and readmissions. compared the treatment period with the pre- treatment period, rather than with a randomized control cohort.

Agostoni, 1994 <u>8154506</u> (165)	Investigated the mechanisms involved in the regulation of salt and water metabolism in pt with HF. Extracorporeal UF was utilized as a nonpharmacologic method for withdrawal of body fluid.	RCT	16	Treated with a combination of digoxin, oral furosemide, and ACE inhibitor (captopril or enalapril) for chronic; sinus rhythm; NYHA II-III	Pts with acute MI (<1 y), angina pectoris, primary valvular disease, intermittent claudication, fibrotic or primary vascular lung diseases, sinus or atrioventricular node dysfunction, effort-induced severe ventricular arrhythmias or an artificial pacemaker	Scores of lung water; exercise test parameters; plasma renin, aldosterone and norepinephrine		3 mo after UF or IV diuretic, the hemodynamic variables examined at rest had returned to the control values in the diuretic group, but not the UF group. In the UF group, right atrial pressure, pulmonary artery pressure and wedge pressure were still as reduced as they had been 24 h after UF. (p<0.01, only figures displayed).	Small older study	After UF, improved functional capacity continued for 3 mo after the procedure
Pepi, 1993 <u>8038023</u> (166)	To investigate the pathophysiological (cardiac function and physical performance) significance of clinically silent interstitial lung water accumulation in pts with moderate HF; to use isolated UF as a means of extravascular fluid reabsorption	RCT	24	NYHA functional class II- III HF and clinically silent by radiologically evident increased lung water; sinus rhythm and EF <35%	Severe tricuspid or mitral regurgitation; pleural, pericardial or abdominal effusion	LVSF (from ultrasonography); Doppler evaluation of mitral, tricuspid, and aortic flow and echo- Doppler determination of cardiac output; radiological score of extravascular lung water; R/LV filling pressures; oxygen consumption at peak exercise and exercise tolerance time in cardiopulmonary tests.		UF decreased radiological score of extravascular lung water (from 15(1)- 9(1)) and of right (from 7.1 (2.3)-2.3 (1.7) mm Hg) and left (from 17.6 (8.8)- 9.5 (6.4) mm Hg) ventricular filling pressures; an increase in oxygen consumption at peak exercise (from 15.8 (3.3) to 17.6 (2) mL/min/kg) and of tolerance time (from 444 (138) to 508 (134) s); decrease in atrial and ventricular dimensions; no changes in the systolic function of the left ventricle; a reduction of the early to late filling ratio in both ventricles (mitral valve from 2 (2) to 1.1 (1.1)); (tricuspid valve from 1.3 (1.3) to 0.69 (0.18)) and an increase in the deceleration time of mitral and tricuspid flow, reflecting a redistribution of filling to late diastole. Variations in the ventricular filling pattern, lung water content, and functional performance persisted for 3mo in all cases. None of these changes was detected in the control group.	Small older study; single institution	Pathophysiological study involving UF and hemodynamic outcomes.
Agostoni, 1993 <u>8426008</u> (167)	The aim of this study was to evaluate whether UF is beneficial in pts with moderate congestive HF.	RCT	36	NYHA functional classes II and III; stable clinical condition; receiving drug treatment (stable over last 6 mo) optimized to prevent development of edema and maintain a stable body weight (+/- 1	Pts with acute MI (<1 y), angina pectoris, primary valvular disease, intermittent claudication, fibrotic or primary vascular lung diseases, sinus or atrioventricular node dysfunction, effort-induced	Functional performance was assessed with cardiopulmonary exercise tests	Plasma norepinephrine levels	Significant reductions in UF group right atrial pressure (from $8 \pm 1 - 3.4 \pm 0.7$ mm Hg, pulmonary wedge pressure (from $18 \pm 2.5 - 10 \pm 1.9$ mm Hg) and cardiac index (from $2.8 \pm 0.2 - 2.3 \pm 0.2$ L/min). During the follow-up period, lung function improved, extravascular lung water (X-ray score) decreased and	Small older study	Pathophysiological study involving UF and hemodynamic outcomes.

kg in last 6 mo); therapeutic digoxii		peak oxygen consumption (mL/min per kg) increased from 15.5 ± 1 (d -1) to
(if on digoxin)	pacemaker	17.6 \pm 0.9 (d 4), to 17.8 \pm 0.9 (d 30), to 18.9 \pm 1 (d 90) and to 19.1 \pm 1 (d 180).
		Oxygen consumption at anaerobic
		threshold (mL/min per kg) also
		increased from 11.6 ±0.8 (d -1) to 13
		±0.7 (d 4), to 13.7 ± 0.5 (d 30), to 15.5
		± 0.8 (d 90) and to 15.2 ± 0.8 (d 180).
		These changes were associated with
		increased ventilation, tidal volume and
		dead space/tidal volume ratio at peak
		exercise. Improvement in exercise
		performance was associated with a
		decrease in norepinephrine at rest, a
		downward shift of norepinephrine
		kinetics at submaximal exercise and an
		increase in norepinephrine during
		orthostatic tilt. None of these changes
		were recorded in group B.

ACS indicates acute coronary syndrome; ADHERE, Acute Decompensated Heart Failure National Registry; AE, adverse event; AUC, area under the curve; BNP, B-Type natriuretic peptide; BUN, blood urea nitrogen; CHD, chronic heart disease; CHF, congestive heart failure; CrCl, creatinine clearance; CV, cardiovascular; DAD-HF, Dopamine in Acute Decompensated Heart Failure; DBP, diastolic blood pressure; DIG, Digitalis Investigation Group; DM, diabetes mellitus; ED, emergency department; eGFR, glomerular filtration rate; EUPHORIA, Early Ultrafiltration Therapy in Patients with Decompensated Heart Failure and Observed Resistance to Intervention with Diuretic Agents; EVEREST, Efficacy of Vasopressin Antagonism in hEart failuRE: Outcome Study With Tolvaptan; HDD, high dose diuretics; HF, heart failure; Hgb, hemoglobin; HTN, hypertension; ICU, intensive care unit; IV, intravenous; KCCQ, Kanasa City Cardiomyopathy Questionnaire; LDD, low dose diuretics; LDFD, low-dose furosemide; LOS, length of stay; LVEF, left ventricular ejection fraction; MCS, mechanical cardiac support; N/A, not applicable; NPSD, nonpotassium-sparing diuretics; NT-pBNP, N-terminal pro-B-Type natriuretic peptide; PO, per oral; PRAISE, Prospective Randomized Amlodipine Survival Evaluation; PROTECT, Placebo-controlled Randomized study of the selective A(1) adenosine receptor antagonist rolofylline for patients hospitalized with acute heart failure and volume Overload to assess Treatment Effect on Congestion and renal function; PTCA, percutaneous transluminal coronary angioplasty; PSD, potassium-sparing diuretics; pts, patients; RAPID-HF, Relief for Acutely Fluid-Overloaded Patients With Decompensated Congestive Heart Failure; RCT, randomized control trial; SBP, systolic blood pressure; SCD, sudden cardiac death; SCr, serum creatinine; SOLVD, Studies of left ventricular dysfunction; Tx, treatment; UF, ultrafiltration; UNLOAD, Ultrafiltration Versus Intravenous Diuretics for Patients Hospitalized for Acute Decompensated Heart Failure; VAS, visual analog scale,

Data Supplement 18. ACE Inhibitors (Section 7.3.2.2)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient P	opulation	En	dpoints	Mortality	Trial Duration	Absolute Benefit	P Values & 95% CI:
			Pre-trial standard treatment.	N (Total) n (Experimental) n (Control)	Ischemic/ Non-Ischemic	Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint	1st Year Mortality	(Years)		

CONSENSUS 1987 <u>2883575 (</u> 168)	To Evaluate influence of enalapril on prognosis of NYHA class IV HF	RCT	Diuretics (spironolactone 53%, mean dose 80mg), digitalis (93%), other vasodilators, except ACEI (ie nitrates 46%)	253; 127;126	CAD 73%	Severe HF/symptoms at rest/NYHA class IV; Increased heart size >600 ml; BP: 120/75; HR: 80; AF 50%	APE; hemodynamicall y import aortic/MV stenosis; MI w/in prior 2 mo Unstable angina; planned cardiac surgery; right HF b/c of pulm disease; Cr>300 umol/L	Mortality	Change in NYHA- FC, LV size, Cr level	52% placebo group and 36% enalapril group (6 mo mortality: 26% in enalpril group and 44% in placebo group)	0.51 y	N/A	Crude mortality at end of 6 mo (primary endpoint), 26% in enalapril group and 44% in placebo group—40% reduction (p =0.002). Mortality was reduced by 31% at 1 y (p=0.001)
10 y FU of CONSENSUS 1999 <u>10099910</u> (169)	Report on the survival at the 10-y follow up of the pts randomized in CONSENSUS. (1st study to show prognostic improvement by an ACEI. Pts in NYHA class IV HF treated with enalapril or placebo. After study completion all pts were offered open- label enalapril therapy).	10-y open- label follow-up study (via completion of a questionnaire) on the survival status of pts in CONSENSUS -a RCT.	All pts were offered open- label enalapril therapy	315; 77; 58		253 randomized pts included in analysis of time from randomization to death; Survivors (135) of the double- blind period included in analysis of the time from end of double-blind period to death; Severe, NYHA IV		Mortality			10 y		5 pts, all in the enalapril group, were long-term survivors (p=0.004). Averaged over the trial (double-blind plus open- label extension) risk reduction was 30% (p=0.008), 95% CI: 11% - 46%. At end of double-blind study period, mortality considerably higher among pts not receiving open ACEI therapy

SOLVD 1991 2057034 (170)	Study the effect of enalapril on mortality and hospitalization in pts with chronic HF and $EF \leq 35\%$	RCT	Diuretics + Digoxin	2569; 1285; 1284	Ischemic heart disease 72%	LVEF <35%; Mild to severe (11% class I/<2% class IV); LVEF 25%; BP: 125/77; HR: 80; AF: 8-12%	Age >80 y; Unstable angina; MI w/in past mo; Cr>2.0 mg/dL	Mortality	Hospitalizations; Incidence of MI; Mortality by specific causes; Combined mortality and morbidity from both SOLVD+/SOLVD-	15.70%	3.45 y	Treating 1000 SOLVD+ pts with enalapril for ~3 y would save ~50 premature deaths and 350 hospitaliz ations.	Reduced mortality by 16%; (95% CI, 5-26%; p=0.0036)
SOLVD 1992 <u>1463530 (</u> 90)	Study effect of ACEIs on total mortality and mortality from CV causes, the development of HF, and hospitalization for HF in pts with EF <35%	RCT	No drug treatment for HF	4228; 2111; 2117	History of ischemic heart disease 85%	EF <35%; Asymptomatic; NYHA class I (67%) + II; EF: 28%; BP: 126/78; HR: 75; AF: 4%	As per SOLVD+	Mortality; Combined mortality and the incidence of HF and rate of hospitalizatio n for HF	Incidence of HF and rate of hospitalization for HF		3.12 y		Reduced mortality: p=0.30; 95% CI: -8-21%
SOLVD F/U 2003 <u>12788569 (</u> 91)	12-y FU of SOLVD to establish if the mortality reduction with enalapril among pts with HF was sustained, and whether a subsequent reduction in mortality would emerge among those with asymptomatic ventricular dysfunction.	12 y f/u of RCTs [SOLVD+ and SOLVD-]	N/A	6784; 3391; 3393	N/A	Participation in SOLVD+ and SOLVD- Asymptomatic to severe; NYHA I-IV	N/A	Mortality	N/A	N/A	N/A	Enalapril extended median survival by 9.4 mo in the combined trials (95% CI: 2.8–16.5, p=0.004).	In the prevention trial, 50.9% of the enalapril group had died c/w 56.4% of the placebo group (p=0.001). In the treatment trial, 79.8% of the enalapril group had died c/w 80.8% of the placebo group (p=0.01). Combined prevention and treatment trials: HR for death was 0.90 for the enalapril group c/w placebo group (95% CI: 0.84–0.95, p=0.0003).

1999 the efficacy 1598 to the low-does strategy and 110, or V, despite or on the sk of decause from all cause and safety of (p-128) and (p-1
--

SAVE, 1992 <u>1386652 (</u> 89)	To test the F hypothesis that the long-term administration of captopril to survivors of acute MI who had baseline LV dysfunction but did not have overt HF requiring vasodilator therapy would reduce mortality, lessen deterioration in cardiac performance, and improve clinical outcome.	RCT	Beta-blockers 36%; Digitalis 26%; Nitrates 51%	2231; 1115; 1116	Ischemic 100%	Alive 3 d after MI; LVEF <40%; >21 y of age, but <80; Killip class I — 60% (60% of the ps did not have even transient pulmonary congestion at baseline/the time of their acute MI; EF 31%; BP 113/70; HR 78;	Failure to undergo randomization within 16 d after the MI; Relative contraindication to the use of an ACEIs or the need for such an agent; SCr > 2.5 mg/dl	Mortality from all causes	Mortality from CV causes; Mortality combined with a decrease in the EF of at least 9 units in surviving pts; CV morbidity (development of severe CHF or the recurrence of MI); Combination of CV mortality and morbidity; 2 endpoints of severe HF (treatment failure): 1st, development of overt HF necessitating treatment with ACEI and 2nd, hospitalization to treat CHD.	3.5 y	Mortality from all c was significantly re in the captopril gro (228 deaths, or 20 c/w the placebo gr (275 deaths, or 25 RR:19% (95% CI, 32%; p= 0.019). RR:21% (95% CI, 35%; p = 0.014) for death from CV cau 37% (95% CI, 20-5 p<0.001) for the development of se HF, 22% (95% CI, 37%; p= 0.019) for requiring hospitaliz and 25% (95% CI, 40%; p= 0.015) for recurrent MI.	educed up %) as oup %); the 3- 5 - r sess, 50%; vere 4- c CHF cation, 5-
------------------------------------	---	-----	---	------------------	------------------	---	---	------------------------------	---	-------	--	--

AIRE 1993 <u>8104270 (</u> 172)	Investigated the effect of therapy with ACEI ramipril, on survival in pts who had shown clinical evidence of HF at any time after an acute MI. Also, to compare the incidences of progression to severe or resistant HF, nonfatal re- infarction and stroke between the 2 groups.	RCT		2006; 1014; 992		Aged ≥18 y, with a definite acute MI 3-10 d before randomization; Clinical evidence of HF at any time since acute MI	Use of an ACEI considered to be mandatory	Mortality from all causes			1.3 y		Mortality from all causes was significantly lower for pts on ramipril compared to pts on placebo. RR: 27%; 95% CI: 11-40%; p = 0.002. Prespecified secondary outcomes: risk reduction of 19% for the 1st validated outcome— namely, death, severe/resistant HF, MI, or stroke (95% CI: 5% - 31%; p=0.008).
TRACE 1995 7477219 (173)	To determine whether pts who LV dysfunction soon after MI benefit from long-term oral ACE inhibition.	RCT	Beta blocker 16%; Calcium antagonist 28%; Diuretic 66%; Nitrates 53%; Digoxin 28%.	1749; 876; 873	Ischemic 100%	Consecutive pts >18 y hospitalized with MI; Criteria for MI: chest pain or electrocardiogra phic changes, accompanied by >2X increase in one or more cardiac enzymes; LV dysfunction (EF <35%); NYHA class 1 - 41%; BP 121/76; HR 81	Contraindication to ACEI or a definite need for them; Severe, uncontrolled DM; Hyponatremia (<125 mmol/L); Elevated SCr level (2.3 mg/dL)	Death from any cause	Death from a CV cause, sudden death; Progression to severe HF (hospital admission for HF, death due to progressive HF, or HF necessitating open-label ACEI); Recurrent infarction (fatal or nonfatal); Change in the wall-motion index (EF)	The mortality from all causes at 1 y was 24%.		24 lives were saved after one mo of treating 1000 pts	During the study period, 304 pts in the trandolapril group died (34.7%), as did 369 in the placebo group (42.3%). RR: 0.78 (95% CI, 0.67 - 0.91; p=0.001). In every subgroup, treatment with trandolapril was associated with a reduction in risk.

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; AIRE, Acute Infarction Ramipril Efficacy; APE, acute pulmonary embolism; ATLAS, Assessment of Treatment with Lisinopril and Survival; BP, blood pressure; CAD, coronary artery disease; CHD, chronic heart disease; CHF, congestive heart failure; CONSENSUS Cooperative North Scandinavian Enalapril Survival Study; Cr, creatinine; CV, cardiovascular; C/W, compared with; DM, diabetes mellitus; ED, emergency department; FU, follow-up; HF, heart

failure; HR, heart rate; LV, left ventricular; MI, myocardial infarction; MV, mitral valve; N/A, not applicable; NYHA, New York Heart Association; pts, patients; SAVE, survival and ventricular enlargement trial; SBP, systolic blood pressure; SOLVD, Studies Of Left Ventricular Dysfunction; RCT, randomized control trial; SCr, serum creatinine; and TRACE, Trandolapril Cardiac Evaluation.

Data Supplement 19. ARBs (Section 7.3.2.3)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy Pre-trial	Study Size	Etiology	Patient Po	pulation	Severity	En	dpoints	Mortality	Trial Duration (Y)	Statistical Results
			standard treatment.	n (Experimental) n (Control)	Ischemic/ Non-Ischemic	Inclusion Criteria	Exclusion Criteria		Primary Endpoint	Secondary Endpoint	1st Y Mortality		
CHARM Alternative; Granger et al; (2003) <u>13678870</u> (174)	Discover whether ARB could improve outcome in pts not taking an ACEI (intolerant)	RCT	Diuretics, Beta-blockers (55%), spironolacton e 24%, Digoxin 45- 46%	2028; 1013; 1015	Ischemic 67-70%	Symptomatic HF, EF <40%, no ACEI (b/c of intolerance)		NYHA II-IV; mild to severe (<4% class IV); EF: 30%; BP: 130/70; HR: 74- 75; AF: 25-26%	Composite of CV death or hospital admission for CHF	CV death, hospital admission for CHF or non-fatal MI; CV death, CHF admission, non-fatal MI, non- fatal stroke; CV death, CHF admission, non- fatal MI, non-fatal stroke, coronary revascularization; Death (any cause); New DM		2.8 y	Absolute reduction of 7 major events per 100 pts threated - NNT 14 pts to prevent 1 CV death or hospitalization. HR: 0.77 (95% CI: 0.67-0.89); p=0.0004
CHARM- ADDED; McMurray et al; (2003) <u>13678869</u> (175)	To investigate if ARB + ACEI in pts with chronic HF improve clincal outcomes	RCT	Beta blocker- 55%; spironolacton e 17%; Digoxin 58- 59%	2548; 1276; 1272	Ischemic 62-63%	Symptomatic HF; EF <40%; Treatment with ACEI; Age >18 y		NYHA class II-IV; mild to severe (<3% class IV) ; EF 28%; BP 125/75; HR 74; AF 27%	Composite of CV death or hospital admission for CHF	CV death, hospital admission for CHF or non-fatal MI; CV death, CHF admission, nonfatal MI, non- fatal stroke; CV death, CHF admission, non- fatal MI, non-fatal stroke, coronary revascularization; Death (any cause); New DM		3.4 y	Absolute reduction of 4.4 pts with events per 100 pts treated- NNT of 23 to prevent 1 first event of CV death or CHF hospitalization. RR: 0.85 (95% CI: 0.75-0.96); p=0.011

VALIANT; Pfeffer et al; (2003) <u>14610160</u> (176)	Compare the effect of an ARB, ACEI and the combination of the 2on mortality	Random ized double blind multicen ter trial	Beta- blockers; ASA	14,703 Valsartan:4909 Captopril-: 4909 VAL + CAP: 4885	Ischemic 100% (MI inclusion criteria)	Age >18 y; Acute MI complicated by HF; LV systolic dysfunct (EF <35%), (<40% on radionuclide ventriculograp hy); SBP > 100 mmHg; Cr < 2.5 mg/dL	Prior intolerance or contra- indication to ACEI/ ARB	NYHA I-IV; asymptomatic- severe, EF 35%; BP: 123/72; HR: 76	Death from any cause		12.5% VAL 12.3% VALCAP 13.2% CAP	2.1 y	VAL and CAP: 1.0 (97.5% CI- - 0.90-1.11); p= 0.98 ; VAL+CAP and CAP: 0.98 (97.5% CI 0.89-1.09); p= 0.73
Val-HeFT; Cohn et al; (2001) <u>11759645</u> (177)	Evaluate long term effects of adding ARB to standard therapy for HF	RCT	Diuretics; Digoxin 67%; Beta blocker 35%; ACEI 93%	5010; 2511; 2499	Ischemic 57%	Age>18 y; NYHA II, II, IV; At least 2 wk of background meds including ACEIs; EF <40% and LVID >2.9 cm/BSA		NYHA II-III, IV (only ~2% class IV); Mild to severe; EF 27%; BP 123/76; AF 12%	Mortality; Combined end point of mortality and morbidity	Change in EF; • NYHA class, QoL scores; Signs and symptoms of HF		1.92 y	Mortality similar for the 2 treatment groups. For the combined endpoint: RR: 0.87; 97.5% CI, 0.77- 0.97; p=0.009
HEAAL study; Lancet 2009; 374: 1840-48. <u>19922995</u> (178)	Compared the effects of high- dose vs low-dose losartan on clinical outcomes in pts with HF.	RCT	Diuretic drugs (77%), beta blockers (72%), and ARBs (38%).	3846 losartan 150 mg (n=1927) or 50 mg daily (n=1919).	IHD 64%	>18 y; NYHA class II– IV; LVEF <40%, with stable CV medical therapy for at least 2 wk; Intolerance to ACEI; Investigators encouraged to start beta blocker and titrate to a maximum, whenever possible	Pregnancy or lactation; known intolerance to ARBs; Systolic arterial blood pressure <90 mm Hg; Significant stenotic valvular heart disease; Active myocarditis; active pericarditis; Planned	NYHA II-IV (70% II); EF: 33%; BP: 124/77; HR: 71; AF; 28%	Death or admission for HF	Composite endpoint of death or CV admission. Additional prespecified outcomes included: death, death or all-cause admission, CV death, all-cause admission, CV admission, CV admission, CV admission for HF, and changes in the severity of heart disease		4.7 y median f/u	Treating pts with 150 mg dose instead of 50 mg dose would result in 1 additional pt w/out the primary event at 4 y for every 31 pts treated. Composite: 828 (43%) pts in 150 mg group vs. 889 (46%) in 50 mg group vs. 889 (46%) in 50 mg group died or admitted for HF (HR: 0.90; 95% CI: 0.82-0.99; p=0.027) • Components: 635 pts in 150 mg group vs. 665 in 50 mg group vs. 665 in 50 mg group died (HR: 0.94, 95% CI: 0.84-1.04; p=0.24), and 450 vs. 503 pts admitted for HF (0.87, 0.76–0.98; p=0.025)

CHARM- Overall <u>13678868</u> (179)	Aimed to find out whether the use of an ARB could reduce mortality and morbidity.	RCT- parallel, randomi zed, double- blind,	Diuretics 83% Beta blockers 55% ACEI 43% Spironolacton e 17% Digoxin 43%	7601 pts (7599 with data) 3803 3796	>18 y; NYHA class II– IV for at least 4 wk; 3 distinct populations: pts with LVEF <40% who were not receiving ACEIs (previous intolerance) or who were currently receiving ACE,	heart transplantati on w/in 6 mo; coronary angioplasty, CABG, acute MI, UA pectoris, cerebrovasc ular accident, or TIA within the previous 12 wk; Suspected significant renal artery stenosis SCr > 265 µmol/L, serum potassium >5.5 mmol/L Bilateral renal artery stenosis; symptomatic hypotension Women of childbearing potential not using adequate contraceptio	NYHA II-IV NYHA II-IV Only 3% class IV	The primary outcome of the overall program: all- cause mortality; For all the component trials: CV death or hospital admission for CHF.	The annual CV death rate among the placebo group who had reduced LVEF was around 9% and was only 4% in the placebo group of CHARM- Preserved.	3.1 y	886 (23%) pts in candesartan and 945 (25%) in placebo group died (unadjusted HR: 0.91; 95% Cl: 0.83–1.00; p=0.055; covariate aHR: 0.90 95% CU: 0.82–0.99; p=0.032) • Fewer CV deaths (691 [18%] vs 769 [20%], unadjusted HR: 0.88; 95% Cl: 0.79–0.97; p=0.012; covariate aHR: 0.87; 95% Cl: 0.78–0.96; p=0.006) • Hospital admissions for CHF (757 [20%] vs 918 [24%], p<0.0001)
					were not receiving ACEIs (previous intolerance) or who were currently	symptomatic hypotension Women of childbearing potential not using adequate		trials: CV death or hospital admission for			0.88; 95% Ci: 0.79–0.97; p=0.012; covariate aHR: 0.87; 95% Ci: 0.78–0.96; p=0.006) • Hospital admissions for CHF (757 [20%] vs 918 [24%],

Γ				the previous			
				4 wk; Use of an ARB in			
				an ARB in			
				the previous			
				2 wk			

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blockers; ASA, aspirin; BP, blood pressure; BSA, body surface area; CABG, coronary artery bypass graft; CHARM, Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity; CHD, chronic heart disease; CHF, congestive heart failure; Cr, creatinine; CV, cardiovascular; DM, diabetes mellitus; EF, ejection fraction; FU, follow-up; HEAAL study, effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure; HF, heart failure; HR, heart rate; IHD, ischemic heart disease; LV, left ventricular; LVD, left ventricular dilatation; MI, myocardial infarction; MV, mitral valve; N/A, not applicable; NNT, number needed to treat; NYHA, New York Heart Association; QoL, quality of life; pts, patients; SBP, systolic blood pressure; RCT, randomized control trial; SCr, serum creatinine; TIA, transient ischemic attack; UA, unstable angina; Val-HeFT, Valsartan Heart Failure Trial; and VALIANT, Valsartan in Acute Myocardial Infarction.

Data Supplement 20. Beta Blockers (Section 7.3.2.4)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patie	nt Population	Severity	End	points	Morta	lity	Trial Duration	Statistical Results
				N (Total) n (Experimental) n (Control)		Inclusion Criteria	Exclusion Criteria		Primary Endpoint	Secondary Endpoint	Annualized Mortality	1st Y Mortality		
CIBIS II CIBIS Il investigators and committee members (1999) <u>10023943</u> (180)	Investigate the efficacy of bisoprolol in decreasing all-cause mortality in chronic HF	RCT- multicent er double- blind randiomi sed placebo controlle d trial (Europe)	Diuretics + ACEI; [amiodarone allowed14- I6%]	2647; 1327; 1320	Documented Ischemic 50%	NYHA class III or IV EF: <35% 18-80 y old	Uncontrolled HTN; MI/UA w/in previous 3 mo; PTCA/CABG w/in previous 6 mo; AV-block >1st degree w/o PPM; Heart rate < 60bpm; resting SBP <100mmHg; renal failure; Reversible obstruct lung disease; Use of beta blocker	Moderate to severe. Mean BP: 130/80; Mean HR: 80; Mean EF: 28%; Mean LVEDD: 6.7 cm; AF: 20%	All-cause mortality	All-cause hospital admissions All CV deaths Combined endpoints Permanent treatment withdrawal	13.2% Placebo group 8.8% Treatm't group	N/A	1.3 y	HR: 0.66 (95% Cl: 0.54-0.81); p<0.0001
MERIT-HF; MERIT study Group; (1999) <u>10376614</u> (181)	Investigate whether Metoprolol CR/XL lowered mortality in pts with decreased EF and	RCT multicent er double- blind randiomi sed placebo controlle	Diuretics + ACEI [Amiodarone NOT allowed]	3991; 1991; 2001	Ischemic 65%	NYHA II-IV; 40-80 y old; LVEF <40% (36-40 if 6-min walk <450m); HR >68 bpm	MI/UA w/in 28 d; Contra-indication or current use of beta blocker; PTCA/CABG w/in 4 mo Planned transplant or ICD; Heart block > 1 st degree w/o PPM;	Mild to severe. Mean BP: 130/78; Mean HR: 78; Mean EF 28%; AF 16- 17%	All-cause mortality All-cause mortality in combination with all-cause admission to hospital	N/A	11.0% Placebo group 7.2% Treatm't group	N/A	1 y	Treatment of 27 pt for 1 y can prevent 1 death. 0.66 (95% CI: 0.53-0.81); p=0.00009

	symptoms of HF	d trial (Europe + USA)					SBP<100mmHg							
COPERNICUS ; Packer et al; (2002) <u>12390947</u> (182)	Investigate whether Carvadiolo is beneficial in severe HF	RCT double blind	Diuretics (PO or IV) + ACEI (or ARB); [Amiodarone allowed 17- 18%]	2289; 1156; 1133	Ischemic 67%	Euvolumic NYHA class IV; LVEF <25%; No positive inotropes or vasodilators w/in 4 d	Pt requiring hospitalized intensive care; Use of positive inotropes or IV; vasodilators w/in 4-d; Coronary revascularization/MI/C VA/sign VT or VF w/in 2 mo; SBP < 85 mmHg, Heart rate <68, Cr >2.8 mg/dL	Severe Mean BP: 123/76; Mean HR: 83; Mean EF 20%;	All-cause mortality	Combined risk of death or hospitalization- any reason; Combined risk of death or hospitalization- -CV reason; Combined risk of death or hospitalization- -HF reason; Pt global assessment	19.7% placebo [24.0% in pts with recent or recurrent cardiac decompensa tions]	18.5% in placebo group 11.4% in Carvedil ol group	10.4 mo	Treating 1000 pt for 1 y led to savings of 70 premature deaths p=0.0014
SENIORS; Flather et al; (2005) <u>15642700</u> (183)	Assess effects of the beta blocker Nebivolol in pts_70 y regardless of EF.	RCT	Diuretics + ACEI (+aldosterone antagonist in 29%)	2128; 1067; 1061	Prior h/o CAD in 69%	Age >70 Chronic HF with one of the following: hospitalization with CHF w/in a year or EF <35% w/in the past 6 months	New HF therapy w/in 6 wk or change in drug therapy w/in 2 wk Contra-indication to beta blockers, current use of beta blockers Significant renal dysfunction CVA w/in 3 mo.	Mild to severe Mean BP: 139/81; Mean HR: 79; Mean EF 36% (1/3 with EF >35%);	Composite of all-cause mortality or CV hospital admission	All-cause mortality Composite of all-cause mortality or all- cause hospital admissions All cause hospital admissions CV hospital admissions CV mortality Composite of CV mortality or CV hospital admissions NYHA class assessment; 6 MWT	N/A	N/A	1.75 у	Absolute risk reduction 4.2%; 24 pts would need to be treated for 21 mo to avoid one event RR: 0.86; 95% CI: 0.74-0.99; p=0.039

A Trial of the Beta-Blocker Bucindolol in Pt with Advanced Chronic HF The Beta- Blocker Evaluation of Survival Trial Investigators <u>11386264</u> (184)	Designed to determine whether bucindolol hydrochlorid e, a nonselective beta- adrenergic blocker and mild vasodilator, would reduce the rate of death from any cause among pt with advanced HF and to assess its	RCT	ACEIs (if tolerated) [91% ACE; 7% ARB], for at least 1 mo. Before the publication of the results of the DIG trial, 12 digoxin therapies were required, but thereafter its use became discretionary [DIG 94%].	2708; 1354; 1354	Ischemic 59%	NYHA class III or IV HF LVEF <35% >18 y	Reversible cause of HF present Candidates for heart transplantation Cardiac revascularization procedure within the previous 60 d UA Heart rate <50 beats per minute, SBP <80mmHg Decompensated HF.	NYHA III or IV (92% class III) EF 23%; HR 82; BP 117/71; AF 12%	Death from any cause	Death from CV causes (death due to pump failure or an ischemic event or sudden death) Hospitalization for any reason Hospitalization because of HF Composite of death or heart tansplantation LVEF at 3 and 12 mo MI; QoL; and any change in the need for concomitant therapy	For pt in NYHA functional class III, the annual mortality rate was 16% in the placebo group; For pt with NYHA class IV, the annual mortality rate in the placebo group was 28% Overall: annual mortality of 17% in placebo	N/A	~2 y	449 pt in placebo group (33%) died, 411 in the bucindolol group (30%; HR: 0.90; 95% CI, 0.78- 1.02; unadjusted p=0.10; adjusted p=0.13)
<u>11386264</u>	mild		therapies				per minute, SBP			because of HF	class IV, the			
(184)														
							Decempendated in .							
	rate of death										placebo			
	from any										group was			
			[DIG 94%].											
	-													
										therapy				
	effect in										group c/w 15% in the			
	various													
	subgroups defined by										bucindolol			
	ethnic										group.			
	background													
	and													
	demographic													
	criteria —													
	specifically													
	women and													
	members of													
	minority													
	groups.													

COMET; Poole-Wilson et al; (2003) <u>12853193</u> (185)	To compare the effects of carvedilol and metoprolol on clinical outcome in pts with HF	RCT	Diuretics, ACEIs	3029; 1511 carvedilol; 1518 metoprolol tartrate	N/A	NYHA class II- IV EF <35% Previous CV admission	N/A	Mild to severe	All-cause mortality Composite endpoint of all-cause mortality, or all-cause admission	N/A	N/A	N/A	4.8 y	All-cause mortality 34% carvedilol and 40% metoprolol (HR: 0.83; 95% CI 0.74-0.93; p=0.0017)
(CIBIS) III; 2005 <u>16143696</u> (186)	Sufficient data do not currently exist to establish the optimum order of initiating chronic HF therapy (ACEI vs. beta blocker). This was the objective of the CIBIS III trial it compared the effect on mortality and hospitalizatio n of initial monotherap y with either bisoprolol or enalapril for 6 mo, followed by their combination for 6 to 24 mo.	Multicent er, prospecti ve, randomiz ed, open- label, blinded end point evaluatio n (PROBE) trial,24 with 2 parallel groups.	Diuretics 84%; Digoxin 32%	1010 Bisoprolol 505; Enalapril 505	CAD 62%	>65 y, NYHA class II or III, and LVEF <35% (By echo within the 3 mo) Clinically stable HF (without clinically relevant fluid retention or diuretic adjustment within 7 d)	Treatment with an ACEI, an ARB, or a beta blocker for >7 d during the 3 mo before randomization Heart rate at rest <60 beats/min without a functioning pacemaker Supine SBP <100 mm Hg at rest SCr≥220 µmol/L AV block greater than first degree without a functioning pacemaker Obstructive lung disease contraindicating bisoprolol treatment	NYHA II or III; mild to moderate CHF LVEF 29%; Heart rate 79; SBP 134	The primary endpoint was time-to-the- first-event of combined all- cause mortality or all-cause hospitalization	Combined end point at the end of the monotherapy phase and the individual components of the primary end point, at study end and at the end of the monotherapy phase. CV death CV hospitalization	N/A	N/A	Mean of 1.22±0.4 2 y (maximu m of 2.10 y).	In the ITT sample, 178 pt (35.2%) with a primary end point in the bisoprolol-first group, and 186 (36.8%) in the enalapril-first group (absolute difference -1.6%; 95% Cl -7.6 to 4.4%; HR: 0.94; 95% Cl 0.77 to 1.16; noninferiority for bisoprolol-first versus enalapril- first treatment, p=0.019)

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blocker; AV, atrioventricular; BP, blood pressure; CABG, coronary artery bypass graft; CHF, congestive heart failure; CIBIS II, Cardiac Insufficiency Bisoprolol Study II; COMET, Carvedilol Or Metoprolol European Trial; COPERNICUS, carvedilol prospective randomized cumulative survival; Cr, creatinine; CR/XL, controlled release/extended release; CV, cardiovascular; CVA, cerebrovascular accident; c/w, compared with; DIG, Digitalis Investigation Group; EF, ejection fraction; HF, heart failure; h/o, history of; HR, hazard ratio; ICD, ICD, implantable cardioverter defibrillator; ITT, intent to treat; MERIT-HF, Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure;

MI, myocardial infarction; MWT, minute walk test; NYHA, New York Heart Association; PPM, permanent pacemaker; PTCA, percutaneous transluminal coronary angioplasty; Pts, patients; QoL, quality of life; RCT, randomized control trial; RR, relative risk; SBP, systolic blood pressure; SCr, serum creatinine; UA, unstable angina; USA, United States of America; VF, ventricular fibrillation; VT, ventricular tachycardia; and w/o, without.

Data Supplement 21. Anticoagulation (Section 7.3.2.8.1)

Study Name,				Study Size (HF					
Author, Year	Aim of Study	Study Type	Study Size	Subpopulation)	Patient	Population	End	dpoints	Statistical Analysis (Results)
					Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint	
WARCEF Pullicino 2006, <u>16500579;</u> Homma 2012, <u>22551105</u> (187)	Compare efficacy of warfarin (INR 2.75) vs aspirin (325 mg/d) in HF pt in sinus rhythm	RCT, double blind/double dummy, multicenter, parallel group	N=2305, mean f/u 3.5 y; (69% power to detect ~18% reduction primary endpoint)	N/A	EF≤35%,NYHA I- IV, sinus rhytm, taking ACEI/ARB or H/N, planned treatment with beta blocker	Contraindication to or absolute indication for 1 treatment; MI/PCI/cardiac surgery <3 mo; decompensated HF, life expectancy otherwise <5 y, HF admission or CEA or PPM insertion <1 mo	Efficacy: time to first of (death+ischemic stroke+intracerebral hemorrhage); Safety: major hemorrhage	Efficacy: primary endpoint+MI+HF hospitalization; components of primary composite; Safety: intracerebral+intracranial hemorrhage	Primary Efficacy: 7.47 events (warfarin) vs. 7.93 events (aspirin) /100 person-y. Secondary: ischemic stroke – warfarin, HR: 0.52; Safety major hemorrhage: Warafin 1.78 vs aspirin 0.87/100 person- y. Primary Endpoint: p=0.40: 95% CI: 0.79 - 1.10; ischemic stroke p=0.0005, 95% CI: 0.33 - 0.82; major hemorrhage p<0.001
HELAS Cokkinos 2006 <u>16737850</u> (188)	Determine if warfarin(INR 2.0- 3.0) or aspirin (325 mg/d) reduces thromboemboli in HF	RCT, multicenter, double-blind, placebo-controlled; (converted to pilot study due to inadequate enrollment)	N=194, mean f/u 22 mo; lschemic (aspirin vs warfarin), N=114; DCM (warfarin vs. placebo), N=80 (stopped at 4% target due to poor recruitment)	N/A	NYHA II-IV; EF <35%; Prespecified subgroups: Ischemic vs DCM	MI <2 mo; "reversible ischemia", mitral disease, HoCM, AF, LV thrombus, pregnancy, uncontr HTN, contra-ind to either study drug, otherwise <2 y expected survival	Efficacy: composite [nonfatal stroke + arterial TEE or PE + MI + rehospitalization + worsened HF + all- cause mortality]; Safety: ICH + "bleeding" on treatment	Need for coronary revascularization; readmission for ischemia	Primary Efficacy (events/100 person-y): Isch/aspirin (14.9), Isch/warfarin (15.7); DCM/warfarin (6); DCM/placebo (10); Safety: Isch/ warfarin (4), DCM/ warfarin (3), others (0). 2.2 events/100 person-y (5 stroke, 2 MI, no arterial TEE or PE).
WASH Cleland 2004 <u>15215806</u> (189)	Pilot Study: feasibility of study comparing warfarin (INR 2.5) to aspirin (300 mg/d) to placebo	Prospective multicenter placebo-controlled RCT, 3-arm, open- label, blinded endpoint	N=279 pts, mean f/u 27 mo	N/A	Required diuretics; LVEDD >55 mm or >30 mm/m ² or EF ≤35%; Prespecified subgroups: ischemic vs. DCM	"Definite" indication for warfarin or aspirin, MI < 4 wk, inpt status, contr-ind to either drug	Time to first event (on treatment or within 10 d of stopping treatment): composite [death + nonfatal MI + nonfatal stroke]	Prespecified: death or CV hospitalization; death or all- cause hospitalization; total hospitalizations; death or CV hospitalization or need for increased diuretic dose; worsening HF; MI; stroke; major hemorrhage.	Both ITT an AT: "no difference" PRIMARY ITT: Placebo: 26% (HR: 0.96; 95% CI: 0.60-1.54); Aspirin: 32% (HR: 1.16; 95% CI: 0.74-1.85); Warfarin: 26% (HR: 0.88; 95% CI 0.54-1.43), p=0.22; AT: Placebo: 20% (HR: 1.08 95% CI: 0.65-1.89); Aspirin: 22% (HR: 1.02 95% CI: 0.59-1.75); Warfarin: 18% (HR: 0.89

									95% CI: 0.50-1.16); Secondar ITT: all- cause hospitalizations (Placebo 48% vs. Aspirin 64% vs. Warfarin 47%); Major hemorrhage "no difference"; minor hemorrhage (Placebo 5% vs. Aspirin 13% vs. Warfarin 17%), p=0.033
WATCH Massie 2009 <u>19289640</u> (190)	Hypotheses: warfarin superior to aspirin and clopidogrel superior to aspirin for HF pt with reduced LVEF in sinus rhythm	Prospective, multicenter RCT, open label (warfarin) or double blind APT group comparing aspirin (162 mg) vs. clopidogrel (75 mg no load) vs warfarin (target INR 2.5)	N=1587; treatment for 1 y; mean f/u 1.9 y (stopped early due to poor recruitment)	N/A	NYHA II-IV, EF ≤35%; sinus rhythm on entry; on diuretics and ACE-I /ARB or H/N	Reversible HF; contraindicated to any study drug; imminent procedure or surgery; other survival-limiting disease	Efficacy: time to first event of composite [death + nonfatal MI + nonfatal stroke]; Safety: major bleeding	Death; nonfatal MI; nonfatal stroke; hospitalization for HF	Efficacy ITT: Primary - No difference warfarin vs. aspirin vs clopidogrel; Secondary - A group with more total and HF hospital admissions; Safety ITT: warfarin=aspirin, both with more major bleeding than clopidogrel Efficacy PRIMARY: ITT: warfarin vs. aspirin: HR: 0.98; 95% CI: 0.86-1.12; p=0.77. clopidogrel vs. aspirin: HR: 1.08 95% CI: 0.83-1.40; p=0.57. warfarin vs. clopidogrel: HR: 0.89; 95% CI: 0.68-1.16; p=0.39. AT: warfarin superior to aspirin (p=0.0095), warfarin superior to aspirin (p=0.0095), warfarin superior to clopidogrel (p=0.0031). SECONDARY endpoints: HF hospitalizations aspirin (22.2%) vs. warfarin (16.5%), p=0.019; Total HF admissions aspirin (218) vs. warfarin (155), p <0.001. Safety PRIMARY: major bleeding warfarin (5.2%) vs. clopidogrel (2.1%), p=0.007; warfarin vs. aspirin (p=NS). POST HOC Ischemic group (N=1163): Strokes warfarin (0) vs. clopidogrel (2.7%), p=0.0009; Nonischemic group (N=424) Major bleed clopidogrel (0.7%) vs. warfarin (6.3%), p=0.0093. AT analysis (<u>not</u> prespecified): warfarin superior to clopidogrel (p=0.0031).

EPICAL Echemann 2002 <u>12413509</u> (191)	Compare warfarin vs. aspirin vs. both on survival in CHF	Prospective observational population-based, nonrandomized, consecutive hospital survivors of hospitalization, aspirin vs. warfarin at hospital discharge	N=417 with complete data, mean f/u= 5 y; aspirin (30.9%) vs. OAT (28.3%) vs. both (2.4%)	N/A	≥ 1 hospitalization for HF, NYHA II- IV, EF ≤30% or CTR ≥ 0.60, plus hypotension or systemic or pulmonary edema	Failure to meet inclusion criteria (systematic enrollment)	Survival 1 y and 5 y from index hospitalization; stratified by LVEF	None	Both warfarin (RR=0.60) and aspirin (RR=0.70) associated with improved survival Univariate survival: AC (1 y 77.7%; 95% CI: 71.7-82.4), 3 y 55.1%; 95% CI: 48.7- 61.5), 5 y 40.4% [95% CI: 34.1-46.8] vs. no AC (1 y 71.5% [95% CI: 34.1-46.8] vs. no AC (1 y 71.5% [95% CI: 64.9-78.1], 3 y 47.0% [95% CI: 39.6-54.3], 5 y 31.0% [95% CI 24.0-38.0; p=0.01] for AC vs no AC; Multivariate: OAT RR:0.60 [95% CI 0.4-0.8], aspirin RR: 0.7 [95% CI 0.5-0.9]
Wojnicz 2006 <u>16996844</u> (192)	Pilot Study: LMWH effects on clinical endpoints in chronic HF secondary to DCM	Prospective, randomized, active treatment control, open label comparing enoxaparin 1.5 mg/kg BID x 14 d, then 1 daily x 3 mos	N=102 (52 treatment, 50 control) enrolled, data on N=85 for analysis; f/u=1 y	N/A	Stable NYHA II-IV, EF ≤40%; cath to exclude CAD, Biopsy	Contraindicated to any heparin, T1DM, valvular HD, recent heparin exposure, CAD	Composite [mortality + urgent heart transplant + hospital admission for worsening HF] at 6 and 12 mo	Total survival, BNP, LVEF, echo chamber parameters, NYHA class change, VO ₂ max, QoL	Primary: no difference Primary: enoxaparin 4 vs. control 8, p=NS; mortality: p=NS; Secondary: BNP reduction enoxaparin (1125-489) p<0.001 vs. no change in control; LVEF improvement: enoxaparin increase 6.5%, p=0.023; 95% CI: 1.01-8.17.
RE-LY Connolly 2009 <u>19717844</u> (193)	Compare dabigatran vs. warfarin effects on stroke/arterial emboli in pts with AF	Noninferiority, multicenter, prospective RCT, blinded dab (110 or 150 mg BID) or unblinded warfarin (INR 2.0-3.0)	Total N=18,113; median f/u=2.0 y	HF n=5793 (32%): HF on dab 110 mg (n=1937/6015); HF on dab 150 (n=1934/6076); HF on warfarin (n=1922/6022).	AF + ≥1 additional risk factor for stroke (median CHADS2 score 2.1). HF as qualifying criteria req'd LVEF <40% or NYHA Class ≥ II	Excessive bleeding risk, severe valve disease, stroke <14 d/severe stroke <60 mo, creat clear <30 mL/min	Efficacy: composite [stroke or systemic embolism]; Safety: Major hemorrhage (2 y)	Stroke, systemic embolism, death, MI, PE, TIA, hospitalization	ITT, noninferiority with Cox prop hazards. Subsequent analyses for superiority Symptomatic HF: multivariate HR for dab 150 vs warfarin, p=0.33; 150 mg dab vs warfarin: stroke 0.64; 95% CI: 0.51-0.81; p<0.001 (p<0.05 for all stroke subgroups). MI: RR: 1.38; 95% CI1.00-1.91; p=0.048
ACTIVE-W 2006 <u>16765759</u> (194)	Combination clopidogrel + aspirin vs warfarin in reducing vascular events in AF	Prospective open label noninferiority RCT of [clopidogrel 75 mg + aspirin 75- 100 mg] vs warfarin (INR 2.0-3.0)	Total N=6706	HF N=2031 (30%)	AF, LVEF <45%	Other need for warfarin, excessive bleeding risk, prev ICH, platelets <50 K, mitral stenosis	Efficacy: First event of [stroke or arterial TEE or MI or vascular death]; Safety: Major hemorrhage	Efficacy: components of primary; Safety: Minor hemorrhage	KM log-rank (time to event) Total Study: Primary Efficacy: clopidogrel +aspirin: 5.60 events/y vs. warfarin 3.93 events/y; RR: 1.44; 95% Cl 1.18-1.76; p=0.0003; stroke RR: 1.72; 95% Cl: 1.24- 2.37; p=0.001
ARISTOTLE Granger 2011 <u>21870978</u> (195)	Compare apixaban to warfarin in preventing stroke in pt with AF	Prospective double-blind, double-dummy noninferiority + superiority RCT of AP 5 mg BID to warfarin INR 2-3	Total N=18,201 , median F/u=1.8 y	HF n=6451 (35.5%), apixaban=3235, warfarin=3216	≥2 episodes AF or flutter, CHADS2 ≥2 (HF criteria: symptomatic HF within 3 mo or LVEF ≤ 40%	Reversible AF, mitral stenosis, orther indication for anticoagulation, recent stroke, need for antiplatelet therapy (beyond low- dose aspirin), creat	Noninferiority: EFFICACY: stroke (ischemic or hemmorhagic) + systemic embolism; SAFETY: major bleeding	Superiority: EFFICACY: stroke (ischemic or hemmorhagic) + systemic embolism; all-cause mortality; SAFETY: major + clinical nonmajor bleeding	PRIMARY: ITT Efficacy: apixaban 1.27%/y vs warfarin 1.60%/y) Modified ITT Safety: apixaban 2.13% vs warfarin 3.09%; mortality apixaban 3.52% vs warfarin 3.94%. HF subgroup results not different (p for interaction 0.50) Efficacy: apixaban: HR: 0.79; 95% CI:

						>2.5 mg/dL			0.66-0.9;, p<0.001 for noninferiority, p=0.01 for superiority; Mortality apixaban: HR: 0.89: 95% CI: 0.80-0.99; p=0.047. Safety: apixaban: HR: 0.69; 95% CI: 0.60- 0.80; p<0.001 (apixaban RRR: 27%)
ROCKET AF Patel 2011 <u>21830957</u> (196)	Compare rivaroxaban to warfarin in preventing ischemic strokes in pt with nonvalvular AF	Prospective multicenter double- blind double- dummy event- driven noninferiority RCT of rivaroxaban 20 mg/d (15 mg if Cr Cl 30-49 mL/min) vs. warfarin (INR 2-3)	N=14,264 randomized, median f/u=707 d	8909 (rivaroxaban 4467, warfarin 4441) (62.5%)	Nonvalvular AF, CHADS2 ≥2; HF (clinical dx or LVEF ≤ 35%)	Mitral stenosis, absolute non-AF indication for AC, high risk for anticoagulation	Primary efficacy: composite [ischemic or hemorragic stroke + systemic embolism]; Primary safety: composite [major + nonmajor clinically relevant bleeding]	Secondary efficacy: composite stroke + systemic embolism + CV mortality]; composite [stroke + systemic embolism + CV mortality + MI]; individual components of primary composite. Secondary safety	Active treatment analysis (by design): rivaroxaban (1.7% per year events) noninferior to warfarin (2.2% per year events) for primary outcome; no difference in safety endpoints; fewer CHN hemorrhage and fatal bleeding in rivaroxaban group. Findings consistent for all subgroups. Efficacy: Per protocol, rivaroxaban HR: 0.79; 95% CI: 0.66 - 0.96; p<0.001 for noninferiority; HF subgroup ITT p=0.419. Safety superiority of rivaroxaban p=0.02
Belch 1981 <u>7291971</u> (197)	Effect of low-dose SQ H on lower extremity DVT in pts with HF and pts with chest infections	Prospective, randomized, open label, controlled study SQ H 5000 u q8h x 14 d or until discharge	Total N=100	HF subset n=38 (21 treatment, 17 control)	HF NYHA II-IV, clinical signs of volume overload	"Definite" risk of bleeding, DVT or PE on admission, >2 d bed rest prior to admission	DVT diagnosed by I-125 fribrinogen scanning every 2 d or until discharge	Clinical evidence of bleeding	H reduced demonstrable DVT Total group: DVT (Ctl 26% vs H 4% of treated, p<0.01); 20% had minor bleeding (bruising at injection site), no major bleeding
ARTEMIS Cohen 2006 <u>16439370</u> (198)	Safety and efficacy of fondaparinux in reducing VTE in older, moderate- high risk medical inpt	Double-blind, placebo-controlled, block randomized, multicenter RCT of SQ fondaparinux 2.5 mg/d for 6-14 d started within 48 h of admission	N=849 medical inpt, mean f/u=1 mo	HF n=160 (fondaparinux 78, placebo 82)	CHF (NYHA III-IV) or acute respiratory illness; expected bed rest >4 d; age >60	High bleeding risk" or contraindicated to anticoagulation, Creat >2.0 mg/dL, contrast allergy, mechanical vent >24 h (total), indication for AC prophylaxis or therapy, life expectancy otherwise <1 mo	Efficacy: DVT diagnosed by contrast venogray (d 5-15), symptomatic VTE (inc PE by imaging or fatal) through d 15; Safety: major bleeding	Efficacy: composite [Total VTE + bleeding + death at 1 mo]; Safety: composite [death or minor bleeding]	ITT (efficacy): all pt with ≥1 dose of drug (safety); HF pts=predefined subgroup. Fishers Exact and log-rank HF subgroup: Primary: fondaparinux 7/78 (9%) vs placebo 10/82 (12.2%), p=NS; Primary safety: p=NS (1 bleed in each group)

CERTIFY Tebbe 2011 <u>21315215</u> (199)	Compare LMWH to heparin on VTE incidence in elderly HF pt	Prospective, double-blind, double dummy, active control, randomized noninferiority study of certoparin 3000 u/d vs H 5000 u TID SQ (HF predefined subgroup)	Total N=3239, mean hospitalization 12.2 +/-5.1 d, mean treatment period = 9 d	HF n=470; 238 pts (cert) vs 232 pts (H),	age ≥70, clinical diagnosis of HF on admission (no further details)	Contraindicated to anticoagulation, History of DVT, PE or HIT2, stroke <3 mo, >3 d immobilization before randomization, cast or fracture, surgery <3 wk, severe sepsis, mechanical ventilation, any heparin <5 d	Efficacy: composite [prox DVT (compression USG d 8-20) + nonfatal PE + VTE-related death]; Safety: composite [major bleeding + minor bleeding + HIT]	Prox DVT, nonfatal PE, fatal VTE, distal DVT, symptomatic DVT, all-cause mortality, documented symtpomatic VTE, composite [nonfatal PE + prox DVT + all-cause mortality]	Active treatment only. No difference in efficacy or safety endpoints in HF pt based on treatment arm. Primary: cert 3.78% vs heparin 4.74%, OR: 0.79; 95% CI 0.32-1.94; p=NS; multivariate: insufficient to confirm noninferiority in HF pt.
THE PRINCE Kleber 2003 <u>12679756</u> (200)	Compare safety and efficacy of enoxaparin with UFH in preventing VTE in pts with HF or severe respiratory disease	Prospective, randomized, active control/parallel group open label, noninferiority comparison enoxaparin 40 mg/d vs heparin 5000 u TID for 10 +/- 2 d. 1-sided equivalence, upper limit = 9% or 4% difference in efficacy.	Total N=665	HF n=333 for safety endpoint, n=206 for efficacy	NYHA III-IV	Contraindicated to heparin or anticoagulation, contrast allergy, DVT or PE on admission, immobilized >24 h prior to admission, taking warfarin or >low dose aspirin on admission	Efficacy: Comfirmed TEE (DVT by venography or autopsy, PE by V/Q, CXR/Q scan [plus confirmatory venogram if +], angiogram or autopsy) within 1 d of completing treatment; Safety: Major bleeding	Efficacy: composite [TEE or death]	No differences in primary, secondary or safety endpoints 12.6% HF pt had events. Primary: enoxaparin (9.7%) vs heparin (16.1%) [Cl -1.4 - +14.2], p=0.139. Secondary: mortality: enoxaparin 5.3% vs heparin 6.4% (no statistical comparison); Saftey: no difference (1 bleed in entire study population)
MEDENOX Samama 1999 <u>10477777;</u> Turpie 2000 <u>11206019;</u> Alikhan 2003 <u>12945875</u> (201)	Compare safety and efficacy of 2 doses of enoxaparin vs placebo to prevent VTE in medical pt hospitalized ≤14 d	Prospective, randomized, double-blind, parallel arm of placebo vs enoxaparin 20 mg/d vs enoxaparin 40 mg/d	Total N=855; f/u = 110 d	HF n=290 (34%)	NYHA III-IV	Contraindicated to anticoagulation or heparin, contrast allergy, thrombophilic disease or coagulopathy, Creat >1.7, mechanical ventilation, any AC for >48 h prior to enrollment	VTE (DVT [contrast venograpy or compression USG day 6-14 or earlier with symptoms], PE [high prob V/Q, CTA or angio] or both) d 1-14	VTE d 1-110; Major or minor hemorrhage, mortality, thrombocytopenia, any adverse event, lab abnormalities (multiple)	Enoxaparin 20 mg = Placebo (excluded from final analysis); lower incidence of radiographic DVT in enoxaparin 40 mg vs placebo. No difference in mortality or AEs among treatment groups. Primary: All HF pts: enoxaparin 4.0% vs placebo 14.6%, (RR: 0.29; 95% CI: 0.10- 0.84; p-0.02); Class III HF pts: enoxaparin 5.1% vs. placebo 12.3% (RR: 0.42; 95% CI: 0.13-1.29; p=0.20); Class IV HF pts: enoxaparin 0% vs. placebo 21.7%, (p=0.05); History of chronic HF as risk (regardless of admission diagnosis): enoxaparin 2.2% vs. placebo 12.1% (RR: 0.26; 95% CI: 0.08-0.92; p=0.04)

AC indicates anticoagulant; ACEI, angiotensin-converting-enzyme inhibitor; ACT, active control parallel; AE, adverse event; AP, apixaban; APT, antiplatelet therapy; AF, atrial fibrillation; ARB, angiotensin receptor blockers; AT, as treated; BID, twice a day; BNP, brain natriuretic peptide; CAD, coronary artery disease; CHF, congestive heart failure; CrCl, creatinine clearance; CTA, computed tomography angiography; CTR, cardiothoracic ratio; CV, cardiovascular; CXR, chest x-ray; Dab, dabigitran; DCM, dilated

cardiomyopathy; DVT, deep venous thrombosis; EF, ejection fraction; f/u, follow-up; H, heparin; HD, heart disease; HF, heart failure; HIT2, heparin-induced thrombocytopenia; H/N, hydralazine and nitrates; HTN, hypertension; ICH, ischemia; INR, international normalized ratio; ITT, intent to treat; KM, kaplan-meier; LMWH, low moleduclar weight heparin; LV, left ventricular; LVEDD, left ventricular end diastolic diameter; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; NS, not significant; NYHA, New York Heart Association; OAT, oral anticoagulant therapy; PCI, percutaneous coronary intervention; PE, pulmonary embolism; PPM, pacemaker; pt, patient; QoL; quality of life; RCT, randomized control trial; SQ, subcutaneous; TEE, thromboembolic event; TIA, transient ischemic attack; TID, three times a day; UFH, unfractionated heparin; USG, ultrasonography; VO2, oxygen volume; V/Q, ventilation/perfusion scan; and VTE, venous thromboembolic disease.

Data Supplement 22. Statin Therapy (Section 7.3.2.8.2)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient Po	opulation	Severity	End	points	Morta	lity	Trial Duration	Absolute Benefit	Statistical Results	Study Limitations
	Study	Type	Pretrial standard treatment	N (Total) n (Experimental) n (Control)	Ischemic/ Non- Ischemic	Inclusion Criteria	Exclusion Criteria	Severity of HF Symptoms	Primary Endpoint	Secondary Endpoint	Annualized Mortality	1st Year Mortality	Duration	Denent	Results	Linitations
Horwich et al, 2004 <u>14975476</u> (202)	To investigate the impact of statin therapy in pts with advanced HF referred for transplant evaluation at UCLA.	Cohort study	ACEI/ARB, beta- blockers,spironolac tone, diuretics	551; 248; 303	45%	Pts referred for transplant evaluation between 2000-2	LVEF >40%, baseline data incomplete	NYHA 3-4	Death or urgent transplant	N/A	N/A	75%	2 у	14%	HR 0.44; 95% CI 0.30-0.67; p<0.0001	Single-center, non- randomized, reason for drug use unclear, bias
Mozaffaria n et al, 2004 <u>15110204</u> (203)	To evaluate the relation of statin therapy with clinical outcomes in severe HF enrolled in the PRAISE study	Cohort study	ACEI/ARB, diuretics, digoxin	1,153; 1,019; 134	63%	Dyspnea or fatigue on exertion (NYHA 3b- 4), LVEF ≥30%	N/A	NYHA 3b-4	All-cause mortality	Cause- specific mortality (SCD, pump failure death, fatal MI)	29 deaths/100 person-y	N/A	Mean 1.5 y	N/A	HR: 0.38; 95% CI: 0.23-0.65; Propensity- matched HR: 0.46. 95% CI: 0.26–0.75	Post-hoc analysis from clinical trial

Ray et al, 2005 <u>15642876</u> (204)	To determine whether statin use is associated with a lower risk of death and major CVD among adults newly diagnosed as having HF in Ontario registry	Cohort study	ACEI/ARB, beta- blockers,spironolac tone, diuretics, nitrates	28,828; 1,146; 27,682	11.3% history of MI	Adults aged 66 to 85 y in Ontario Canada newly hospitalized with primary diagnosis of HF between April 1, 1995, and December 31, 2001 and survived at least 90 d after the index HF hospitalizatio n	Pts hospitalize d within 36 mo for HF or having diagnosis of cancer within past 365 d prior to index HF hospitalizati on discharge date; dispensed statin 365 d prior to hospital discharge, length of stay >60 d, direct transfer to chronic care hospital, cancer within 90 d following index HF hospitalizati on	N/A	Death from any cause, nonfatal acute MI, or nonfatal stroke	N/A	9.9% per 100 person- y vs 19.1% per 100 person-y	N/A	16.6 mo in the statin group and 24.4 mo in the nonstatin group	8.2% per 100 person-y	HR: 0.62; 95% CI: 0.53-0.69; aHR: 0.72; 95% CI: 0.63-0.83.	Retrospective cohort study, non- randomized, reason for drug use unclear, bias
Foody et al, 2006 <u>16490817</u> (205)	To evaluate the association between statin use and survival among a national sample of elderly	Cohort study	ACEI/ARB, beta- blockers,spironolac tone, diuretics, nitrates	54,960; 9,163; 45,797	30% history of MI	Sampling of Medicare fee-for- service beneficiaries hospitalized with a principal diagnosis of HF by ICD-9 code	<65 y of age, HF readmissio ns, transferred out of the hospital, left AMA, or had unknown discharge	NYHA 2-4	All-cause mortality	N/A	20%	N/A	3 у	N/A	HR: 0.62; 95%CI: 0.59–0.65; p<0.001 aHR: 0.80; 95%CI: 0.76–0.84; p<0.001	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias

r		1	1	1						1	1	1	r	r		
	Medicare					between	disposition,									
	beneficiarie					4/98-3/99	died during									
	S					and 7/00-	hospitalizati									
	hospitalized					6/01.	on, had no									
	with HF						date of									
	from						death									
	National						information									
	Heart Care						available,									
	Project.						hospitalize									
	T TOJOOL						d outside									
							the US,									
							discharged									
							to hospice,									
							contraindic									
							ations to									
							statin									
							therapy,									
							including									
							statin									
							allergy or									
							liver									
							dysfunction									
							, or no									
							medication									
							s recorded									
							on									
							discharge									
Automated	T	Ochort		E 000: 1 100:	070/				All	N1/A		400/				Detre en estive
Anker et al,	To assess	Cohort	ACEI or ARB (as in	5,200; 1,103;	67%	ELITE-II: pts	NR	NYHA 2-4	All-cause	N/A	NR	12%	mean 1.5	NR	ELITE-II:	Retrospective
2006	the	study	ELITE-2), diuretics,	4,097		age ≥60 y;			mortality				y y		aHR 0.61;	cohort study
<u>16846656</u>	relationship		digoxin			NYHA 2-4,							(ELITE-		95% CI:	and post-hoc
(206)	between					LVEF ≥40%.							2); 2 y		0.44-0.84;	analysis,
	statin use					European							2у		p<0.0028	sampling,
	and					registry:							(Europea		European	non-
	survival in					diagnosis of							n		registry:	randomized,
	ELITE-II as					HF followed							registry)		aHR 0.58;	reason for
	well as a 5-					by HF clinic									95%CI	drug use
	center					-,									adjusted	unclear, bias
	registry														0.44-0.77;	
	10gioli y														p<0.0001;	
															p \$0.0001,	
	1	1	1	1	1		1	1		I	1	1	1	1		

Folkeringa et al, 2006 <u>16520262</u> (207)	Investigate the effects of statins on survival in CHF pts using a matched case- controlled study in pts admitted to hospital because of severe CHF from the MARCH study	Case- control study	ACEI/ARB, diuretics, digoxin	524; 262; 262	50%	Pts admitted for HF with an uncomplicat ed survival for at least 1 mo after hospital discharge, group-wise matched between survivors and non- survivors on means of age, LVEF, renal function, and sex.	NR	NYHA 3-4	All-cause mortality	N/A	NR	NR	Mean 2.6 y	4%	OR: 0.42; 95% CI: 0.26–0.69	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias
Go et al, 2006 <u>17077375</u> (208)	To evaluate the association between initiation of statin therapy and risks for death and hospitalizati on among adults with chronic HF in the Kaiser Permanent e Chronic HF cohort	Cohort study	ACEI/ARB, diuretics, digoxin	24,598; 12,648; 11,950	54%	Adults (age ≥20 y) diagnosed with HF 1/96-12/04 with ≥1 hospitalizatio ns with a principal diagnosis of HF; ≥2 hospitalizatio ns with a secondary diagnosis of HF in which the principal diagnosis is cardiac- related; ≥3 hospitalizatio ns with secondary	Pts who were receiving statin therapy at the study at entry date; who were not eligible for treatment based on national guidelines	NYHA 2-4	Death from any cause and hospitaliz ation for HF	N/A	13.90%	NR	Median 2.4 y	NR	aHR: 0.76; 95%CI: 0.72-0.80	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias

						diagnosis of HF; ≥2 outpatient diagnoses; ≥3 ED visit diagnoses; or ≥2 inpatient secondary diagnoses plus 1 outpatient diagnosis.										
Krum et al, 2007 <u>16960445</u> (209)	To examine statin/beta blocker interactions within the context of a large-scale clinical trial of pts with systolic CHF in CIBIS-II	Cohort study	ACEIs/ARB, beta- blockers,spironolac tone, diuretics	2,647; 220; 2,421	59%	Pts enrolled in CIBIS-II study	N/A	NYHA 2-4	Death	CV deaths included the following specific causes: sudden death, pump failure, MI and any other CV condition not listed above which led to the pt's death. Worsening HF only was counted as an outcome endpoint in CIBIS II when this (critical) event led to the hospitalizati	11.10%	NR	Mean 1.3 y	NR	HR 0.57; 95% CI: 0.37–0.94; aHR 0.60; 95% CI: 0.39–0.94	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias

										on of the pt.						
Krum et al, 2007 <u>17049646</u> (209)	To assess the outcome of pts enrolled in Val- HeFT according to statin use at the time of randomizati on to valsartan or placebo.	Cohort study	ACEI/ARB, beta- blockers,spironolac tone, diuretics	5,010; 1,602; 3,408	57%	Pts enrolled in Val-HeFT study	N/A	NYHA 2-4	All-cause mortality	Mortality and morbidity (cardiac arrest with resuscitatio n, hospitalizati on for HF, or administrati on of IVinotropic or vasodilator drugs for 4 h or more without hospitalizati on)	7.90%	NR	Mean 1.9 y	7.20%	HR 0.81: 95%CI 0.70– 0.94; p=0.005	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias
Dickinson et al, 2007 <u>17383296</u> (210)	To examine the effects of statin in reducing mortality in SCD-HeFT	Cohort study	ACEI/ARB, beta- blockers,spironolac tone, diuretics	2,521; 965; 1,556	52%	Ischemic and non- ischemic cardiomyopa thy, NYHA 2-3 HF, LVEF 35% or less	N/A	NYHA 2-3	All-cause mortality	N/Á	6.80%	NR	Mean 3.8 y	NR	aHR 0.7; 95% CI: 0.57-0.83	Retrospective cohort study, sampling, non- randomized, reason for drug use unclear, bias

CORONA, Kjekshus et al, 2007 <u>17984166</u> (211) GISSI-HF,	To investigate the beneficial effects of rosuvastati n on improving survival, reducing morbidity, and increasing well-being in pts with chronic, symptomati c, systolic, ischemic HF.	RCT	ACEI/ARB, beta- blockers, spironolac tone, diuretics	5,011; 2,497; 2,514 4,574; 2,285;	100%	Age ≥18, symptomatic HF NYHA 2- 4, IHD, LVEF <40%, does not need statin therapy, optimal medical therapy >2 wk	Myopathy or hypersensti vity to statin, ACS or revasculari zation <1 mo, reduced life expectancy , planned surgery <3 mo, Cr >2.5 mg/dL, ,CK >2x ULN, LFTs >1.5x ULN, uncorrecte d valve or HCM	NYHA 2-4 NYHA 2-4	Composit e of death from cardiovas cular causes, nonfatal MI, and nonfatal stroke	Death from any cause, any coronary event (sudden death, fatal or nonfatal MI, PCI or CABG, ventricular defibrillatio n by an ICD, resuscitatio n after cardiac arrest, or hospitalizati on for UA), death from CV causes (with an additional analysis of cause- specific death from a CV cause), and the number of hospitalizati ons for CV causes, unstable angina, or worsening HF Death for a	7.90%	NR	Median 2.7 y	0.9% per 100 patient-y	HR: 0.92; 95% CI: 0.83-1.02; p=0.12	N/A
Tavazzi et al, 2008 <u>18757089</u>	investigate the effi cacy and		blockers,spironolac tone, diuretics	2,289	of MI	symptomatic HF NYHA 2- 4, if LVEF	ivity to statin, investigatio		primary endpoint: time to	CV cause; first hospital			3.9 y		99% CI: 0.923-1.130; p=0.594	

(212)	safety of		>40% (10%)	nal drug <1	death;	admission		aHR: 1.01;
、	the statin		requires HF	month, MI	time to	for any,		99% CI
	rosuvastati		hospitalizatio	<6 mo,	death	CV, or HF		0.908-1.112,
	n in pts with		n within 12	ACS or	or	cause; and		p=0.903;
	HF.		mo	revasculari	admission	the		
				zation <3	for	combined		
				mo,	cardiovas	outcome		
				reduced life	cular	measure of		
				expectancy	reasons	CV death		
				, planned		or		
				surgery/dev		admission		
				ice <3 mo,		to hospital		
				Cr >2.5		for any		
				mg/dL,		cause		
				LFTs >1.5x				
				ULN,				
				pregnant				

ACEI indicates angiotensin-converting-enzyme inhibitor; ACS, acute coronary syndrome; AMA, against medical advice; ARB, angiotensin receptor blocker; CABG, coronary artery bypass surgery; CHF, congestive heart failure; CIBIS-II, The Cardiac Insufficiency Bisoprolol Study II; CORONA, Controlled Rosuvastatin Multinational Trial in HF; CV, cardiovascular; ELITE-II, Losartan Heart Failure Survival Study; HF, heart failure; GISSI-HF, Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico; ICD, implantable cardioverter defibrillator; ICD-9, international classification of diseases 9th edition; IHD, ischemic heart disease; LVEF, left ventricular ejection fraction; MARCH, Maastricht Registry of Congestive HF; MI, myocardial infarction; N/A, not applicable, NR, not reported; NYHA, New York Heart Association; PCI, Percutaneous coronary intervention; PRAISE, Prospective Randomized Amlodipine Survival Evaluation; SCD, sudden cardiac death; SCD-HeFT, Sudden Cardiac Death in Heart Failure Trial; UA, unstable angina; UCLA, University of California Los Angelos; and Val-HeFT, Valsartan Heart Failure Trial.

Data Supplement 23. Omega 3 Fatty Acids (Section 7.3.2.8.3)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient P	Population	Sev	erity	End	points	Morta	llity	Trial Duratio n	Statistical Anaylsis (Results)	Study Limitations	Complications/ Adverse Events
				N (Total) n (Experimental) n (Control)		Inclusion Criteria	Exclusion Criteria	Severit y of HF Sympt oms	Study Entry Sverity Criteri a	Primary Endpoint	Secondary Endpoint	Annualized Mortality	1st Year Mortality				
GISSI-HF,	То	Randomis	All treatments	7,046; 3494;	49.6%	≥18 y,	Specific	Class II	NYHA	2 co-	Cardiovasc	7%	7.0%	4.5 y,	1.8% absolute mortality	By the end	The rate of pts
Lancet	investigate	ed,	of proven	3,481 (placebo)	ischemic/5	clinical	indication or	63%, III	Class	primary	ular		(estimate	median	reduction (95% CI 0·3–	of the study,	who had
2008	whether	double-	efficacy for		0.4% non-	evidence of	contraindicati	34%, IV	II-IV	endpoints	mortality,		d from KM	f/u 3.9 y	3.9%). Absolute benefit	1004 (29%)	permanently
<u>18757090</u>	omega-3	blind,	chronic HF		ischemic-	HF of any	on to n-3	3%	HF	: time to	cardiovasc		curves)		for mortality or	of pts in the	discontinued
(213)	fatty acid	placebo-	(eg, ACEIs,		other	cause	PUFA; known			death,	ular				admission for	omega 3 FA	taking the study
	supplement	controlled	beta blockers,			classified as	hypersensitivi			and time	mortality or				cardiovascular reasons	group and	drug because of
	ation could	trial (2x2,	diuretic drugs,			the ESC GL	ty to study			to death	admission				was 2·3% (95% CI 0·0-	1029 (30%)	adverse reactions
	improve	factorial	italis,			NYHA class	treatments;			or	for any				4.6%). NNT for benefit	in the	was much the
	morbidity	design,	spironolacton			II–IV,	presence of			admissio	reason,				is 56 pts need to be	placebo	same in the
	and	rosuvastat	e) were			provided that	any non-			n to	sudden				treated to avoid 1death	group were	omega 3 FA and
	mortality in	in)	positively			LVEF was	cardiac			hospital	cardiac				and 44 pts treated to	no longer	in the placebo
	a large		recommende			measured	comorbidity			for	death,				avoid 1event like death	taking study	groups (102 [3%]

	population of pts with symptomati c HF of any cause.		d. Background treatment rates of ACEI/ARB 93%, beta blockers 65%, aldosterone antagonists 40%, loop durietics 90%			within 3 mo before enrollment. When LVEF was >40%, the pt had to have been admitted at least 1 hospital for HF in the preceding y to meet the inclusion criteria.	(eg, cancer) incompatible with a long f/u; treatment with any other investigationa l agent within 1 mo before randomisatio n; ACS or revascularisat ion procedure within the preceding 1 mo; planned cardiac surgery, expected to be done within 3 mo after randomisatio n; significant liver disease; and pregnant or lactating women or women of childbearing potential who were not adequately protected against becoming pregnant.		cardiovas cular reasons.	admission for any reason, admission for cardiovasc ular reasons, admission for HF, MI, and stroke.				or admission for cardiovascular reason for nearly 4 y. Mortality: aHR: 0·91; 95·5% CI 0·833–0·998; p=0·041. Mortality or were admitted to hospital for cardiovascular reasons (aHR: 0·92; 99% CI 0·849–0·999; p=0·009). Mortality: aHR 0.91 Mortality of CV Hospitalization aHR 0.92	drug for various reasons. Only evaluated a single dose. Study conducted in Italy where there is relatively high amount of dietary intake of omega 3 fatty acids. (p=0.45; table 5).	vs 104 [3%], p=0.87). Very well tolerated. No safety issues other than a slight excess of cerebrovascular events, which was a similar finding to that reported in the GISSI- Prevenzione trial. This excess was distributed fairly evenly between ischaemic and haemorrhagic cases. No drug interactions noted. with gastrointestinal dis turbance being the most frequent cause in both groups (table 5).
GISSI- Preventio n, Macchia A et al. EJHF 2005 (subgroup analysis) <u>16087142</u> (214)	To evaluate the effect of omega 3 fatty acid supplement ation in post MI pts with LVD.	Randomiz ed, multicente r, open- label, clinical trial with blinded validation of events.	Standard background therapy for pts who are post AMI	11323 pts ; 4324 (with LVEF ≤50%)	100% ischemic	Patient with AMI in prior 3 mo. Irrespective of LV function. No age limits.	Contraindicati ons to the dietary supplements (ie, known allergy to omega-3 fatty acids). Unfavorable short-term outlook (eg,	No HF or NYHA Class I, subgrou p analysis in pts with LVEF ≤50%	Time to death, and time to death or admissio n to hospital for cardiovas cular	Sudden death	4% per y	4%	3.5 у	Treatment with n-3 PUFA reduced total mortality in pts with and without systolic dysfunction, 24% (40%- 4%, p =0.02) and 19% (41% to +10%, p =0.17), respectively (heterogeneity test p=0.55). The effect on SD	Open label. Excluded pts with over HF.	Well tolerated.

		Subgroup analysis of those pts with post MI LVD					overt CHF, cancers, etc).			reasons					reduction was asymmetrical, with a greater effect in pts with LVSD (RRR: 58%; 95% CI: 74%-33%; p =0.0003) as compared to pts with preserved systolic function (RRR: 11%; 95% CI: 54% - 69%; p =0.71), although the heterogeneity test was not statistically significant (p=0.07). LVD subgroup (0.60– 0.96) p=0.02) RR 0.76 (subgroup with LVD)		
Omega 3 fatty acids in DCM, Nodari, JACC, 201 <u>21215550</u> (215)	This study was designed to test the effects of 3 PUFAs on (LV) systolic function in chronic HF due to NICM	Randomiz ed, single center double blind, clinical trial with blinded validation of events. Subgroup analysis of those pts with post MI LVD	Evidence based HF therapy ACE/ARB 100%, beta blockers 100%, aldosterone antagonists 60%, loop diuretics 100%	133; 67 experimental; 66 control	100% non- ischemic	Pts aged 18- 75 y with a diagnosis of NICM, LVSD (defined as an EF <45%), and stable clinical conditions with minimal or no symptoms for at least 3 mo on evidence- based medical treatment at maximum tolerated target doses for at least 6 mo.	presence of symptoms or evidence of CAD diagnosed through noninvasive tests, PAD, presence of congenital or primary VHD, persistent AF, inability to perform bicycle ergometry for noncardiac causes, moderately severely reduced functional capacity, NYHA class IV, poor acoustic windows limiting the ability to assess echo	Mild, Class I, 15%, Class II 85%.	Mild severit y on medica I therapy	Change in LVEF	Peak V02, hospitalizat ions	0%	0%	12 mo	LVEF increased by 10.4% n-3 PUFA and decreased by 5.0% with placebo, p<.0001, peak VO2 (increased by 6.2% and decreased by 4.5%, respectively); exercise duration increased by 7.5% and decreased by 4.8%; and mean NYHA class decreased from 1.88 +/- 0.33 to 1.61 +/- 0.49 and increased from 1.83 +/- 0.38 to 2.14 +/- 0.65. The hospitalization rates for HF were 6% in the n-3 PUFAs and 30% in the placebo group (p = 0.0002).	Single center, small, no deaths.	None

-		r	r	 	г			1
				measurement				
				s, chronic				
				lung disease,				
				advanced				
				renal disease				
				(eGFR <30				
				ml/min/1.73				
				m2),				
				advanced				
				liver disease;				
				any disease limiting life				
				limiting life				
				expectancy to				
				<1 y,				
				contraindicati				
				ons to study				
				drugs, and				
				concomitant				
				participation				
				in other				
				research				
				studies.				
				รแนนเธร.				

ACEI indicates angiotensin-converting-enzyme inhibitor; ACS, acute coronary syndrome; AMI, acute myocardial infarction; ARB, angiotensin receptor blocker; CAD, coronary artery disease; CV, cardiovascular; EF, ejection fraction; eGFR, estimated glomerular filtration rate; ESC GL, European Society for Cardiology guidelines; f/u, follow-up; GISSI-HF, Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico; HF, heart failure; KM, Kaplan-Meier; LVD, left ventricular dysfunction; LVEF, left ventricular ejection fraction; LVSD, left ventricular systolic dysfunction; MI, myocardial infarction; NICM, nonischemic cardiomyopathy; NNT, number needed to treat; NYHA, New York Heart Association; PAD, peripheral arterial disease; PUFA, polyunsaturated fatty acids; SD, sudden death

Data Supplement 24. Antiarrhythmic Agents to Avoid in HF (7.3.2.9.2)

		Stu	ıdy	, -		Study Drug	Effect		
Trials	Design	Drug	Control	Patients	Mortality	CV events	Functional Capacity	QoL	Other Comments
Class I Na Channel Blocke	er								
CAST <u>2473403</u> (216)	RCT	Encainide/ Flecainide/ Moricizine	Ρ	Post-MI NSVT	↑ with encainide, flecainide RR 2.5	N/A	N/A	N/A	Study terminated early.
Class III K Channel Blocke	rs								
SWORD <u>8691967</u> (217)	RCT	d-Sotalol	Р	Post-MI LVEF <u><</u> 40%	↑ RR 1.65	N/A	N/A	N/A	Study terminated early.

Dronedarone Study Group <u>18565860</u> (218)	RCT	Dronedarone	Р	NYHA II-IV LVEF <u><</u> 35% hospitalized	↑ HR 2.13	↑ first CV hospitalizations	N/A	N/A	No difference in primary composite endpoint.		
CAST indicates Cardiac Arrhythmia Suppression Trial: CV cardiovascular: K notassium: LVEE left ventrioular ejection fraction: ML myocardial infarction: Na sodium: NSVT ponsustained											

CAST indicates Cardiac Arrhythmia Suppression Trial; CV, cardiovascular; K, potassium; LVEF, left ventricular ejection fraction; MI, myocardial infarction; Na, sodium; NSVT, nonsustained ventricular tachycardia; N/A, not applicable; NYHA, New York Heart Association; P, placebo; QoL, quality of life; RCT, randomized control trial; and SWORD, Survival With Oral d-Sotalol.

Data Supplement 25. Calcium Channel Blockers to Avoid in HF (Section 7.3.2.9.3)

			Study			Study Drug E	Effect		
Trials	Design	Drug	Control	Patients	Mortality	CV events	Functional Capacity	QoL	Other Comments
Nondihydropyridine	-	1					·		
MDPIT <u>2899840</u> (219)	RCT	Diltiazem	Р	Post-MI	NS	↑ In pts with LVEF<40% or pulm congestion on CXR HR 1.41	N/A	N/A	None
MDPIT <u>1984898</u> (220)	Retro	Diltiazem	Р	Post-MI		↑ HF in pts with EF<40%, pulm congestion, or anterolateral Q wave MI	N/A	N/A	None
DiDi <u>8759075</u> (221)	RCT	Diltiazem	Р	Idiopathic DCM NYHA II-III	NS	N/A	N/A	N/A	18% of pts did not finish study. No difference in transplant-free survival (85.2% vs. 80.4%, p=0.44).
DAVIT-II <u>2220572</u> (222)	RCT	Verapamil	Р	Hospitalized for AMI	NS	N/A	N/A	N/A	HF pts had worse outcomes
Dihydropyridine	·								
Elkayam U <i>Circulation</i> 1990 <u>2242521</u> (223)	RCT	Nifedipine	ISDN	NYHA II-III LVEF <40%	N/A	↑ HF hospitalization (nifedipine vs ISDN) ↑ worsening HF (nifedipine+ISDN vs either alone)	NS	N/A	None
Felodipine UK Study Group <u>7786657</u>	RCT	Felodipine	Р	NYHA II-III LVEF <u><</u> 40% 76% ICM	N/A	↑ worsening HF	NS	N/A	None

(224)									
V-HeFT III <u>9264493</u>	RCT	Felodipine	Р	NYHA II-III LVEF <u><</u> 45%	NS	NS	NS	NS	More edema AE with felodipine. Not powered to study mortality.
(225)				55% ICM					
PRAISE-2*	RCT	Amlodipine	Р	NICM	NS	NS	N/A	N/A	None
<u>15921795</u>				NYHA III-IV					
(226)				LVEF<30%					
Amlodipine Exercise Trial	RCT	Amlodipine	Р	NYHA II-IV	N/A	N/A	NS	NS	None
<u>10689266</u>				LVEF <u><</u> 35%					
(227)				53% ICM					

AE indicates adverse event; AMI, acute myocardial infarction; CV, cardiovascular; CXR, chest x-ray; DAVIT-II, Danish Verapamil Infarction Trial II; DCM, dilated cardiomyopathy; DiDi, Diltiazem in Dilated Cardiomyopathy Trial; EF, ejection fraction; HF, heart failure; HR, hazard ratio; ICM, ischemic cardiomyopathy; ISDN, isosorbide dinitrate; LVEF, left ventricular ejection fraction; MDPIT, Multicenter Diltiazem Postinfarction Trial; MI, myocardial infarction; NICM, nonishemic cardiomyopathy; N/A, not applicable; NS, no statistically significant difference; NYHA, New York Heart Association; P, placebo; PRAISE-II, second Prospective Randomized Amlodipine Survival Evaluation; pts, patients; QoL, quality of life; RCT, randomized control trial; Retro, retrospective analysis; UK, United Kingdom; and V-HeFT, Vasodilator-Heart Failure Trial.

	Study Results									
		Study		1		Results				
Cohort Populations	Design	Experimental (n)	Control (n)	Patients	Mortality	CV events	Other Comments			
Netherlands PHARMO <u>9605782</u> (228)	Obs	NSAID plus Diuretics	Diuretics alone	Age <u>></u> 55 y	N/A	↑ HF hospitalization aRR 1.8	Data presented in pt-y			
New South Whales <u>10737277</u> (229)	Case- controlled cohort	HF admission (365)	Non-HF admission (658)	Mean age 76 y	N/A	↑ HF admission with non-ASA NSAID use OR 2.1 ↑1 st HF admission in pts with h/o heart disease and NSAID use vs no h/o heart disease and NSAID use	None			
Rotterdam Study <u>11822918</u> (230)	Cohort	No history of HF admission (7277)	None	Age <u>></u> 55 y FS>30%	N/A	↑ HF readmission during concurrent use of NSAID aRR 9.9	None			
Ontario Drug Benefit Program <u>15172772</u> (231)	Retro Cohort	Rofecoxib (14,583) Celecoxib (18,908) Non-selective NSAID (5,391)	No NSAID (100,000)	Age <u>></u> 66 y 12% IHD	N/A	relative to non-NSAID users	No increased risk seen with celecoxib relative to non-NSAID users			
Quebec <u>15947399</u> (232)	Retro Cohort	Rofecoxib (869) Non-selective NSAID (280)	Celecoxib (717)	Age <u>></u> 66 y Index HF admission	↑ NS NSAID HR 1.54 Rofecoxib HR 1.44	↑Recurrent HF ER visit or hospitalization NS NSAID HR 1.21 (0.92-1.6) Rofecoxib HR 1.17 (0.96-1.42)	Combined endpoint significant risk with NS NSAID and rofecoxib			

Data Supplement 26. NSAIDs Use in HF (Section 7.3.2.9.4)

Danish National Patient	Retro	Rofecoxib (6116)	No NSAID	Age <u>></u> 30 y	1	↑HF hospitalization	Increased risk with higher doses
Registry	Cohort	Celecoxib (5734)	(70738)	Index HF	Rofecoxib HR 1.7	Rofecoxib HR 1.4	of NSAIDs for all types
<u>19171810</u>		Ibuprofen (16875)		admission	Celecoxib HR 1.75	Celecoxib HR 1.24	
(233)		Diclofenac (9377)		13% h/o MI	Ibuprofen HR 1.31	Ibuprofen HR 1.16	
		Naproxen(2176)			Diclofenac HR 2.08	Diclofenac HR 1.35	
		Other NSAID			Naproxen HR 1.22	Naproxen HR 1.18	
		(11488)			Other HR 1.28	Other NSAID HR 1.27	

aRR indicates adjusted relative risk; ASA, aspirin; ER, emergency room; FS, fractional shortening; HF, heart failure; h/o, history of; IHD, HR, hazard ratio; ischemic heart disease; MI, myocardial infarction; N/A, not applicable; NS, not statistically significant; NSAID, non-selective nonsteroidal anti-inflammatory drug; Obs, observational study; OR, odds ratio; pt-y, patient years; and Retro, retrospective analysis.

Data Supplement 27. Thiazolidinediones in HF (Section 7.3.2.9.5)

			Study			Results
Cohort /Trial	Design	Experimental (n)	Control (n)	Patients	Mortality	CV events
Pharmetrics	Retro	TZD	No TZD	No HF	N/A	↑ incidence of HF
Integrated Outcomes	Cohort	(5441)	(28,103)	Age >18 y		TZD HR 1.7
Database				DM II		
<u>14578227</u> (234)				oral hypoglycemic agent		
PROactive	RCT	Pioglitazone (2065)	Placebo (2633)	NYHA I HF	NS	\downarrow
<u>16214598</u>				Age 35-75 y		Composite all-cause mortality, non-fatal MI, and CVA HR 0.84
(235)				DM II		95% CI 0.72-0.98; p=0.27
				Macrovascular disease		↑
						HF events
						11% Pioglitazone vs 8% placebo, P<0.0001
Dargie HJ JACC 2007	RCT	Rosiglitazone (110)	Placebo	NYHA I-II HF	NS	N.S.
<u>17448371</u>			(114)	LVEF <u><</u> 45%		
(236)				DM II		
	-		0.1	oral hypoglycemic agent		
Lipscombe LL JAMA	Retro	TZD	Other oral	Age <u>></u> 66 y	<u>↑</u>	
2007	Cohort		hypoglycemic	DMII	RR 1.29	HF adjusted RR 1.60
<u>18073359</u>				oral hypoglycemic agent	95% CI 1.02-1.62;	95% CI 1.21-2.10; p<.001
(237)					p=0.03	AMI RR 1.40
						95% CI, 1.05-1.86; p=.02
RECORD	RCT	Popialitazono odd	MET and SU	No HF	NS	35 /₀ 01, 1.05-1.00, p=.02
<u>19501900, 20118174</u>	RUI	Rosiglitazone add- on	(2227)	DMII	NO NO	HF HR 2.1
(238,239)		(2220)	(2221)	oral MET or SU		95% CI 1.35-3.27, p=0.001
(200,200)		(2220)				↔
						AMI HR 1.14
						95% CI 0.8-1.63, p=0.47

Giles TD Congestive	RCT	Pioglitazone (151)	Glyburide	NYHA I	NS	NS
Heart Failure 2010			(149)	Mild cardiac disease		exercise capacity, HbA1c
<u>20557330</u>				DM II		
(240)						

AMI, acute myocardial infarction; CVA, cerebral vascular accident; DM II, type 2 diabetes mellitus; HbA1c, hemoglobin A1c; HF, heart failure; HR, hazard ratio; LVEF, left ventricular ejection fraction; MET, metformin; MI, myocardial infarction; N/A, not applicable; NS, no statistically significant difference; NYHA, New York Heart Association; PROactive, Prospective pioglitazone Clinical Trial In Macrovascular Events;RCT, randomized control trial; RECORD, Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes; Retro, retrospective analysis; RR, relative risk; SU, sulfonylurea; and TZD, thiazolidinediones.

Data Supplement 28. Device-Based Management (Section 7.3.4)

Study Name,			Study					
Author, Year	Aim of Study	Study Type	Size	Patient Population	End	points	Statistical Analysis (Results)	Study Limitations
					Primary Endpoint	Secondary Endpoint		
COMPASS, Bourge et al. 2008 JACC <u>18342224</u> (241)	Determine impact of clinician knowing continuous ambulatory right heart pressures	Single blind RCT	274	Class III-IV with hospitalization/6 mo, all EF	HF events	HF hospitalization (post hoc)	Failed primary, with 21% reduction (p=0.33). HF hospilization 36% reduction (HR: 0.64: p=0.03)	Both groups high clinical contact (0.95/wk). No protocol for response to information.
COMPASS –Diastolic HF, substudy. Zile, 2008 J Cardiac Fail <u>19041044</u> (242)	Determine impact of clinician knowing continuous ambulatory right heart pressures	RCT	70	Class III-IV, EF ≥50%	HF events	N/A	20% reduction (p=0.66). HF hopsitlization 29% reduction (p=0.43)	Both groups high clinical contact (0.95/wk). No protocol for response to information. Small subgroup.
REDUCE-HF Adamson,Congestive Heart Failure 2011 21906250 (243)	Determine impact of clinician knowing and acting on home pressures	Single blind RCT	400 of 1200 (target)	Class II/III	HF events	N/A	No trend for benefit	Trial stopped for anticipated lead problems
SENSE-HF Conraads 2011 Eur J Echo <u>21362703</u> (244)	Determine predictive value of impedance changes	Observational, Doubleblinded Phase I, unblinded Phase II	501	N/A	Predictive value of impendance changes	N/A	PPV for HF hosp increased from 4.7 to 38% during study	N/A
FAST Abraham 2011 Cong H Fail <u>21449992</u> (245)	Compare impedance Changes to daily weights for monitoring	RCT (Pts and study team blinded to impedance data)	156	Class III-IV With ICD or CRT, LVEF ≤35%	Number of threshold changes associated with HF event within 30 d	N/A	Greater sensitivity for impedance than daily weights: 76% vs 23% (p=0.001) Unexplained change rate 1.9 vs 4.3/pt-y. 1 in 7 impedance changes associated with	Weight changes defined as 3 lbs/1 d or 5 lbs in 3 d. Unknown relationship of weight changes to therapy change

							event (p=0.0001)	
CHAMPION Abraham Lancet 2011 <u>21315441</u> (246)	Determine impact of PAP information from wireless monitor	Single blind RCT	550	Class III HF and hospitalized in past y	HF hospitilizations	AUC 6 mo PAP, % admitted DAOH, MLHF	39% reduction in HF hospitalizations (HR: 0.7; p=0.0001), More reduction in PAP (p=0.008), Lower % pts with HF hospitalizations (HR: 0.7; p=0.02), DAOH, (p=0.02), Better MLHF (p=0.02)	7 procedure-related SAEs
CHAMPION EF ≥40% <u>21315441</u> (246)	Determine impact of PAP information from wireless monitor	Single blind RCT	119	Class III HF and hospitalized in past y	HF hospitilizations	N/A	HF hosp reduced from 0.33 to 0.16 (p=0.0001)	Subgroup small, same trend
HOMEOSTASIS Ritzema, Circulation 2011 <u>20176990</u> (247)	Feasibility study of daily LAP monitoring to inform pt-directed therapy	Open-label Registry, uncontrolled	40	Class III-IV; hospitalized in past y all EF	N/A	N/A	LAP declined 17.6 to 14.8 (p=0.0003); % over 15 declined 67% (p=0.001) Beta blocker/ACE-I doses increased 40/37% (p=0.001) Loop doses decreased 27% (p=0.15)	Pilot observational, no controls. key concepts: physiology reduce diuretics. Pt responsibility
DOT-HF trial, <u>21931078</u> [5816 /id}	Determine impact of knowing impedance information	Single blind RCT	N/A	N/A	N/A	N/A	Monitoring increased hospilizations, clinic visits, No decrease in mortality	N/A

AUC, area under the curve; CHAMPION, CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients; COMPASS-HF, Chronicle Offers Management to Patients with Advanced Signs and Symptoms of Heart Failure; CRT, cardiac resynchronization therapy; DOT-HF, Diagnostic Outcome Trial in Heart Failure; EF, ejection fraction; FAST, Fluid Accumulation Status Trial; HF, heart failure; HOMEOSTASIS; Hemodynamically Guided Home Self-Therapy in Severe Heart Failure Patients; ICD; implantable cardioverter-defibrillator; LAP, left atrial pressure; lbs, pounds; LVEF, left ventricular ejection fraction; MLHF, Minnesota Living with Heart Failure Questionnaire; N/A, not applicable; PAP, pulmonary artery pressure; PPV, positive predictive value; pt, patient; pt-y, patient years; RCT, randomized control trial; REDUCE-HF, Reducing Decompensation Events Utilizing Intracardiac Pressures in Patients With Chronic Heart Failure; SAE, serious adverse event; SENSE-HF, Sensitivity of the InSync Sentry feature for the Prediction of Heart Failure.

Data Supplement 29. CRT (Section 7.3.4.2)

Study Name, Author, Year	Aim of Study	Study Type	Patient Population - N (total) n (experimental) n (control)	Follow-Up (mo)	Baseline Treatment	NYHA Class	EF (%)	QRS durati on (ms)	Exclusion Criteria	QRS Subgroups by duration (ms)	Composite Endpoint (for QRS subgroups)	Results
COMPANION N Engl J Med	Aim of trial was to compare optimal	RCT	1520; 617; medical therapy*:	16.2 (CRT), 11.9 (medical)	ACE-Is, beta blockers, and	3 or 4	<u><</u> 35	<u>></u> 120	 non- randomized no-CRT control group 	120-147 (n 324); 148-	All cause mortality or	CRT with a pacemaker decreased the risk of the primary end point
2004;350:214 0-50.	pharmacologic		308;		spironolactone				enabled ICD	*168 (n 314); >168 (n 287)	hospitalizations	(HR: 0.81; p=0.014),
<u>15152059</u>	therapy plus CRT with a pacemaker,		pacemaker- defibrillator: 595						implantation only in one study arm only	100 (II 207)		CRT with a pacemaker-defibrillator
(248)	optimal pharmacologic								 cross-over study design did not report the 			decreased the risk of the primary endpoint (HR: 0.80; p=0.01)
	therapy plus CRT								clinical outcomes of			

	with a pacemaker– defibrillator, and optimal pharmacologic therapy alone in a population with advanced HF and intraventricular conduction delays.								interest • reported clinical outcomes without any relation to specific limited QRS ranges			Risk of the combined endpoint of death from or hospitalization for HFwas reduced by 34% in the pacemaker group (p<0.002) and by 40% in the pacemaker–defibrillator group (p<0.001 for the comparison with the pharmacologic-therapy group). Pacemaker reduced the risk of the secondary endpoint of death from any cause by 24% (p=0.059), and a pacemaker–defibrillator reduced the risk by 36% (p=0.003).
CARE-HF N Engl J Med 2005;352:153 9-49. <u>15753115</u> (249)	To analyze the effects of cardiac resynchronization on the risk of complications and death among pts who were receiving standard medical therapy for moderate or severe HF and cardiac dyssynchrony.	RCT	813; 409; medical therapy*: 404	29.4	ACE-Is, beta- blockers, and spironolactone	3 or 4	<u><</u> 35	<u>≥</u> 120	 not randomized lacked non-CRT control group enabled ICD implantation only in one study arm had cross-over study design did not report the clinical outcomes of interest such reported clinical outcomes without any relation to specific limited QRS ranges. 	120-159 (n 290); >159 (n 505)	All cause mortality or hospitalizations for major CV event including HF hospitalization	Primary endpoint was reached by 159 pts in the cardiac- resynchronization group, as compared with 224 pts in the medical-therapy group (39 % vs. 55%; HR: 0.63; 95 % CI: 0.51-0.77; p<0.001). There were 82 deaths in the cardiac-resynchronization group, as compared with 120 in the medical-therapy group (20% vs. 30%; HR: 0.64; 95 % CI: 0.48-0.85; p<0.002). As compared with medical therapy, cardiac resynchronization reduced the interventricular mechanical delay, the end-systolic volume index, and the area of the mitral regurgitant jet; increased the LVEF; and improved symptoms and the QoL (p<0.01 for all comparisons).

REVERSE <u>19038680</u> (223)	To determine the effects of CRT in NYHA functional class II HF and NYHA functional class I (ACC/AHA stage C) pts with previous HF symptoms.	RCT	610; 419; CRT-off : 191	12	ACE-Is, beta blockers, and spironolactone	1 or 2	<u><</u> 40	<u>≥</u> 120	 not randomized lacked non-CRT control group enabled ICD implantation only in one study arm had cross-over study design did not report the clinical outcomes of interest such reported clinical outcomes without any relation to specific limited QRS ranges. 	120-151 (n 303); >151 (n 307)	All cause mortality or HF hospitalization or worsened HF resulting in cross-over or drop-out worsened NYHA class or moderately or markedly worsened HF symptoms	The HF clinical composite response endpoint, which compared only the percent worsened, indicated 16% worsened in CRT-ON compared with 21% in CRT-OFF (p =0.10). Pts assigned to CRT-ON experienced a greater improvement in LV end-systolic volume index (-18.4 + 29.5 ml/m2 vs1.3 +23.4 ml/m2, p < 0.0001) and other measures of LV remodeling. Time-to-first HF hospitalization was significantly delayed in CRT-ON (HR: 0.47; p=0.03).
MADIT-CRT <u>19723701</u> (250)	Aim of trial was to determine whether CRT with biventricular pacing would reduce the risk of death or HF events in pts with mild cardiac symptoms, a reduced EF, and a wide QRS complex.	RCT	1800 1089 medical therapy*: 731	28.8	ACE-Is, beta- blockers, and spironolactone	1 or 2	<u><</u> 30	≥130	 not randomized lacked non-CRT control group enabled ICD implantation only in one study arm had cross-over study design did not report the clinical outcomes of interest such reported clinical outcomes without any relation to specific limited QRS ranges. 	130-149 (n 645); >149 (n 1175)	All cause mortality or HF event (HF hospitalization or outpatient intravenous diuretic therapy)	Primary end point occurred in 17.2% of the CRT–ICD group and in 25.3% of the ICD-only group. CRT–ICD group HR: 0.66; 95% CI: 0.52-0.84; p=0.001. The benefit did not differ significantly between pts with ischemic cardiomyopathy and those with nonischemic cardiomyopathy. CRT superiority was driven by a 41% reduction in the risk of HF events evident primarily in a prespecified subgroup of pts with a QRS duration ≥150 msec. CRT was associated with a significant reduction in LV volumes and improvement in the EF. There was no significant difference between the two groups in the overall risk of death, with a 3% annual mortality rate in each treatment group. SAEs were infrequent in the 2 groups.

RAFT 21073365 (251)	Aim of trial was to evaluate whether adding CRT to an ICD and optimal medical therapy might reduce mortality and morbidity among such pts.	RCT	1800; 894; No CRT: 904	40	ACE, beta- blockers, and spironolactone	2 or 3	<u><</u> 30	<u>≥</u> 120	 not randomized lacked non-CRT control group enabled ICD implantation only in one study arm had cross-over study design did not report the clinical outcomes of interest such reported clinical outcomes without any relation to specific limited QRS ranges. 	120-149 (n 627); >149 (n 1036)	All casue mortality or HF hospitalization	Primary outcome occurred in 33.2% in the ICD–CRT group and 40.3% in the ICD group; ICD–CRT group HR: 0.75; 95% CI: 0.64- 0.87; p<0.001. In the ICD–CRT group, 186 pts died, as compared with 236 in the ICD group (HR: 0.75; 95% CI: 0.62-0.91; p=0.003), and 174 pts were hospitalized for HF, as compared with 236 in the ICD group (HR: 0.68; 95% CI: 0.56- 0.83; p<0.001). 30 d after device implantation, AEs had occurred in 124 pts in the ICD-CRT group, as compared with 58 in the ICD group (p<0.001).
PROSPECT Circulation. 2008;117: 2608-2616. <u>18458170</u> (252)	Aim of trial was to evaluate selected, predefined baseline echocardiographic parameters for their ability to predict clinical and echocardiographic response to CRT.	prospecti ve, multicent er, nonrand omized study (observat ional)	498-enrolled; 467-implanted; Not applicable	6	Medical therapy, unless contraindicated, was to include an ACE-I or ARB for at least 1 mo before enrollment and a beta blocker started at least 3 mo before and unchanged for at least 1 mo before enrollment	3 or 4	<u><</u> 35	<u>≥</u> 130	N/A	N/A	12 echocardiograp hic parameters of dyssynchrony, based on both conventional and tissue Doppler-based methods, were evaluated after site training in acquisition methods and blinded core laboratory analysis.	Clinical composite score was improved in 69% of 426 pts, whereas LV end-systolic volume decreased ≥15% in 56% of 286 pts with paired data. The ability of the 12 echo parameters to predict clinical composite score response varied widely, with sensitivity ranging from 6%- 74% and specificity ranging from 35%- 91%; for predicting LVESV response, sensitivity ranged from 9%-77% and specificity from 31%-93%. For all the parameters, the area under the ROC curve for positive clinical or volume response to CRT was ≤0.62. There was large variability in the analysis of the dyssynchrony parameters.
CONNECT J Am Coll Cardiol 2011;57:1181 –9	To determine if wireless remote monitoring with automatic clinician alerts reduces the	multicent er, prospecti ve, randomiz	1,997 REMOTE ARM: 1014 All automatic clinician alerts	15	N/A	Inclusion criteria: 1) being able and willing to replace	N/A	N/A	permanent AF chronic warfarin therapy previous ICD, CRT device, or pacemaker age <18 y	N/A	N/A	The median time from clinical event to clinical decision per pt was reduced from 22 d in the in-office arm to 4.6 d in the remote arm (p<0.001). The health care

21255955	time from a clinical	ed	were enabled for			regularly		T	having a life expectancy			utilization data revealed a
(252)	event to a clinical	evaluatio	pts in the remote			scheduled			<15 mo			decrease in mean length of stay
(232)	decision in	n	arm. Audible pt			in-office						per CV hospitalization visit from 4.0
	response to	11	alerts were			follow-ups						d in the in-office arm to 3.3 d in the
	arrhythmias, CV		disabled with the			with remote						remote arm
	disease		exception of			followups;						(p=0.002).
	progression,		those related to			and 2) being						(p=0.002).
	and device issues		lead and			able to						
	compared to pts		device integrity.			attend all						
	receiving standard		IN-OFFICE ARM:			required						
	in-office care. A		983			follow-up						
	secondary		Only audible pt			visits.						
	objective was to		alerts associated			No HF as						
	compare the rates		with lead and			well as						
	of CV health care		device integrity			NYHA 1-4						
	utilization between		were enabled for			were						
	pts in the remote		pts in the			included in						
	and in-office arms.		in-office arm			study						
			because they are			Sludy						
			nominal settings									
			and considered									
			standard of care									
SMART AV	Aim of trial was to	randomiz	1014; 332 SD;	6	Diuretics, beta	3 or 4	<u><</u> 35%,	>120	Complete heart block,	N/A	The primary	The medians (quartiles 1 and 3) for
Circulation.	compare 3	ed,	323-Echo; 325	0	blockers, and	0014	,	-120	or who otherwise are	14/7 (endpoint was	change in LV end-systolic volume
2010;122:266	alternative	multicent	Fixed nominal AV		angiotensin-				unable to tolerate pacing		LV end-systolic	at 6 mo for the SmartDelay,
0-2668	techniques and to	er,	delay		converting				at VVI-40-RV for up to 14		volume.	echocardiography, and fixed arms
21098426	assess the	double-	doldy		enzyme inhibitors				d		Secondary	were 21 mL (45 and 6 mL), 19 mL
(253)	hypotheses that	blinded,			or angiotensin				Previously received		endpoints	(45 and 6 mL), and 15 mL (41 and
(200)	systematic AV	3-armed			receptor				CRT		included NYHA	6 mL), respectively. No difference
	delay optimization	trial			blockers,				Upgrade of a		class, QoL	in improvement in left ventricular
	with	then			bioonoro,				pacemaker or ICD and		score, 6-min	end-systolic volume at 6 months
	echocardiography								unable to tolerate pacing		walk distance,	was observed between the
	and/or the SD								at VVI-40-RV for up to 14		LV end-diastolic	SmartDelay and echocardiography
	algorithm is								d		volume, and	arms (p=0.52) or the SmartDelay
	superior to a fixed								Heart transplant during		LVEF.	and fixed
	nominal AV delay								the course of the study			arms (p=0.66). Secondary end
	as demonstrated								Cardiac surgeries or			points, including structural (LV end-
	by improved LV								procedures planned			diastolic volume and LVEF) and
	geometry after 6								during the study			functional (6-min walk, QoL, and
	mo and that								Have or are likely to			NYHA classification)
ļ	programming								receive a tricuspid valve			measures, were not significantly
ļ	according to SD is								prosthesis (mechanical			different between arms.
	noninferior to using	1	1			1						

echocardiography- determined AV delay optimization.		 Neuromuscular, orthopedic, or other noncardiac condition that prevents normal, unsupported walking Pregnant or planning to become pregnant Enrolled in another investigational study or registry that would directly impact the current study 	

*diuretics, ACEIs, beta-blockers, and spironolactone

ACEI indicates angiotensin-converting-enzyme inhibitor; ARB, angiotensin receptor blocker; AV, atrioventricular; CARE-HF, Cardiac resynchronization in heart failure; COMPANION, comparisons of medical therapy, pacing, and defibrillation in heart failure; CONNECT, Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision; CRT, cardiac resynchronization therapy; EF, Ejection Fraction; HCU; Health Care Utilization; HF, heart failure; HM, home monitoring; ICD, implantable cardioverter defibrillator; LVES left ventricular end-systolic; LVESV, left ventricular end-systolic volume; MADIT-CRT, multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy; N/A, not applicable; NYHA, New York Heart Association; PROSPECT, Predictors of Response to CRT; Pt, patient; REVERSE, resynchronization reverses remodeling in systolic left ventricular dysfunction, RAFT, resynchronation-defibrillation for ambulatoryheart failure trial; ROC curve, receiver-operating characteristics curve; SMART-AV, SmartDelay Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac Resynchronization Therapy; SD, SmartDelayTM, TRUST, The Lumos-T Safely Reduces Routine Office Device Follow-Up;

Data Supplement 30. Therapies, Important Considerations (Section 7.4.2)

Study Name, Author, Yearl	Aim of Study	Study Type	Study Size	Patient Pop	ulation	Results	P Values & 95% Cl:	OR: HR: RR:	Study Limitations
				Inclusion Criteria	Exclusion Criteria				
Hemodynamic Assessm	ent of Hospitalized	Patient							
Binanay C, Califf RM, Hasselblad V et al. Evaluation study of congestive HF and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 2005 October 5;294(13):1625-33. <u>16204662</u> (254)	To determine whether PAC use is safe and improves clinical outcomes in pts hospitalized with severe symptomatic and recurrent HF	RCT	433	Pts with severe symptomatic HF despite recommended therapies. 1) hospitalization for HF within the past y; (2) urgent visit to the ED; or (3) treatment during the preceding mo with >160 mg of furosemide daily (or equivalent). LVEF ≤30%, SBP ≤125mmHg, and at least 1 sign and 1 symptom of congestion.	Exclusion criteria to minimize confounding comorbidities or urgent crossover included Crlevel >3.5 mg/dL (309.4 µmol/ L), or prior use of dobutamine or dopamine >3 µg/kg/min, or any prior use of milrinone during the current hospitalization.	PAC did not significantly affect the primary endpoint of d alive and out of the hospital during the first 6 mo (133 d vs 135 d; HR: 1.00; 95% CI: 0.82-1.21; p=.99), mortality (43 pts [10%] vs 38 pts [9%]; OR: 1.26; 95% CI: 0.78-2.03; p=.35), or the number of d hospitalized (8.7 vs 8.3; HR: 1.04; 95% CI: 0.86-1.27; p=.67). HR: 1.0 d alive outside hospital, HR: 1.26 for mortality (p=0.35), h 1.04 For d hospitalized.19 % mortality at 6 mo (dead at 180 d= 43 in PAC, 38 in CAG). Annualized mortality 36%. Inhospital AEs were more common among pts in the PAC group (47 [21.9%] vs 25 [11.5%]; p=.04). There were no deaths related to PAC use, and no difference for in-hospital plus 30-d mortality (10 [4.7%] vs 11 [5.0%]; OR: 0.97; 95% CI, 0.38-2.22; p=.97	p=0.35	1.26	Use of inotropes, variability between centers, generalizabiity of stringent hemodynamic targets ,individualized targets not applied

Drazner MH, Hellkamp AS, Leier CV et al. Value of clinician assessment of hemodynamics in advanced HF: the ESCAPE trial. Circ Heart Fail 2008 September;1(3):170-7. <u>19675681 (</u> 31)	To determine whether estimated hemodynamics from history and physical examination reflect invasive measurements and predict outcomes in advanced HF	Retrospective analysis	194	Compared H&P estimates of filling pressures and cardiac index with invasive measurements in 194 pts in the ESCAPE trial. H&P estimates were compared with 6-mo outcomes in 388 pts enrolled in ESCAPE.	Crlevel >3.5 mg/dL (309.4 µmol/L), or prior use of dobutamine or dopamine >3 µg/kg/min, or any prior use of milrinone during the current hospitalization.	RAP was <8 mm Hg in 82% of pts with RAP estimated from jugular veins as <8 mm Hg, and was >12 mm Hg in 70% of pts when estimated as >12 mm Hg. From the H&P, only estimated RAP ≥12 mm Hg (OR: 4.6; p<0.001) and orthopnea ≥2 pillows (OR: 3.6; p<0.05) were associated with PCWP ≥30 mm Hg. Estimated cardiac index did not reliably reflect measured cardiac index (p=0.09), but "cold" versus "warm" profile was associated with lower median measured cardiac index (1.75 vs. 2.0 L/min/m(2); p=0.004). In Cox regression analysis, discharge "cold" or "wet" profile conveyed a 50% increased risk of death or rehospitalization. In advanced HF, the presence of orthopnea and elevated jugular venous pressure are useful to detect elevated PCWP, and a global assessment of inadequate perfusion ("cold" profile) is useful to detect reduced cardiac index. Hemodynamic profiles estimated from the discharge H&P identify pts at increased risk of early events.	p<0.05	Estimated RAP OR: 4.6, orthopnea OR: 3.6	posthoc, small sample
Shah MR, Hasselblad V, Stevenson LW et al. Impact of the pulmonary artery catheter in critically ill pts: meta- analysis of randomized clinical trials. <i>JAMA</i> 2005 October 5;294(13):1664-70 <u>16204666 (</u> 255)	To estimate the impact of the PAC device in critically ill pts.	Meta-analysis	5051	MEDLINE (1985-2005), the Cochrane Controlled Trials Registry (1988-2005), the National Institutes of Health ClinicalTrials.gov database, and the US Food and Drug Administration Web site for RCTs in which pts were randomly assigned to PAC or no PAC were searched. Results from the ESCAPE trial of pts with severe HF were also included. Search terms included pulmonary artery catheter, right heart catheter, catheter, and Swan-Ganz.	N/A	HR for mortality 1.04. In critically ill pts, use of the PAC neither increased overall mortality or d in hospital nor conferred benefit. Despite almost 20 y of RCTs, a clear strategy leading to improved survival with the PAC has not been devised. The neutrality of the PAC for clinical outcomes may result from the absence of effective evidence-based treatments to use in combination with PAC information across the spectrum of critically ill pts.Use of the PAC was associated with a higher use of inotropes (OR: 1.58; 95% Cl: 1.19-2.12; p= .002) and IV vasodilators (OR: 2.35; 95% Cl: 1.75-3.15; p<.001).	p=0.53	The combined OR for mortality was 1.04 (95% CI: 0.90-1.20; p=.59). The difference in the mean number of d hospitalized for PAC minus the mean for no PAC was 0.11 (95% CI: -0.51- 0.74; p=.73).	heterogenity of studies

Allen LA, Rogers JG, Warnica JW et al. High mortality without ESCAPE: the registry of HF pts receiving pulmonary artery catheters without randomization. J Card Fail 2008 October;14(8):661-9 <u>18926438 (</u> 256)	To characterize pts enrolled in ESCAPE Registry	Registry	439	ESCAPE sites enrolled 439 pts receiving PAC without randomization in a prospective registry. Baseline characteristics, pertinent trial exclusion criteria, reasons for PAC use, hemodynamics, and complications were collected. Survival was determined from the National Death Index and the Alberta Registry. Much sicker pts than ESCAPE	N/A	Registry pts had longer hospitalization (13 vs 6 d, p<.001) and higher 6-mo mortality (34% vs 20%, p<.001) than trial pts. On average, registry pts had lower blood pressure, worse renal function, less neurohormonal antagonist therapy, and higher use of IV inotropes compared with trial pts. Although clinical assessment anticipated less volume overload and greater hypoperfusion among the registry population, measured filling pressures were similarly elevated in the registry and trial pts, whereas measured perfusion was slightly higher among registry pts. 6 mo mortality 34%	p<0.05	N/A	N/A
Positive Pressure Venti Gray A, Goodacre S, Newby DE, Masson M, Sampson F, Nicholl J. Noninvasive ventilation in acute cardiogenic pulmonary edema. <i>N</i> <i>Engl J Med</i> 2008 July 10;359(2):142-51. <u>18614781 (</u> 257)	InterpretationStudiesNoninvasiveventilationventilationCPAPorNIPPVappears to be ofbenefit in theimmediatetreatment of ptswith acutecardiogenicpulmonaryedema and mayreduce mortality.To determinewhethernoninvasiveventilationreduces mortalityand whetherthere areimportantdifferences inoutcomeassociated withthe method oftreatment (CPAPor NIPPV).	RCT	1069 (trandomize d to standard oxygen therapy, (n- 367) versus CPAP (5 to 15 cm of water) (n=346) OR NIPPV (inspiratory pressure, 8 to 20 cm of water; expiratory pressure, 4 to 10 cm of water) (n=356).	Age > 16 y, clinical diagnosis of acute cardiogenic PE, PE on chest radiograph, respiratory rate >20 breaths/min, and arterial hydrogen ion concentration >45 nmol/L (pH <7.35).	N/A	There was no significant difference in 7-d mortality between pts receiving standard oxygen therapy (9.8%) and those undergoing noninvasive ventilation (9.5%, P=0.87). There was no significant difference in the combined endpoint of death or intubation within 7 d between the two groups of pts undergoing noninvasive ventilation (11.7% for CPAP and 11.1% for NIPPV, p=0.81). In pts with acute cardiogenic PE, noninvasive ventilation induces a more rapid improvement in respiratory distress and metabolic disturbance than does standard oxygen therapy but has no effect on short-term mortality. CPAP or NIPPV MAY be considered as adjunctive therapy in pts with severe acute cardiogenic pulmonary oedema in the presence of severe respiratory distress or when there is a failure to improve with pharmacological therapy.As compared with standard oxygen therapy, noninvasive ventilation was associated with greater mean improvements at 1 h after the beginning of treatment in pt-reported dyspnea (treatment difference, 0.7 on a visual-analogue scale ranging from 1 to 10; 95% CI: 0.2-1.3; p=0.008), heart rate (treatment difference, 4 beats/min; 95% CI; 1-6; p=0.004), acidosis (treatment difference, pH 0.03; 95% CI: 0.02-0.04; p<0.001), and hypercapnia (treatment difference, 0.7 kPa [5.2 mm Hg]; 95% CI: 0.4-0.9; p<0.001).	p=0.87	N/A	N/A

Masip J, Roque M, Sanchez B, Fernandez R, Subirana M, Exposito JA. Noninvasive ventilation in acute cardiogenic pulmonary edema: systematic review and meta- analysis. <i>JAMA</i> 2005 December 28;294(24):3124-30 <u>16380593 (</u> 258)	To systematically review and quantitatively synthesize the short-term effect of noninvasive ventilation on major clinical outcomes.	Meta-analysis	15 trials comparing noninvasive ventilation to to convention al oxygen	Acute PE, relevant randomized controlled trials and systematic reviews published from 1988-2005. Included trials were all parallel studies comparing noninvasive ventilation to conventional oxygen therapy in pts with acute PE. Comparisons of different techniques, either CPAP or bilevel NIPSV, were also included	N/A	Overall, noninvasive ventilation significantly reduced the mortality rate by nearly 45% compared with conventional therapy (RR: 0.55; 95% CI; 0.40-0.78; p=.72 for heterogeneity). The results were significant for CPAP (RR: 0.53; 95% CI: 0.35-0.81; p= .44 for heterogeneity) but not for NIPSV (RR: 0.60; 95% CI, 0.34-1.05; p=.76 for heterogeneity), although there were fewer studies in the latter. Both modalities showed a significant decrease in the "need to intubate" rate compared with conventional therapy: CPAP (RR: 0.40; 95% CI: 0.27-0.58; p=.21 for heterogeneity), NIPSV (RR, 0.48; 95% CI: 0.30-0.76; p=.24 for heterogeneity), and together (RR: 0.43; 95% CI: 0.32-0.57; p=.20 for heterogeneity). There were no differences in intubation or mortality rates in the analysis of studies comparing CPAP and NIPSV.Noninvasive ventilation reduces the need for intubation and mortality in pts with acute cardiogenic pulmonary edema. Although the level of evidence is higher for CPAP, there are no significant differences in clinical outcomes when comparing CPAP vs. NIPSV.	p<0.05 for mortality reduction with noninvasive ventilation	RR: 0.55	N/A
Severe Cardiogenic Sho Kar B, Gregoric ID, Basra SS, Idelchik GM, Loyalka P. The percutaneous ventricular assist device in severe refractory cardiogenic shock. <i>J Am</i> <i>Coll Cardiol</i> 2011 February 8;57(6):688- 696. <u>20950980 (</u> 259)	Dck Patient, Role of To determine the efficacy and safety of the pVAD in pts in SRCS despite intra-aortic balloon pump and/or high-dose vasopressor support.	PVADs to Bridge Prospective Cohort	e to Recovery	or Bridge/Transplant Cardiogenic shock pts with a SBP of 90 mm Hg, a cardiac index of 2.0 I/(min·m2) and evidence of end-organ failure despite IABP/pressor support.A total of 117 pts with SRCS implanted with TandemHeart pVAD were studied, of whom 56 pts (47.9%) underwent active cardiopulmonary resuscitation immediately before or at the time of implantation	N/A	56 (47.9%) of the 117 pts (41 of 80 [51.2%] with ICM; 15 of 37 [40.5%] with NICM) were undergoing CPR during pVAD placement. The average time from CPR onset to TandemHeart implantation was $65.6+/-41.3$ min. 80 pts had ischemic and 37 pts had nonischemic cardiomyopathy. The average duration of support was 5.8 d. After implantation, the cardiac index improved from median 0.52 (interquartile range [IQR]: 0.8) I/(min·m2) to 3.0 (IQR: 0.9) I/(min·m2) (p=0.001). The SBP and mixed venous oxygen saturation increased from 75 (IQR: 15) mm Hg to 100 (IQR: 15)mm Hg (p 0.001) and 49 (IQR: 11.5) to 69.3 (IQR: 10) (p 0.001), respectively. The PCWP, lactic acid level, and Crlevel decreased, respectively, from 31.53 to 10.2 mm Hg to 17.29 10.82 mm Hg (p 0.001), 24.5 (IQR: 74.25) mg/dl to 11 (IQR: 92) mg/dl (p=0.001), and 1.5 (IQR: 0.95) mg/dl to 1.2 (IQR: 0.9) mg/dl (p 0.009). The mortality rates at 30 d and 6 mo were 40.2% and 45.3%, respectively.	N/A	N/A	N/A

Thiele H, Lauer B, Hambrecht R, Boudriot E, Cohen HA, Schuler G. Reversal of cardiogenic shock by percutaneous left atrial- to-femoral arterial bypass assistance. <i>Circulation</i> 2001 December 11;104(24):2917-2922. 11739306 (260)	To characterize whether PVAD may offer effective treatment for cardiogenic shock	Case Series	18	VADs were implanted in 18 consecutive pts who had cardiogenic shock after MI.	N/A	Mean duration of cardiac assistance was 4+/-3 d. Mean flow of the VAD was 3.2+/-0.6 L/min. Before support, cardiac index was 1.7+/-0.3 L/min per m(2) and improved to 2.4+/- 0.6 L/min per m(2) (p<0.001). Mean blood pressure increased from 63+/-8 mm Hg to 80+/-9 mm Hg (p<0.001). PCWP, central venous pressure, and pulmonary artery pressure were reduced from 21+/-4, 13+/-4, and 31+/-8 mm Hg to 14+/-4, 9+/-3, and 23+/-6 mm Hg (all p<0.001), respectively. Overall 30-d mortality rate was 44%.	N/A	N/A	N/A
Idelchik GM, Simpson L, Civitello AB, Loyalka P, Gregoric ID, Delgado R, III, Kar B. Use of the percutaneous left ventricular assist device in pts with severe refractory cardiogenic shock as a bridge to long-term left ventricular assist device implantation. <i>J Heart</i> <i>Lung Transplant</i> 2008 January;27(1):106-111. 18187095 (261)	To evaluate the efficacy of a PVAD as a bridge to LVAD implantation in pts in cardiogenic shock refractory to IABP and pressor support.	Case Series	18	18 pts in SRCS received a PVAD as a bridge to LVAD placement or orthotopic heart transplantation. 6 pts had ischemic cardiomyopathy, and 12 had nonischemic cardiomyopathy. At the time of PVAD placement, 17 were receiving IABP support, and 10 were undergoing cardiopulmonary resuscitation	N/A	The mean duration of PVAD support was 4.2 +/- 2.5 d. During this time, the cardiac index improved from 0.86 +/- 0.66 to 2.50 +/- 0.93 liters/min/m2 ($p < 0.001$), SBP improved from 72 +/- 11 to 98 +/- 15 mm Hg (p =0.001), and systemic mixed venous oxygenation improved from 37 +/- 7 to 62 +/- 6 mm Hg ($p < 0.001$). We terminated life support in 4 of the 18 pts before LVAD placement; 14 were successfully bridged to LVAD or heart transplantation. The mortality rate was 27% at 30 d and 33% at 6 mo. There were no PVAD-associated deaths. CONCLUSION: In pts with terminal hemodynamic collapse, PVAD support is an effective bridging therapy to LVAD and appears to be a viable alternative to other invasive methods of support	N/A	N/A	N/A
Cheng JM, den Uil CA, Hoeks SE, van der EM, Jewbali LS, van Domburg RT, Serruys PW. Percutaneous left ventricular assist devices vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: a meta-analysis of controlled trials. <i>Eur</i> <i>Heart J</i> 2009 September;30(17):2102- 2108 <u>19617601</u> (262)	A meta-analysis of controlled trials of PVADs vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock for 30 d mortality	Meta-Analysis		2 trials evaluated the TandemHeart and a recent trial used the Impella device	N/A	After device implantation, percutaneous LVAD pts had higher CI (MD 0.35 L/min/m(2), 95% CI: 0.09-0.61), higher MAP (MD 12.8 mmHg, 95% CI: 3.6-22.0), and lower PCWP (MD -5.3 mm Hg, 95% CI: -9.4 to -1.2) compared with IABP pts. Similar 30-day mortality (RR: 1.06; 95% CI: 0.68-1.66) was observed using percutaneous LVAD compared with IABP. No significant difference was observed in incidence of leg ischaemia (RR: 2.59, 95% CI: 0.75-8.97) in percutaneous LVAD pts compared with IABP pts. Bleeding (RR: 2.35, 95% CI: 1.40-3.93) was significantly more observed in TandemHeart pts compared with pts treated with IABP.Although percutaneous LVAD provides superior haemodynamic support in pts with cardiogenic shock compared with IABP, the use of these more powerful devices did not improve early survival. These results do not yet support percutaneous LVAD as first-choice approach in	N/A	N/A	N/A

						the mechanical management of cardiogenic shock.			
Seyfarth M, Sibbing D, Bauer I, Frohlich G, Bott-Flugel L, Byrne R, Dirschinger J, Kastrati	To test whether the LVAD Impella LP2.5 provides superior	RCT (ISAR- SHOCK Trial)	26	Cardiogenic shock post AMI	N/A	In 25 pts the allocated device (n=13 IABP, n=12 Impella LP2.5) could be safely placed. 1 pt died before implantation. The CI after 30 min of support was significantly increased in pts with the Impella LP2.5 compared with pts with IABP	mortality p= ns	N/A	N/A
A, Schomig A. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. <i>J</i> <i>Am Coll Cardiol</i> 2008 November 4;52(19):1584-1588 19007597 (263)	hemodynamic support compared with the IABP.					(Impella: DeltaCI = 0.49 +/- 0.46 I/min/m(2); IABP: DeltaCI = 0.11 +/- 0.31 I/min/m(2); p = 0.02). Overall 30-d mortality was 46% in both groups.percutaneously placed LVAD (Impella LP 2.5) is feasible and safe, and provides superior hemodynamic support compared with standard treatment using an IABP.			
Burkhoff D, Cohen H, Brunckhorst C, O'Neill WW. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. <i>Am Heart J</i> 2006	To test the hypothesis that the TandemHeart (PVAD) provides superior hemodynamic support compared with IABP.	RCT (Tandem vs IABP)	42	Pts from 12 centers presenting within 24 h of developing cardiogenic shock.randomized to treatment with IABP (n=14) or TandemHeart PVAD (n=19). Thirty pts (71%) had persistent shock despite having an IABP in place at the time of study enrollment.	N/A	Cardiogenic shock was due to MI in 70% of the pts and decompensated HF in most of the remaining pts. The mean duration of support was 2.5 d. Compared with IABP, the TandemHeart PVAD achieved significantly greater increases in cardiac index and mean arterial blood pressure and significantly greater decreases in PCWP. Overall 30- dsurvival and SAEs were not significantly different between the 2 groups	Mortality =ns	N/A	N/A

September;152(3):469-8 16923414 (264)						
					2017	

AMI indicates, acute myocardial infarction; CPAP, continuous positive airway pressure; IABP, intra-aortic balloon pump; LVAD, left ventricular assist device; N/A, not applicable; NIPPV, noninvasive intermittent positive-pressure ventilation; NIPSV noninvasive pressure support ventilation; PAC, pulmonary artery catheter; PCWP, pulmonary capillary wedge pressure; PE, pulmonary edema; PVAD; percutaneous ventricular assist device; RAP, right atrial pressure; SBP, systolic blood pressure; SRCS, severe refractory cardiogenic shock;

Data Supplement 31. Sildenafil (Section Section 7.4.2)

Study Name, Author, Year	Aim of study	Study Type	Study Size	Etiology	Patien	t Population	Severity	Endpoints	Trial Duration (Years)	Absolute Benefit	P Values & 95% CI:
PDE5 Inhibition With Sildenafil Improves LVDF, Cardiac Geometry, and Clinical Status in Pts With Stable Systolic HF, Guazzi M, 2011 <u>21036891</u> (265)	To test the effects of PDE5 inhibition (sildenafil) on LVEF, LVDF, cardiac geometry, and clinical status	RCT	45	Ischemic/Non- Ischemic 50% ICM	Inclusion Criteria NYHA II-III HF with clinical stable conditions defined as no changes in HF regimens or hospitalization since 6 mo before study entry; Negative exercise stress test before study; FEV1/FVC >70%; LVEF <40% Presence of LV diastolic dysfunction determined by Doppler analysis with documen- tation of a mitral inflow early (E) velocity to mitral annulus early velocity (E') >10.	<i>Exclusion Criteria</i> Unable to complete a maximal exercise test; Resting SBP <110 mm Hg; therapy with nitrate preparations; LVADs; History of sildenafil intolerance; significant lung or valvular diseases, neuromuscular disorders, or peripheral vascular disease; Diabetic pt	Severity of HF Symptoms 100% NYHA II-III (42% NYHA III/58% NYHA III) peak VO2 12.8 ml/min/kg VE/VCO2 slope 35.3	Primary Endpoint LV diastolic function, chamber dimensions, and mass	1 y	D Mitral E/A @ 1yr placebo 0 vs SIL -0.19 D IVRT @ 1y placebo +1.4 vs SIL - 6.0 D E/E', lat @ 1yr placebo -0.8 vs. SIL +3.7 D LVEDD (mm)@ 1y placebo +0.9 vs SIL - 4.2d D LVMI @ 1yr placebo no change, SIL decrease (value not provided) D peak VO2 @ 1y placebo +0.3 vs SIL +2.7 D VE/VCO2 Slope at 1y placebo +0.4 vs SIL -6.0; D QOL (breathlessness, fatige, emotional function)	p<0.01 for all parameters

PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support, Tedford RJ, 2008 <u>19808294 (</u> 266)	To test the hypothesis that when PH persists after adequate LV unloading via recent LVAD therapy, phosphodiesterase type 5A inhibition would decrease PH in this population.	Open label clinical trial	58	56% ICM	Advanced LV dysfunction, treatment with LVAD implantation, and persistent PH (defined by a PVR >3 Wood Units 7 to 14 d after LVAD implantation) despite normalization of their PCWP to a value <15 mmHg were consented for and received treatment with sildenafil in an attempt to reduce PVR before cardiac transplantation	Combined LVAD and RVAD; Pts receiving chronic inotrope therapy	N/A	endpoint of the 12 to 15 wk change in PVR andcontractility index (dP/dtmax/IP)	Enrollment 1999- 2007; 12-15 wk of sildenafil treatment/follow- up;	Lowering of PVR from 5.87±1.93 to 2.96±0.92 Wood Units (mm Hg/ L/min;) after 2- 4 wk of sildenafil therapy; vs. no change in PVR in LVAD only group. Also, marked improvement in RV systolic and diastolic function, as measured by RV contractility index (dP/dtmax/IP; 8.69±1.78 to 13.1±3.3) in LVAD + sildenafil group	Change in PVR, p<0.001 for LVAD +sildenafil group Change in RV contractility index for LVAD+sildefanil group, p<0.0001
Sildenafil Improves Exercise Capacity and Quality of Life in Pts With Systolic HF and Secondary Pulmonary Hypertension, Lewis GD, 2007 <u>17785618</u> (267)	To test the hypothesis that sildenafil, an effective therapy for pulmonary arterial hypertension, would lower pulmonary vascular resistance and improve exercise capacity in pts with HF complicated by PH	RCT	34	50% ICM	≥18 y of age, LVEF<40%,NYHA II-IV chronic HF despite standard HF therapies Pts were required to have secondary PH as defined by a mean pulmonary arterial pressure >25 mm Hg	Pts with a noncardiac limitation to exercise, provocable ischemia, hemodynamic instability, or ongoing nitrate therapy were excluded. Additional exclusion criteria included concentric LV hypertrophy, critical aortic stenosis, or long-term use of medications that inhibit cytochrome P450 3A4.	100% NYHA II-IV (53% NYHA II / 38% NYHA III/ 9% NYHA IV) peak VO2 11.1 ml/kg/min	No predefinied primary endpoints; measured exercise capacity, invasive hemodyanamic parameters, QoL, and biomarkers	12 wk trial	Peak VO2 increased from 12.2 ± 0.7 to 13.9 ± 1.0 mL/ kg/min in the sildenafil group (p=0.02) and did not change in the placebo group. Change in peak VO2 from baseline among pts treated with sildenafil (1.8 ± 0.7 mL/· kg/min) was greater than the change in the placebo group (-0.27 mL/kg/min; p=0.02). Sildenafil treated pts had improvement in RVEF at rest and with exercise; control group had no improvement in RVEF. Mean MLHFQ score decreased (reflecting improvement) by 13 ± 5 and 16 ± 5 at wk 6 and 12, respectively, among pts receiving sildenafil (p=0.007) and did not change in pts receiving placebo.	

Long-term use of sildenafil in the therapeutic management of HF, Guazzi M, 2007 <u>18036451</u> (268)	To test the functional exercise capacity and endothelial function in a cohort of CHF pts treated with chronic type 5 phosphodiesterase (PDE5) inhibitor	RCT	46	ICM 46%	Stable NHYA II-III CHF ; negative exercise stress test prior to study; FEV1/FVC >70%; LVEF <45%, determined by echocardiography.	Unable to complete a maximal exercise test; SBP >140 or <110 mm Hg; DM; Therapy with nitrate; History of sildenafil intolerance; Significant lung or valvular diseases, neuromuscular disorders, AF, claudication, or peripheral vascular disease	NYHA II-III peak VO2 15 ml/min/kg	No predefined primary endpoint; assessments (at 3 and 6 mo) of endothelial function by brachial artery FMD, cardiopulmonary exercise testing, ergoreflex response, and QOL questionnaire (CHF) were performed	6 mo f/u	In the sildenafil group only, at 3 and 6 mo, systolic PAP decreased from 33.7 to 25.2 mm Hg and then 23.9 mm Hg, ergoreflex effect on ventilation decreased from 6.9 to 2.3/min and 1.9L/min, VE/VCO2 decreased from 35.5 to 32.1 and 29.8, and breathlessness (score) from 23.6 to 16.6 and 17.2, FMD increased from 8.5% to 13.4% and 14.2%, peak VO2 from 14.8 to 18.5 ml/min/kg and 18.7 ml/min/kg, and ratio of VO2 to work rate changes from 7.7 to 9.3 and 10.	p<0.01 for all changes
Sildenafil Effects on Exercise, Neurohormonal Activation, and Erectile Dysfunction in Congestive HF, Bocci EA, 2002 <u>12196335</u> (94)	To investigate the acute effects of sildenafil on exercise, neurohormonal activation, and clinical status of CHF pts with (ED). To evaluate the efficacy and safety of sildenafil for ED treatment in a 1-mo follow-up	RCT	23	ICM 22%	CHF outpatients who were referred for ED treatment (ED was defined as the inability to achieve or maintain an erection sufficient to permit satisfactory sexual intercourse); History of ED $x \ge 4$ mo, present interest in sex and in a stable relationship; Concomitant new symptoms of CHF, worsening of HF clinical status, or a change in specific medication for CHF; All pts were in stable clinical condition without required changes in treatment within the last 3 mo.	ED considered secondary to causes other than CHF; Previous therapy for ED, Recent use of PDE inhibitors; Severe systemic disease, visual disturbances, psychiatric or psychological disorder; UA or MI within the previous 3 mo;, Syncope, Angina, HR <55 bpm, high-risk arrhythmias, new atrial tachycardia/fibrillation/flutter or uncontrolled high ventricular response, new or high degree of AV block HCM Valvular disease, Symptomatic hypotension or SBP <85 mm Hg Unstable CHF, low systemic	NYHA II-IV	First phase: 6MWT, exercise test Second phase: efficacy of sildenafil in ED was evaluated by the 15 questions of the IIEF; adverse side effects	1 mo	Peak VO2 (ml/kg/min) placebo 16.6 <u>+</u> 3.4 vs sildenafil 17.7 <u>+</u> 3.4 Ve/VCO2 slope placebo 33+8 sildenafil 31 <u>+</u> 5	p=0.025 p=0.027

	perfusion, or venous or pulmonary congestion.	

6MWT indicates 6 minute walk test; AF, atrial fibrillation; AV, atrioventricular; CHF, congestive heart failure; D, Doppler; DM, diabetes mellitus; ED, erectile dysfunction; EF, ejection fraction; FEV, forced expiratory volume; FMD, flow-mediated dilatation; FVC, forced vital capacity; HCM, hypertrophic cardiomyopathy; HF, heart failure; HR, heart rate; ICM, ischemic cardiomyopathy; IIEF, International Index of Erectile Function; LVAD, left ventricular assist device; LVDF, left ventricular diastolic function; LVEDD, left ventricular end diastolic diameter; LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; Mitral E/A, Mitral early-to-late velocity; MLHFQ, Minnesota Living with Heart Failure Questionaire; MI, myocardial infarction; NYHA, New York Heart Association; PAP, pulmonary artery pressure; PCWP, pulmonary vascular resistance; QoL, quality of life; RCT, randomized control trial; RVAD, right ventricular assist device; RVEF, right ventricular ejection fraction; SBP, systolic blood pressure; SIL, sildenafil; UA, unstable angina; VE/VCO2, ventilation efficiency ventilation to CO₂ production slope; VO2, oxygen volume.

Data Supplement 32. Inotropes (Section 7.4.4)

Study	Aim of	Stud	Backgrou	Study Size	Etiology	Patient P	opulation	Seve	erity	End	points	Morta	lity	Trial	Absolute	Statistical	Study	Complicatio
Name,	study	у	nd											Duratio	Benefit or	Analysis	Limitatio	ns/Adverse
Author,		Туре	Therapy											n	Major	(Results)	ns	Events
Year														(Years)	Finding			
			Pretrial	N (Total)	Ischemic/	Inclusion	Exclusion	Severity of	Study	Primary	Secondary	Annualized	1st Year					
			standard	п	Non-	Criteria	Criteria	HF	Entry	Endpoint	Endpoint	Mortality	Mortality					
			treatment	(Experiment)	Ischemic			Symptoms	Sverity									
				n (Control)					Criteria									

Intermittent 6-mo low- dose dobutamine infusion in severe HF: DICE Multicenter Trial, Oliva F, 1999 <u>10426835</u> (269)	To reduce hospitalizat ions for worsening of CHF by administeri ng intermittent low-dose dobutamin e (2.5- 5mg/kg/min for 48- 72hrs/wk)	RCT	ACEI 82% Digoxin 95% Furosemide 95% Nitrates 63% Amiodarone 39%	38; 19 (dobutamine); 19 (control)	47% ICM	Age >18 y; NYHA III-IV CHF ; Hospitalized for CHF and administratio n of IV inotropes in the 6 mo before the evaluation; ≥ 48 h of clinical stability on oral therapy. CI ≤2.2 L/min/m2 6. LVEF ≤ 30%.	History of documented malignant arrhythmias without an automatic defibrillator in place; Neoplastic or systemic disease affecting short-term prognosis UA, angiographi cally documented effective coronary stenosis Surgically curable valvular heart disease	100% NYHA III-IV 6MWTD 298m	NYHA III- IV symptom s, CI <2.2L/mi n/m2	Reduction of hospitalizatio ns for worsening of CHF	Changes in NYHA functional class, 6-min walking test, and mortality rates.	N/A	N/A	Enrollmen t 18 mo (7/94- 12/95); 6 mo f/u	No benefit in hospitalization, functional status, or mortality rate.	Time to first CV death or hospitalization for any cause, p=0.91	Small sample size	N/A
Levosimen dan Infusion versus Dobutamin e Study (LIDO), Follath F, 2002 <u>12133653</u> (270)	To compared the effects of levosimend an and dobutamin e on haemodyn amic performanc e and clinical outcome in pts with low-output HF	RCT	Digoxin 75%, Diuretics 53%, ACEI 89%, bblockers 38%, oral nitrates 41%, anticoagulant s 43%, Class III antiarrhthmic agents 15%, CCB 4%, antiplatelet agents 1%	203; 103 levosimendan; 100 dobutamine	48% Ischemic	Hospitalized with low- output HF, requiring haemodyna mic monitor- ing and treatment with IV inotropic agent. a) deterioration of severe chronic HF despite optimum oral therapy with vasodilators and diuretics, including those awaiting cardiac transplantati on; b) severe	Age <21 y Childbearing potential HF due to restrictive or hypertrophic cardiomyop athy or to uncorrected stenotic valvular disease; Chest pain at the time of randomisati on; Sustained VT/VF within prior 2 wk; AVB of 2nd or 3 rd degree; HR >120 bpm at rest; SBP< 85 mm Hg; Severe renal	Severity determined by invasive hemodyna mic monitoring, not symptomat ology	CI < 2.5 L/min/m2 Mean PCWP > 15 mm Hg	Proportion of pts with haemodyna mic improvement (defined as an increase of 30% or more in CO and a decrease of 25% or more in PCWP) at 24 h.	Changes from baseline in haemo-dynamic variables other than CO and PCWP (eg, CI, stroke volume, PADP, mean RAP, BP, HR and total peri- pheral resistance) at 24 h; Changes from baseline to 24 h in HF symptoms (dyspnoea and fatigue) on a 4- grade scale (much better, slightly better, no change, worse); Proportion of pts needing IV rescue therapy with positive inotropic	N/A	N/A	Enrollmen t 1/97- 11/98 (23mo); study drug infusion up to 24 hrs, follow up out to 180 d	The primary haemodynamic endpoint was achieved in 28% levosimendan- group pts and 15% in the dobutamine group. Secondary end point: At 180 d, 26% levosimendan group pts had died, compared with 38% in the dobutamine group	Primary endpoint: HR; 1.9; 95% CI 1.1- 3.3; p=0.022; Secondary endpoint: HR 0.57; p=0.029	No placebo control Small study size No information on the duration of infusion of levosimenda n needed for optimum benefit or on how often it may be repeated in pts who do not respond initially or who relapse after an initial response. Exclusion of pts with cardiogenic shock. Short-term	Angina, chest pain, or myocardia ischaemia (7% dobutamine vs 0% levosimendan, p=0.013); Arrhythmias (13% dobutamine vs 4% levosimendan, p=0.023

						HF after cardiac surgery; or c) acute HF related to a cardiac or non-cardiac disorder of recent onset. LVEF<35% (by echo or radio-nuclide ventriculogra phy w/in 1 mo of study enrolment) CI < 2.5 L/min/m2 Mean PCWP >15 mm Hg.	failure (SCr >450 mol/L); Hepatic failure Cardiac tamponade; ARDS; Septic shock.				drugs, vasodilators, or diuretics during the infusion of study drug; No. of d alive and out of hospital and not receiving IV drugs during the 1st mo; Time to development of worsening HF or death. Safety endpoints: a) AEs, b) laboratory safety tests (blood and urine), and c) all-cause mortality at 31 d and 180 d after randomization.						hemodynami c assessment Not powered to assess mortality	
OPTIME- CHF, Cuffe MS, 2002 <u>11911756</u> (271)	To prospective ly test whether a strategy that includes short-term use of milrinone in addition to standard therapy can improve clinical outcomes of pts hospitalize d with an exacerbatio n of chronic HF	RCT	ACEI 70%, ARB 12%, bblocker 22%, Diuretic 90%, Digoxin 73%, CCB 11% placebo v 16% milrinone ASA 46% Amiodarone 15%	949; 477 (milrinone); 472 (placebo)	ICM 51%	Age ≥18 y LVEF <40% within the past y. Known systolic chronic HF Hospitalized for exacerbation of chronic HF ≤48 h earlier.	If treating physician judged that IV inotrope was essential (eg, for shock, metabolic acidosis, or severe hypotension). Active myocardial ischemia within the past 3 mo Atrial fibrillation with poor ventricular rate control (>110/min) Sustained ventricular tachycardia or	100% NYHA II-IV 7% NYHA II 46% NYHA III 47% NYHA IV	NYHA II- IV symptom s	Total number of d hospitalized for CV causes (or d deceased) within the 60 d after randomizatio n. Hospital d were defined as inpt d and ED visit d.	Main secondary outcome included the proportion of cases failing therapy because of AE or worsening HF 48 h after initiation of therapy. Other secondary outcomes included the proportion of pts achieving target doses of ACEI therapy and time to achieve target dose, symptoms, improvement in HF score, length of initial hospitalization	N/A	N/A	Recruitm ent 7/97- 11/99 (29 mo); Study drug treatment for up to 72 h with 60 day follow-up period from time of randomiz ation	No difference in primary efficacy end point Milrinone was associated with higher rate of treatment failure at 48 h due to AE (12.6% vs 2.1%)	p=0.71, d of hospitalization for CV causes within 60 d p=0.92, death or readmission within 60 d p<0.001 for treatment failure due to AE	Did not directly address pts with ADHF for whom inotropic therapy was felt to be essential (eg, low cardiac output state with tissue hypoperfusio n), Not structured to assess pts for NSVT, a known adverse effect of milrinone. Inadequately powered to evaluate mortality.	Sustained hypotension, (SBP< 80 mm Hg for more than 30 min, requiring intervention); 10.7% with milrinone, 3.2% with placebo, p<0.001 Significant atrial arrhythmias during index hospitalization; 4.6% milrinone, 1.5% placebo, p=0.004

HF Etiology and Response to Milrinone in Decompen sated HF (subanalysi s of OPTIME- CHF), Felker GM, 2003 <u>12651048</u> (272)	To assess the interaction between HF etiology and response to milrinone in decompens ated HF	Post- hoc analysi s	ACEI 70%, bblocker 23%, Amiodarone 15%, Digoxin 73%,	949 (total); 477 (randomized to milrinone); 242 (ICM, milrinone) ; 243 (ICM, placebo); 229 (NICM, placebo)	485 ICM (51% of total) 464 NICM (49% of total)	Age >18 y LVEF < 40% within the past year. Known systolic chronic HF Hospitalized for exacerbation of chronic HF < 48 h earlier.	ventricular fibrillation. Baseline SBP< 80 mm Hg SCr level > 3.0mg/dL If treating physician judged that IV inotrope was essential (eg, for shock, metabolic acidosis, or severe hypotension). Active myocardial ischemia within the past 3 mo Atrial fibrillation with poor ventricular rate control (>110/min) Sustained ventricular fibrillation. Baseline	100% NYHA II-IV 7% NYHA II 46% NYHA III 47% NYHA IV	NYHA II- IV symptom s	D hospitalized for CV causes or death within 60 d after randomizatio n	for CV events from initial hospital discharge to 60 d, d of hospitalization for CV events within 30 d after randomization, all-cause hospitaliz-ation, and mortality. Main secondary outcome included the proportion of cases failing therapy because of adverse events or worsening HF 48 hr after initiation of therapy. Other secondary outcomes included the proportion of pts achieving target doses of ACEI therapy and time to achieve target dose, symptoms, improvement in HF score, length of initial hospitalization, d of	N/A	N/A	Recruitm ent 7/97- 11/99 (29mo); Study drug treatment for up to 72 h with 60 d f/u period from time of randomiz ation	D hospitalized for CV causes or death w/in 60d after randomization was 13.0±14.2d for ischemic HF pts, 11.7±13.9d for nonischemic HF pts 60 d mortality was greater for ischemic pts (7.5%). Combined end point of death or rehospitalization at 60 d was 38.7% in ischemic pts and 31.5% in the nonischemic pts. More pts with nonischemic pts. More pts with nonischemic pts. More pts with nonischemic pts. More pts with nonischemic pts. More pts dosing of ACEI at hospital discharge (49%)	Primary endpoint, p=0.2 60d mortality, P=0.03 Combined endpoint, p=0,02 Able to reach target ACEI dose, p=0.001 Treatment failure on study drug, p=0.7	Retrospectiv e study; No data collected on the level of care that pts received (i.e., ICU vs. monitored bed), which potentially could have affected the results of study; Imbalanced follow up btwn etiologic groups (4 pts in ischemic group vs. 8 pts in nonischemic group lost to follow-up)	In pts with ischemic HF, milrinone tended to be associated with prolonged hospitalization and higher mortality. Composite of death or rehospitalization at 60 d was 42% for ischemic pts treated with milrinone and 36% for those treated w/placebo (p=0.01 for etiology- treatment interaction). In- hospital mortality for milrinone- treated pts with ischemic HF was 5.0% vs. 1.6% for placebo (p =0.04 for
							tachycardia or ventricular fibrillation.				hospitalization, d of hospitalization for CV events				nonischemic HF were able to reach target dosing of ACEI at hospital			ischemic HF was 5.0% vs. 1.6% for placebo (p

															Baseline QoL data did not differ between the 2groups.			
Inhospital mortality in pts with acute decompens ated HF requiring intravenous vasoactive medication s: an analysis from the Acute Decompen sated HF National Registry (ADHERE), Abraham WR, JACC 2005 <u>15992636</u> (273)		Regist ry	Beta blocker 50% ACEI 43% ARB 12% Spironolacto ne 15% (varied amongst subgroups 7- 24%)	65180; 6549 (NTG); 5220 ; (nesiritide) ; 2021 (milrinone) ; 4226 (dobutamine) ; 49950 (all others)	56% ICM	admitted to a participating acute care hospital and given a discharge diagnosis of HF	HF is not the principal focus of diagnosis or treatment during the admission or if their medical record cannot be accessed for administrativ e reasons	NYHA IV 45% (dyspneic at rest)	N/A	Inhospital mortality	Total LOS, ICU LOS	N/A	Inpatient mortality Milrinone: 12.3% Dobutami ne: 13.9% NTG: 4.7% Nesiritide: 7.1% All others: 3.1%	10/01- 7/03	Worse inpatient mortality and longer LOS with IV inotropes compared to IV vasodilators or neither.	Inhospital Mortality Dob vs Milrinone: OR: 1.24; 95% Cl: 1.03-1.55: p=0.027 NTG vs Dobutamine: OR: 0.46; 95% Cl:.37- 0.57, p<0.005 NTG vs Milrinone: OR: 0.69; 95% Cl:0.53-0.89; p<0.005	Observation al analysis Retrospectiv e analysis Clinician judgement for medical management /choice of IV med Non- randomized Differences in clinical severity between subgroups	N/A
Survival of Pts with Acute HF in Need of Intravenous Inotropic Support (SURVIVE) , Mebazaa A, 2007 <u>17473298</u> (274)	To assess the effect of a short- term IV infusion of levosimend an or dobutamin e on long- term survival	RCT	Beta blocker 51% ACEI/ARB 69% Aldosterone antagonist 53% IV diuretics 79% IV nitrates 37% IV dopamine 6%	1327; 664 (levosimendan); 663 (dobutamine)	76%	Age ≥18 y Hospitalized with ADHF. LVEF ≤30% within prior 12 mo Required IV inotropic support, as evidenced by an insufficient response to IV diuretics and/or vasodilators, and ≥1 of the following at screening: (a) dyspnea at rest or mechanical ventilation for ADHF; (b) oliguria	Severe ventricular outflow obstruction; SBP persistently <85 mm Hg HR persistently ≥ 130 bpm; IV inotrope use during the index hospitalizati on (except dopamine 2 µg/kg/min or digitalis); History of torsade de pointes; SCr> 5.1 mg/dL (450 µmol/L) or on dialysis.	86% NYHA IV	Low- output ADHF	All-cause mortality during the 180 d following randomizatio n.	All-cause mortality during 31 d, change in BNP level from baseline to 24 h; No. of d alive and out of the hospital during the 180 d; change in pt assessed dyspnea at 24 h; Pt assessed global assessment at 24 h; CV mortality through 180 d.	N/A	N/A	Enrollmen t 3/03- 12/04 (22mo), study drug infusion for minimum of 24 h and total duration of unknown period, follow up at 180 d,	During the 180 d after study drug infusion, there were 173 deaths (26%) in the levosimendan group and 185 deaths in the dobutamine group (28%). No difference in secondary endpoints, except in mean change in BNP at 24 h from baseline (- 631 levosimendan vs -397 dobutamine)	Primary endpoint: HR 0.91; 95% Cl 0.74- 1.13; p=0.40 Secondary endpoint (DBNP): p<0.001	Short duration of treatment. Detail of duration of infusion and dose of study drug used is not provided. No information regarding clinical symptomatol ogy at baseline.	Hypokalemia (9.4%) levosimedan vs 5.9% dobutamine, p=0.02) AF (9.1%) levosimedan vs 6.1% dobutamine, p=0.05), Headache (8.3%) levosimedan vs 4.7% dobutamine, p=0.01) PVCs (6.1%) levosimedan vs 3.6% dobutamine, p=0.05) Agitation (1.1%) levosimedan vs 0% dobutamine, p=0.02)

Enoximone	To determine	Diuretic 88%, ACEI 62%,	201; 101 (enoximone);	61% ICM	not as a result of hypovolemia ; or (c) PCWP ≥18 mm Hg and/or CI < 2.2 L/min/m2. Age > 18 y NYHA III or	Received a positive	100% NYHA III-IV	Low- output	Ability to wean	Time to reinitiation of IV	N/A	N/A	Enrollmen t 7/00-	30 d after weaning, 51% of	Unadjusted primary end point p=0.14, adjusted	Small sample size.	Exacerbation of CHF in 54%
Intravenous Inotrope- Dependent Subjects Study (EMOTE), Feldman AM, 2007 <u>17967591</u> (275)	whether low-dose oral enoximone could wean pts with ultra- advanced HF (UA- HF) from intravenous (IV) inotropic support	ARB 18%, bblocker 40%, digoxin 70%, antiarrhythmi c 37%, ICD 42%, Milrinone 62%, dobutamine and milrinone 3%, Continuous IV inotrope 74%	100 (placebo)		IV CHF Ongoing need for ≥ 5 d of continuous IV inotropic therapy or the need for intermittent IV inotropic therapy with either dobutamine (≥2 $\mu g/kg/min$) or milrinone (≥0.125 $\mu g/kg/min$) for ≥6 h at a frequency of ≥1x/ wk, and for ≥4 wk. LVEF of ≤25% by radionuclide ventriculogra phy or ≤30% by 2- dimensional echocardiog raphy Cardiac dilatation (LVEDD ≥2.7 cm/m2 or ≥5.4 cm as measured by 2- dimensional echocardiog raphy within 26 wk	inotropic agent other than digoxin, dobutamine, or milrinone within 12 h of randomizati on Trough digoxin levels were >1.0 ng/mL. ICD firing within 90 d.	(56% NYHA IV)	ADHF	subjects from IV inotropic support. Assessed using the prespecified CMH test, adjusted for cardiomyopa thy etiology. The primary efficacy variable was also assessed as a protocol and statistical analysis plan- prespecified secondary end point using time- to-event (Kaplan- Meier) curves and the log-rank statistic, over the entire 182 d study period.	inotrope Total number of d on IV inotrope Total number of hospitalization d for all cause, CV, and CV/vascular events; Measurements of symptoms (SAS scale, NYHA) and pt well-being (Visual Analog Scale, global assessments) at 4 and 26 wk.			2/04 (44mo); 26 wk trial	placebo pts and 61.4% enoximone pts were alive and free of IV inotropic therapy At 60 d, the wean rate was 30% in placebo group and 46.5% in enoximone group Kaplan-Meier curves demonstrated a trend toward a decrease in the time to death or reinitiation of IV inotropic therapy over the 182-day study period and a reduction at 60 d and 90 d after weaning in the enoximone group.	for etiology p= 0.17 60d wean rate unadjusted p=0.016 Time to death/ reinitiation of IV inotrope: 95% CI 0.55- 1.04 Reduction at 60d, 95% CI 0.43-0.89, p = 0.009 Reduction @ 90d, 95% CI 0.49-0.97, P = .031 Time to death/ reinitiation of IV inotrope: HR 0.76 Reduction @60d HR 0.62 Reduction @90d HR 0.69	Not designed or powered as mortality study	enoximone vs 52% placebo, NS Dyspnea, 5% enoximone vs 0% placebo, P<0.05

						of the baseline visit). Ongoing and stable (>30 d) therapy with optimal and stable doses of conventional medications												
Use and impact of inotropes and vasodilator therapy in hospitalize d pts with severe HF (ESCAPE), Elkayam U, Am Heart J 2007 <u>17174645</u> (276)	To determine 6-mo risks of all-cause mortality and all- cause mortality plus rehospitaliz ation associated with the use of vasodilator s, inotropes, and their combinatio n	Post- hoc analysi s of RCT	ACEI 79% Diuretics 98% bBlocker 62% IV inotrope 42% IV vasodilator 28%	433; 75 (vasodilator); 133 (IV inotrope); 47 (both); 178 (neither inotrope/vaso dilator)	50% ICM	Hospitalized for severe ADHF Age>18 y; Hx of HF for ≥3 mo; On ACEI and diuretics for z3 mo;. LVEF<30% in the 12 mo before randomizatio n; SBP ≤125 mm Hg; elevated LV filling pressure as indicated by at least 1 physical sign and 1 symptom; At least 1 pror admission for ADHF during the previous 12 mo or aggressive outpatient therapy for at least the previous mo.	N/A	Mean peak VO2 10.0 mean 6MWTD 414 ft	N/A	All- cause mortality	Combined end point of all- cause mortality plus rehospitalization	N/A	6 mo mortality	N/A	Worse 6 mo outcomes (mortality and either mortality/rehospit alization) with inotropes (whether alone or with vasodilator)	6 mo mortality (adjusted), p, 95% CI Inotrope 1.10-4.15, p=0.024 Both ino & vasodilator 2.34-9.90, p<0.001 6 mo mortality or rehosp (adjusted) Inotrope 1.37-2.82, p<0.001 Both ino & vasodilator 1.88-4.48, p<0.001 6 mo mortality HR adjusted Inotrope 2.14 Both inotrope and vasodilator 4.81 6 mo mortality or rehosp HR (adjusted) Inotrope 1.96 Both ino & vasodilator 2.90	Severe ADHF Conducted by HF specialists at academic medical centers Small study size Non- randomized Retrospectiv e analysis	N/A
Prospective	То	RCT	Nitrates 58%	1088; 561	54% ICM	NYHA III-IV	Obstructive	100%	NYHA III-	All cause	CV mortality,	N/A	N/A	Enrollmen	Increased	All-cause mortality:	Background	Stopped study
Randomize d Milrinone	determine the effect		Antiarrhythmi cs 25%	(milrinone); 527 (placebo)		CHF x <u>></u> 3mo LVEF <u><</u> 35%	valvular disease	NYHA III-IV 58% NYHA	IV	mortality	No. of hospitalizations,			t 22mo (1/89-	mortality with milrinone (30%	nominal P=0.038, 95% CI 0.01-0.61; adjusted	medical management	drug due to worsening HF,
Survival	of oral		Digoxin level	u		Medical	Active	III /42%			Addition of			10/90);	milrinone vs 24%	P=0.06,	is outdated	1.8% milrinone v
Evaluation	milrinone		1.5nmol/l			regimen of	myocarditis	NYHA IV			vasodilators for			stopped	placebo);	CV mortality: 95% Cl	and	0.9% placebo
(PROMISE	on the mortality of					digoxin, diuretics,	HCM or cardiac				treatment of worsening hf,			early because	Log-rank test, milrinone	0.06-0.69, nominal P=0.016; adjusted	suboptimal	

M, 1991 <u>1944425</u> (277)	pts with severe chronic HF who remained symptomati c despite convention al therapy					and ACEI for ≥ 4wk	amyloid Uncorrected thyroid disease Malfunctioni ng artificial heart valve				Symptoms, Adverse reactions			of adverse effect of milrinone; median duration of follow- up, 6.1mo	associated with 28% increase in mortality; Log-rank test, milrinone associated with 34% increase in CV mortality	P=0.037		
Continuous intravenous dobutamine is associated with an increased risk of death in pts with advanced HF: Insights from the Flolan Internation al Randomize d Survival Trial (FIRST), O'Connor CM, 1999 <u>10385768</u> (278)	To evaluate clinical characterist ics and outcomes of pts with advanced HF receiving intravenous continuous dobutamin e in the FIRST Trial (Flolan Internation al Randomize d Survival Trial).	Post- hoc analysi s	N/A	471; 80 (dobutamine); 391 (no dobutamine)	67% Ischemic	NYHA IIIB or IV HF for ≥1 mo while receiving a regimen including a loop diuretic, digitalis glycoside, and an ACEI, unless contraindicat ed. LVEF <25% by a multigated angiocardiog ram within 3 mo of enrollment, unless the pt was being treated with an IV inotropic agent, in which case LVEF <30% was accepted. Pts receiving IV vasoactive medications were required to have not responded to an attempt to wean from the medicines	SBP<80 mm Hg; Significant valvular stenosis; Anticipated revasculariz ation or valvular surgery; MI within 3 mo; Uncontrolled tachyarrhyth mias; Uncontrolled tachyarrhyth mias; Uncontrolled tachyarrhyth mias; Unstable or symptom- limiting angina; Requiremen t for a mechanical assist device to maintain life; Major change in IV vasoactive medicat-ions within 12 hr of randomizati on; CHF caused by uncontrolled thyroid disease, myocarditis, high output failure, or infiltrative cardio- myopathy; Significant	No dobutamine : 47% NYHA III 53% NYHA IV Dobutamin e: 11% NYHA III 89% NYHA IV	NYHA IIIB-IV	Occurrence of clinical events from the FIRST trial, including worsening HF, need for mechanical assist device, resuscitation from sudden cardiac death, MI, and death	QoL meaures	N/A	N/A	N/A	The dobutamine group had a higher occurrence of first event (85.3% vs 64.5%) and a higher mortality rate (70.5% vs 37.1%) compared with the no dobutamine group. No difference in QOL between groups.	Primary endpt 1st event p=0.0006 mortality p=0.0001	Observation al analysis No details provided regarding duration and dose of dobutamine	At 6 mo First event 85.3% dobutamine vs 64.5% no dobutamine , p=0.0006 Death 70.5% dobutamine vs 37.1% no dobutamine, p=0.0001

				o e lr fc tr a e lc o o v w w	of enrollment. neligibility for cardiac ransplant- ation and eligibility for ong-term oral anticoagulati on therapy were also required.	congenital heart disease with shunts, valvular or vascular obstruction; Substance or alcohol abuse w/in 1year; Moderate or severe lung disease; Other comorbid conditions likely to shorten survival; Current use of another investigation al drug or device.											
Care processes and clinical outcomes of continuous outpatient support with inotropes (COSI) in pts with refractory endstage HF, Hershberge r RE, J Cardiac Failure 2003 <u>12815567</u> (279)	To assess the outcomes of chronic home inotropic support in Stage D HF pts	Cohort ACEI/AF Study 72% Dobutan 100% Dopamir 22% Milrinone 11%	ine e	a e H D c tr tr o ir tr tr		N/A	N/A presumably NYHA IIIb- IV	N/A	Survival after hospital discharge	Total hospitalizations, causes for rehospitalization , cause of death	N/A	1 y mortality 94% 6 mo mortality 74%	N/A	≥2 rehospitalizations : 36% 0-1 rehospitalization: 64% 30% of rehospitalizations 2/2 worse HF Cause of death Worsening HF 80% SCD 14% Unknown 6%	N/A	Lack of QOL assessment Lack of cost evaluation Small study size Retrospectiv e	Line infection/sepsis (15% of rehospitalization s)

Prognosis on chronic dobutamine or milrinone infusions for stage D HF, Gorodeski EZ, Circ HF 2009 <u>19808355</u> (280)	To investigate the relationship between choice of dobutamin e or milrinone and mortality in inotrope- dependent stage D HF pts	Case- control led	ASA 39% beta blocker 5% (dob) v 34% (mil) ACEI 43% ARB 5% Aldosterone blocker 52% Amiodarone 50% Furosemide 78% Other diuretic 17%	112; 56 (dobutamine); 56 (milrinone)	41% ICM	Stage D HF pts deemed inotrope dependent	N/A	N/A presumably NYHA IIIb- IV	Inotrope depende nt	Survival	N/A	N/A	6 mo mortality (propensit y matched) Dobutami ne 60% Milrinone 54% 1yr mortality Dobutami ne 69% Milrinone 63%	N/A	No difference in mortality between inotrope type (multivariate analysis)	Propensity matched mortality, log-rank p= 0.74	Retrospectiv e analysis Single center study Small study size Lack of QOL assessment	N/A
The Studies of Oral Enoximone Therapy in Advanced HF (ESSENTI AL), Metra M, 2009 <u>19700774</u> (281)	To investigate the effects of low doses of the positive inotrope enoximone on symptoms, exercise capacity, and major clinical outcomes in pts with advanced HF who were also treated with beta blockers and other guideline- recommen ded backgroun d therapy	RCT	ESSENTIAL- I beta blockers 83%, ACEI/ARBs 94%, Aldosterone antagonist 62% Diuretics 95%, DIgitalis glycosides 69% Warfarin 31% Amiodarone 22% ICD 21% ESSENTIAL- II bblocker 90% ACEI/ARBs 99% Aldosterone antagonist 54% Digitalis glycosides 46% Warfarin 8% Amiodarone 14% ICD 5%	ESSENTIAL-I: 904 ESSENTIAL- II: 950 enoximone ESSENTIAL-I 454 ESSENTIAL-II 472 placebo ESSENTIAL-II 450 ESSENTIAL-II 478	ESSENTI AL-I 52% ICM ESSENTI AL-II 59% ICM	Age >18 y HF caused by ischaemic or nonischaemi c cardiomyopa thy LVEF ≤ 30%, LVEDD > 3.2 cm/m2 or 6.0 cm; NYHA III–IV for >2 mo ≥1 hospitalizati on or 2 outpatient visits requiring IV diuretic or vasodilator therapy w/in 12 mo before screening; Optimal medical therapy including diuretics, beta- blockers, and ACEIs or ARBs unless intolerant or contraindicat	Acute MI in previous 90 d, CV surgery in prior 60 d, Symptomati c ventricular arrhythmias or ICD firing in prior 90 d Serum potassium <4.0 or >5.5 mEq/L, Digoxin levels >1.2 ng/mL Magnesium levels <1.0 mEq/L SCr≥ 2.0 mg/dL Serum bilirubin > 3.0 mg/dL.	91% NYHA III 8% NYHA IV 6MWT 274m (ESSENTI AL-I) 6MWT 293m (ESSENTI AL-II)	NYHA III- IV x > 2 mo	First co- primary endpoint (time to all- cause mortality or CV hospitalizatio ns) and for safety (all- cause mortality) (ESSENTIAL -I and II, combined) Co-primary endpoint 6MWTD (ESSENTIAL -I,-II separately) Co-primary endpoint Patient Global Assessment, (ESSENTIAL -I and -II, separately)	N/A	N/A	N/A	Enrollmen t 2/02- 5/04 (28mo); Median follow-up duration 16.6 mo	No difference in first co-primary endpoint: all- cause mortality, all-cause mortality and CV hospitalizations No difference in change in 6MWTD No difference in PGA changes	All-cause mortality, p=0.73, 95% CI: 0.80- 1.17 All-cause mortality and CV hospitalizations, p=0.71, 95% CI 0.86- 1.11 Change in 6MWTD, p=0.16 (ESSENTIAL-I), p=0.57 (ESSENTIAL-II) Change in PGA, p=0.79 (ESSENTIAL-I), p=0,11 (ESSENTIAL-II) All cause mortality, HR 0.97 All-cause mortality and CV hospitalizations, HR 0.98	Crude global assessment for QOL; 6MWT may not be sensitive enough to detect improvement s in exercise capacity/func tional status	1Worsening HF, 39% enoximone vs 39% placebo, p=0.88 Diarrhea, 12% enoximone vs 7% placebo, p=0.001, Palpitations 8% enoximone vs 5% placebo, p=0.01

						ed												
rospective utdy of ontinuous travenous ilrinone herapy for tatus IB ts waiting eart ransplant : Home, rozena C, 2003 5454175 82)	To determine the feasibility and safety of continuous IV milrinone therapy administere d at home in pts listed as Status IB for heart transplant	Cohort study	Digoxin 96.6% Loop diuretic 88.3% Warfarin 83.3% Beta-blocker 73.3% ACE-I 66.6% Statin therapy 63.3% Aspirin 63.3% Spironolacto ne 41.6% Armiodarone 28.3% ARB 25.0% Hydralazine/ nitrate 13.3%	60; 60 (milrinone); none	66.6% ICM	Milrinone dose <0.5 mg/kg/min; Stable dose of diuretic to maintain dry weight; Long-term venous access; AICD; Adequate social support system as assessed by a transplant social worker; Functional class <nyha iv<="" th=""><th>Uncontrolled arrhythmia; SBP<80 mm Hg; Recurrent electrolyte abnormality; Infection requiring IV antibiotic; Requiremen t for >1 inotropic agent; Acute renal failure; Hepatic transaminas es >2x normal</th><th>NYHA II-III Peak VO2 11.4 ml/kg/min</th><th>NYHA II- III</th><th>Survival to transplant</th><th>Hospitalizations , QoL measures cost</th><th>N/A</th><th>N/A</th><th>43 mo f/u</th><th>88.3% of pts underwent OHT 3.2% died before transplant 1.6% LVAD 3.2% BIVAD QoL improved (MLHFQ score decreased by - 13.3<u>+</u>3.4 points)</th><th>QOL/MLHFQ score change from baseline, p=0.0061</th><th>Not randomized; No control; Limited cost data; Small study size</th><th>8% hospitalized for IV line infection 65% rehospitalized for ADHF during study period</th></nyha>	Uncontrolled arrhythmia; SBP<80 mm Hg; Recurrent electrolyte abnormality; Infection requiring IV antibiotic; Requiremen t for >1 inotropic agent; Acute renal failure; Hepatic transaminas es >2x normal	NYHA II-III Peak VO2 11.4 ml/kg/min	NYHA II- III	Survival to transplant	Hospitalizations , QoL measures cost	N/A	N/A	43 mo f/u	88.3% of pts underwent OHT 3.2% died before transplant 1.6% LVAD 3.2% BIVAD QoL improved (MLHFQ score decreased by - 13.3 <u>+</u> 3.4 points)	QOL/MLHFQ score change from baseline, p=0.0061	Not randomized; No control; Limited cost data; Small study size	8% hospitalized for IV line infection 65% rehospitalized for ADHF during study period
Compariso of obutamine ersus hilrinone herapy in ospitalize pts waiting ardiac nsplantati n, Aranda M, 2003 <u>2595851</u> 283)	To compare clinical outcomes and costs associated with the use of dobutamin e or milrinone in hospitalize d pts awaiting cardiac transplanta	RCT	N/A	36; 19 (dobutamine); 17 (milrinone)	56% ICM	on therapy Age >18 y; Prior approval for cardiac transplant; Exacerbatio n of HF not only necessitatin g hospitalizati on but demonstrati ng inotropic dependency.	Any history of intolerance to either dobutamine or milrinone, Hemodynam ic instability at time of random assignment requiring mechanical cardiac support (IABP or	Not presented (presumabl y NYHA IIIb-IV)	not presente d	Hemodynami c decompensa tion (assessed by periodic right heart catheterizatio n), occurrence of ventricular arrhythmias requiring increased antiarrhythmi c therapy,	death, need for mechanical cardiac support, heart transplantation, and need to add or cross over to the alternative inotropic agent	N/A	N/A	Enrollmen t 17mo (1/99- 5/00);	No difference between milrinone and dobutamine with respect to clinical outcomes or hemodynamic measures	N/A	Background medical management not included in manuscript. Data not presented for beta-blocked use in milrinone arm. Small study size No report of SAE/complic	N/A

	tion						LVAD), Normal LV filling pressures (mean PCWP < 15 mm Hg), Developmen t of noncardiac medical illness sufficient to remove pts from the cardiac transplant waiting list			and need for additional vasodilator or inotropic therapy (nitroprussid e or dopamine).							ations from continuous inotrope (e.g. line infections, etc)	
LVAD as Destination for pts undergoing intravenous inotropic therapy: a subset analysis from REMATCH, Stevenson LW, 2004 <u>15313942</u> (284)	To analyze outcomes in pts undergoing inotropic infusions at randomizati on for LVAD destination therapy	Post- hoc analysi s	Diuretic 95% >1 Diuretic 52% bblocker 20% ACE-I 55%	91 (on inotrope at randomization); 45 (LVAD); 46 (OMM)	N/A	LVEF ≤25% NYHA IV symptoms for 60 of 90 d despite attempted therapy with ACEIs, diuretics, and digoxin. Peak VO2 ≤12-14 mL/kg/min with evidence of anaerobic metabolism, Dependence on IV inotropic agents supported by completion of a weaning failure form.	Advanced age, diabetes with end- organ damage, SCr>2.5 mg/dL for ≥90 d,	NYHA IV	Peak VO2 <14 mL/kg/mi n	All-cause mortality during the 180 d following randomizatio n.	QoL at 1 y	N/A	N/A	Enrollmen t 5/98- 7/01;	In pts undergoing inotropic therapy at randomization, 1 y survival with LVAD was 49% vs. 24% for OMM and by 2 y, 28% were alive with LVAD group compared with 11% in OMM group	p=0.0014	Did not capture inotropic dependency status in all pts. Post-hoc, subgroup analysis. Outdated LVAD model.	N/A

ACEI indicates angiotensin-converting-enzyme inhibitor; ADHF, acute decompensated heart failure; AE, adverse event; AICD, automated implantable cardioverter defibrillator; ARDS, acute respiratory distress syndrome; ASA, aspirin; AVB, atrioventricular block; BIVAD, biventricular assist device; BNP, B-type natriuretic peptide; BP, blood pressure; CCB, calcium channel blockers; CHF, congestive heart failure; CMH, Cochran-Mantel-Haenszel; CO, cardiac output; CrCl, creatinine clearance; CV, cardiovascular; ED, emergency department; F/U, follow-up; HCM, hypertrophic cardiomyopathy; HF, heart failure; HR, heart rate; IABP, intraaortic balloon pump; ICD, implantable cardioverter defibrillator; ICM, ischemic cardiomyopathy; ICU, intensive care unit; IV, intravenous; LOS, length of stay; LVAD, left ventricular assist device; LVEDD, left ventricular end diastolic diameter; LVEF, left ventricular ejection fraction; MLHFQ, Minnesota Living with Heart Failure Questionaire; MWTD, minute walk test distance; N/A, not applicable; NSVT, non-sustained ventricular tachycardia; NTG, nitroglycerin; NYHA, New York Heart Association; OHT, orthotopic heart transplantation; OMM, optimal medical management; OPTIME_CHF, the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure study; PADP, pulmonary artery diastolic pressure; PCWP, pulmonary capillary wedge pressure; PGA, polyglycolide; pts, patients; PVC, premature ventricular contraction; QoL, quality of life; RAP, right atrial pressure; RCT, randomized control trial; SAE, serious adverse event; SAS, specific activity scale; SBP, systolic blood pressure; SCD, sudden cardiac death; SCr, serum creatinine; UA, unstable angina; UAHF, ultra-advanced; VF, ventricular fibrillation; VT, ventricular fachycardia.

Data Supplement 33. Inotropic Agents in HF (Section 7.4.4)

Study			Study				R	esults	
	Design	Drug	Support Duration	Patients	Hemo- dynamics	Functional Capacity	QoL	Hospitalization	Survival
PROMISE 1944425 (277)	RCT	M vs. P	Chronic	NYHA III-IV LVEF <35%	N/A	N/A	N/A	N/A	Ļ
Aranda JM 2003* <u>2595851</u> (283)	RCT	M, D	Chronic	Txplt-C	$M \cong D$	N/A	N/A	N/A	$M \cong D$
FIRST 10385768 (278)	RCT (post-hoc)	D vs. none	Chronic	NYHA III-IV LVEF <25-30% Txplt-IE	N/A	N/A	N/A	N/A	Ļ
COSI <u>2815567</u> (279)	Cohort	M, D	Chronic	Hospitalized Txplt-IE	N/A	N/A	NS	N/A	6% @ 1 y 26% @ 6 mo
Brozena SC 2004* 1 <u>5454175</u> (282)	Cohort	М	Chronic	Txplt-C (1B)	N/A	N/A	1	N/A	N/A
Gorodeski EZ 2009 <u>9808355 (</u> 280)	Case Control	M vs. D	Chronic	stage D ino-dpdt	N/A	N/A	N/A	65%	M ≅ D 31%-37% @ 1 y
DPTIME-CHF <u>1911756</u> (271)	RCT	M vs. P	Short-term (<72 h)	Hospitalized for HF, NYHA II-IV, LVEF <40%	N/A	N/A	NS	NS	NS
ESCAPE 1 <u>7174645 (</u> 276)	RCT (post-hoc)	M,D	Short-term	Hospitalized for HF, LVEF <30%	N/A	N/A	N/A	1	Ļ
ADHERE 1 <u>5992636 (</u> 273)	Retro Obs	M, D	Short-term	Hospitalized for HF	N/A	N/A	N/A	↑ LOS	↓ in-hosp

	RCT	D	Intermittent	Hospitalized	N/A	NS	N/A	NS	NS
<u>10426835</u> (269)			(48-72 h/wk x 6 mo)	NYHA III-IV					
				LVEF <30%, prior h/o ino					

*Study limited to patients awaiting cardiac transplantation.

1B indicates UNOS Status 1B; ADHERE, Acute Decompensated HF National Registry; ADHF, acute decompensated heart failure; COSI, continuous outpatient support with inotropes; D, dobutamine; DICE, Dobutamina nell'Insufficienza Cardiaca Estrema; ESCAPE, Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness; FIRST, Flolan International Randomized Survival Trial; in-hosp, in-hospital mortality; ino-dpdt, inotrope-dependent; LOS, length of stay; LVEF, left ventricular ejection fraction; M, milrinone; N/A, not applicable; NS, no significant benefit; NYHA, New York Heart Association; OPTIME-CHF, the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure study; P, placebo; Post-hoc (RCT), post-hoc analysis of an RCT; PROMISE, PROspective Imaging Study for Evaluation of Chest Pain; RCT, randomized, controlled clinical trial; RetroObs, retrospective observational study; QoL, quality of life; TxpIt-C, cardiac transplantation candidate; and TxpIt-IE, transplantation ineligible.

Data Supplement 34. Mechanical Circulatory Support (Section 7.4.5)

Study			Study				Evidence of	Benefit		Adverse Events	Comments
	Design	Device (n)	Control (n)	Patients	DOS	Survival	HD Support	Function	QoL		
REMATCH <u>11794191</u> , <u>15313942</u> (284,285)	RCT	HM XVE (68)	OMM (61)	Txplt-IE 74% ICM 71% ino	P	+	N/A	N/A	+	Bleeding Neuro SVT Sepsis	1 y Mortality RR 0.52 No benefit at 2 y
INTrEPID <u>17707178</u> (286)	pNRCT	NovaCor (37)	OMM (18)	Txplt-IE 38% ICM 100% ino	Р	+	N/A	N/A	N/A	Neuro Infxn	1 y Survival 27% (NovaCor) vs. 11% (OMM)
HMII-DT <u>19920051</u> (287)	RCT	HMII (134)	HM XVE (66)	Txplt-IE 67% ICM	Ρ	+	N/A	+ +21	+ +21	PumpRplt Sepsis RespFail RenalFail RV Fail Rehosp	2 y Survival 58% (HMII) vs. 24% (HM XVE) Lower AE rate with HMII
HMII-BTT <u>17761592</u> , <u>19608028</u> (288,289)	Cohort	HMII (281)	None	Txplt-C 43% ICM	Т	+	N/A	+ 8, 21	+ 8, 21	Bleeding RespFail Infxn (NV) VT Sepsis RV Fail	Mortality 12mo: 27%; 18mo: 28%
EuroHMII <u>19616963</u> (290)	Registry	HMII (411)	None	21% Txplt-IE 73% Txplt-C 70% ICM 100% ino	21% P 79% T	+	N/A	N/A	N/A	MOF Infxn RV Fail Bleeding VT Neuro	1 y mortality 28.5%
INTERMACS 21545946 (291,292)	pNRCT	HMII (169)	HM XVE (135) Th- IVAD (34)	Txplt-C 80-89% ino	Т	+	N/A	N/A	N/A	Infxn Bleeding	1 y Survival 85% (HMII) vs 70% (comp)

											Lower rate of infxns with HMII
Grady K, Ann Thorac Surg 2004 15063260 (293)	pNRCT	HM XVE (78)	None	Txplt-C	Т		N/A	+/-	+/-	n/a	N/A
ADVANCE	pNRCT	Heart Ware (137)	INTER MACS (499)	Txplt-C 41% ICM 82% ino	Т	+	N/A	+	+	Infxn Bleeding Neuro	HeartWare is NON-INFERIOR to control Lower AE rate for bleeding, infxn
Elhenawy A, <i>J Card Surg</i> 2011 <u>21883463 (</u> 294)	ObsRS	BTC (22) NovaCor 6, HMXVE 11, HMII 5		41% Txplt-C 59% Txplt-IE 27% ICM	Т	+	N/A	N/A	N/A	Infxn/ Sepsis RVAD MOF	No difference in BTC vs. BTT Post-OHT survival 1 y: 67% vs. 100% 2 y: 67% vs. 90% and 3 y: 64% vs. 87%
Alba A, <i>JHLT</i> 2010 <u>20620083 (</u> 295)	Obs	Fixed pHTN (22) NovaCor 2, HMXVE 14, HMII 6	No pHTN (32) NovaCor 4, HMXVE 19, HMII 9	Txplt-C 22% ICM	Т	+/-	N/A	N/A	N/A	n/a	Comparable post-OHT survival 1 y: 93% vs. 96% 5 y: 77% vs. 86% Higher peri-OHT mortality in fixed pHTN: 18% vs. 0%
Nair P, <i>JHLT</i> 2010 <u>20113910 (</u> 296)	Obs	pHTN (14) NovaCor, Th-LVAD, Th-IVAD, HM XVE	No pHTN (44) NovaCor, Th-LVAD, Th-IVAD, HM XVE		Т	+	+	N/A	N/A	Infxn	Comparable post-VAD and post-OHT survival Early ↓TPG with VAD, sustained ↓mPAP with ongoing MCS
MOMENTUM <u>18765394 (</u> 297)	RCT	Orqis Cancion (109)	OMM (59)	ADHF 100% ino or vasodilator 47% ICM	Т	N.S	NS	N/A	NS	Bleeding Infxn	65d mortality 33.9% (pVAD) vs. 32.2% (OMM)
Seyfarth M, <i>JACC</i> 2008 19007597 (263)	RCT	Impella (12)	IABP (13)	Post-MI CS	Т	N/A	+	N/A	N/A	n/a	No difference in MOF or sepsis
Burkhoff D, <i>AHJ</i> 2006 <u>16923414 (</u> 264)	RCT	TandemHeart (19)	IABP (14)	CS	Т	N/A	+	N/A	N/A	Arrhythmia Bleeding Neuro (NS)	Not powered to fully assess hemodynamic effects or clinical outcomes
Thiele H, <i>EHJ</i> 2005 <u>15734771 (</u> 298)	RCT	Tandem Heart (21)	IABP (20)	Post-MI CS	Т	NS	+	N/A	N/A	Infxn/Sepsis DIC (VAD)	Not powered to detect mortality benefit

+ indicates survival benefit; ADHF, hospitalized for acute decompensated heart failure; AE, adverse event; BTC, bridge to candidacy; BTT, bridge to transplantation; DOS, duration of support; Expt, Experimental group; HMII, HeartMate II; HIMI-BTT, HeartMate II bridge to transplant; HIMI-DT, HeartMate II destination therapy; HM XVE, HeartMate XVE; IABP, intra-aortic balloon pump; ICM, ischemic cardiomyopathy; ino, inotrope-dependent at time of randomization/implantation; Infx, infection; Infxn (NV), non-VAD related infection; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; INTREPID, Investigation of Nontransplant-Eligible Patients Who Are Inotrope Dependent; MCS, mechanical circulatory support; MOF, multi-organ failure; MOMENTUM, Multicenter Trial of the Orqis Medical Cancion System for the Enhanced Treatment of Heart Failure Unresponsive to Medical Therapy; mPAP, mean pulmonary artery pressure; N/A, not applicable; Neuro, neurological complication (e.g. stroke); NS, no significant difference; Obs, Observational study; OHT, orthotopic heart transplantation; OMM, optimal medical management; P, permanent; pNRCT, prospective non-randomized clinical trial; post-MI CS, post-myocardial infarction cardiogenic shock; PumpRplt, pump replacement; RCT, randomized clinical trial; Rehosp, rehospitalization; REMATCH, Randomized Evaluation of

Mechanical Assistance in Treatment of Chronic Heart Failure; RenalFail, renal failure; RespFail, respiratory failure; RV Fail, right ventricular failure requiring inotropic support; RVAD, need for right ventricular assist device; RR, relative risk; SVT, supraventricular tachycardia; T, temporary; Th-IVAD, Thoratec implantable ventricular assist device; Th-LVAD, extracorporeal VAD; TPG, transpulmonary gradient; Txplt-C, transplant candidate; Txplt-IE, transplant ineligible; and VT, ventricular tachycardia.

Data Supplement 35. LVADs (Section 7.4.5)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient	Population	Endp	oints	Mortality	Trial Duration (Years)	Absolute Benefit or Major Study Findings	Complications/ Adverse Events
			N (Total Study Size)	Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint	1st Year Mortality			
SELECTION OF	VAD CANDIDATES										
Clinical outcomes for continuous-flow LVAD pts stratified by pre- operative INTERMACS classification, Boyle AJ, JHLT 2011 <u>21168346 (</u> 299)	To compare post-implant outcomes across different INTERMACS classification levels.	Case- controlle d	101	Pts implanted with an LVAD prior to 8/27/07 at University of Minnesota, University of Pittsburgh, and Columbia University with either a VentraAssist or HM II, classified by INTERMACS level at time of implant (Goup 1: INTERMACS profile 1; Group 2: INTERMACS profiles 2-3; Group 3: INTERMACS profiles 4-7)	N/A	Survival to discharge, LOS after VAD implantation, actuarial survival while on MCS	N/A	N/A	~2 y	Actuarial survival Group 3: 95.8%, Group 2: 68.8%, p=0.065 vs Group 3 Group 1: 51.1%, p=0.011 vs Group 3 survival to discharge Group 3: 95.8%, p=0.02 vs Group 1 Group 2: 93.8%, p=0.009 vs Group 1 Group 1: 70.4%	N/A
VAD AS DT											
Randomized Evaluation of Mechanical Assistance for the Treatment of CHF REMATCH, Rose E, 2001 <u>11794191</u> (285)	To evaluate the suitability of implantable LVAD for their ultimate intended use as a long- term myocardial- replacement therapy for pts who are ineligible for cardiac transplantation	RCT	129	Adults with chronic end- stage HF and contraindications to transplantation. NYHA IV HF for ≥60 of 90 d despite attempted therapy with ACEI, diuretics, and digoxin; LVEF ≤ 25% Peak VO2 ≤12- 14ml/kg/min or a continued need for IV inotropic therapy owing to symptomatic hypotension, decreasing renal function, or worsening pulmonary	HF due to thyroid disease, obstructive cardiomyopathy,pericardial disease, amyloidosis, or active myocarditis Technical obstacles that pose an inordinately high surgical risk INR >1.3 or PT >15 sec BSA ≤1.5 m ² BMI >40 kg/m ² Severe COPD (FEV≤1.5 L/min) Positive serum pregnancy test Fixed pHTN with PVR≥ 8	The primary end point was death from any cause and was compared between groups with the use of the log-rank statistic.	Secondary endpoints included the incidence of SAEs, the no. of d of hospitalizatio n, the QoL, symptoms of depression, and functional status.	1 y Mortality: LVAD 48% OMM 75% p=0.002 2yr Mortality: LVAD 77% OMM 92% p=0.09	Enrollment 5/98-7/01 (39mo);	Reduction of 48 % in the risk of death from any cause — the primary endpoint — in LVAD group, as compared with medical- therapy group (OMM) QoL suggested greater improvement in LVAD group, though not all measures reached statistical significance. (RR 0.52; 95% CI: 0.34-0.78; p=0.001)	Sepsis (Rate Ratio 2.03) Non-neurologic bleeding (Rate Ratio 9.47) Neurologic dysfunction (Rate Ratio 4.35) SVT (Rate Ratio 3.92) Suspected malfunction of LVAD (0.75 rate/pt-y)

Image: State of the second and when be received at the second state of the second at the second state of the	conge	estion. Wood units		
and who had received at least 14 of a support with a deduction, or de	NYHA	A III-IV for \geq 28 d Candidate for CABG,		
least 14 do fugopri with a celucion, or celucion collasty reduction, or celucion collasty least with a celucion, or celucion celuc				
IABP or with a cardiomycplesty Idequadration can IV transplantation, LV reduction or cardiomycplesty transplantation, LV transplantation, LV reduction or cardiomycplesty attempts. dechanical AV that Will not be converted to be converted to be converted to be converted to or biopsychrosis AST. ALT. TBII > Ex normal or biopsychrosis cardiomycal attraction of the converted to to prove the sis be converted to vibopsychrosis attraction of the converted to Vibopsychrosis attraction of the converted to Vibopsychrosis attraction of the converted to Unreaded AAS 2 con Suspected or active Suspected or active systemic infection Platele count <50x10/mmil				
dependence on IV Hx of cardiac indrogio agents, with 2 reduction or relied waaning cardiomyopiasly attempts. cardiomyopiasly Mechanical XV that will not be converted to bioposthesis AST, ALT, TBill > 5x normal or biops-yrowed liver drifnosis drifnosis Stoke will 90d or Stoke will 90d or will > 80% astractional stempts Advectorial stempts BVM astractional stempts BVM astractional stempts Stoke will 90d or Universitive domenting, Linetasta AX 5, 60 Suspected or active systemic infection, Advected or active systemic infection, Circ 23				
Indrogic agents, wih 2 transplantation, LV reduction or reduction or cardiomycolasty Mechanical XV that will not biograshiesi Signature AST, ALT, TBill> Sx normal or biograshiesi Stripp-proved liver introsis Bolt discount diver issesse and/or Other inversible dementa, Untreated ANA >5 cm Stripp-proved liver systemic infection Peripheral-vascular dissesse with rest claudication or leg ulceration CCB (except antiodpine) or Vipe I or type II antartythinic agent. Abdominal operation		ndence on IV Hx of cardiac		
failed wearing attempts. reduction or cardiomyoplasty Mechanical AV that vill not be converted to bioprosthesis AST, ALT, TBill > X normal or biopsy-proved liver cirritosis Stonewin 90d or cerebroyscall of zwith > 80% extracranial stonesis Imparted cognitive function, Alzheimer's disease and/or other inversible dementia, Untreated AAX = 5 cm Stonewin 90d or cerebroyscall of zwith > 80% extracranial stonesis Imparted cognitive function, Alzheimer's disease and/or other inversible dementia, Untreated AAX = 5 cm Suppected or adive systemic infection Vibration of the extra transformer systemic infection Piptieral status Piptieral status Piptier				
attempts. actionmyoplasty Mechanical AV that vill inot biopospherosis AST, ALT, TBII > 5x normal or biopsy-proved liver cifritosis Stroke win 90 dor ceterovascular 22 with > 80% extracmania stenosis Impared cognitive function, Alzheimer's disease analor other irreversible dementia, Untreated AAA >5 cm Suspected or active Systemic infection Patiete count +50xt 00/mm ³ SCr >35 mg/d. cr diaysis Peripheral vascular disease with nest claudication or leg udecetion CCB (except amiodipine) or type I or type II antarritythin c agent. Abdominal operation planed Psylitatic cifeses Participating in another Study	failed			
Mechanical AV that will not be converted to bioprosthesis AST, ALT, TBil > 5x normal or biopsy-proved liver cirrhosis Strole win 90d or cerebrovascular dz wth > 00% extractinal stenosis Impaired cognitive function, Athreimers disease and/or other irreversible damanta, Utratated AAA 25 cm Suspected or active systemic inflection or leg u/ceration u/ceration CCB (except amidoline) or type I aniarrhythmic agent Abdomine) or bype II aniarrhythmic agent Abdomine) or bype II aniarrhythmic agent Abdomine abuse Parkipted colores C2D (Sexept amidoline) or Parkiptic cisease Full colores <td></td> <td></td> <td></td> <td></td>				
bioprosthesis AST. ALT. TSIII > 5x normal or biopsy-proved liver cirrhosis Stroke win 90 or cerebrovascular da wh > 80% extracranial stenosis Impaired cognitive function, AZ:briener's disease and/or other inversible dementia, Untread AAA 25 cm Suspected or active systemic infection Patiete count <30x109/mm ³ SCr 23.5 mg/dL or dalaysis Peripheral vascular disease with rest claudication or leg ulceration CCB (except and/or of leg ulceration Patiete/Stane abuse Psychiatric disease Psychiatric disease Psychiatric disease Psychiatric disease Patricipating in another Clinical study		Mechanical AV that will not		
AST, ALT, TBM is Sx normal or biopsy-proved liver cirrhosis Stroke win 90 dor or erebrovascular dx wih > 80% extracranis Istenosis Impaired cognitive function, Akzheimer's disease and/or other irreversible dementia, Untreated AAA = 5 cm Suspected or active systemic infection Platelet count: GSN10%/mm ³ SCr 23.5 mg/dL or diaysis Peripheral vascular disease with rest claudication or leg Ulceration CCB (except and/dpine) or type I or type II antiarrhythmic agent. Abdominal operation planned Psychiatric disease Farticipating in another clinical study		be converted to		
or biopsy-proved liver cirrhosis Stroke win 90d or cerebrovascular dz with > 80% extracranial stenosis Impaired cognitar dz with > 90% extracranial stenosis Impaired cognitar dz with > 90% extracranial stenosis 1000 extract dz with > 90% extracranial stenosis 1000 extract dz with > 90% extract with with weth dz 90% extract with weth weth weth weth weth weth weth we		bioprosthesis		
a cirrhossis Stroka w/in 90d or carebrovascular dz with > B0% extracrial istensis Impared cognitive function, Alzheimer's disease and/or other irreversible dementia, Untrested AAA >5 cm Suspected AAA >5 cm Suspected on racive systemic inflection Plateite count <50x101/mm³				
Stroke win 90 dor cerebrovascular dz with > 80% extracrania istensis Impaired cognitive function, Alzheimer's disease and/or other irreversible dementia, Untreated AAA >5 cm Suspected or active systemic infection Platelet count <50x10 ³ mm ³ SCr >3.5 mg/dL or dialysis Peripheral vascular disease with rest claudication or leg u/ceration CCB (except amiodpine) or type I or type I II antamythmic agent. Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study				
cerebrovascular dz with > 80% extracranial stenosis Impaired cognitive function, Atzheimer's disease and/or other inreversible dementia, Untreated AAA_5 cm Suspected or active systemic infection Platelet count <50x10³/mm³				
80% extracranial stenosis Impaired cognitive function, Abzheimer's lisease and/or other irreversible dementia, Untreated AAA 25 cm Suspected or active systemic infection Platelet count <50x10 ³ /mm ³ SCr > 3.5 mg/dL or dialysis Peripheral vascular disease with rest claudication or leg ulceration CCB (except amiodipine) or typed typed planned Psychiatric disease //Substance abuse Patipating in another clinical study				
Impaired cognitive function, Alzheimer's disease and/or other inversible dementia, Untreated AAA 25 cm Suspected or active systemic infection systemic infection Platelet count <50x10 ³ /mm ³ SCr >3.5 mg/dL or dialysis Peripheral vascular disease with rest claudication or leg ulceration CCB (except amlodipine) or type I or type III antiarriythmic agent. Abdominal operation Abdominal operation planed Psychiatric disease /Substance abuse Participating in another clinical study				
Alzheime's disease and/or other irreversible dementia, Uhreated AAA ≥ 5 cm Suspected or active systemic infection Platelet count <50x103/mm³				
other irreversible dementia, Untreated AAA >5 cm Suspected or active systemic infection Platelet count <50x103/mm³				
Untreated AAA ≥5 cm Suspected or active systemic infection Platelet count <50x103/mm ³ SCr ≥3.5 mg/dL or dialysis Peripheral vascular disease with rest claudication or leg ulceration CCB (except amlodipine) or type III antiarrhythmic agent. Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study				
Suspected or active systemic infection Platelet count <50x10 ³ /mm ³ SCr ≥3.5 mg/dL or dialysis Peripheral vascular disease with rest claudication or leg ulceration CCB (except amlodipine) or type I or type III antiarrhythmic agent. Abdominal operation planned Psychiatric disease //Substance abuse Participating in another clinical study				
systemic infection Platelet count <50x10 ³ /mm ³ SCr ≥3.5 mg/dL or dialysis Peripheral vascular disease with rest claudication or leg ulceration CCB (except amlodipine) or type I or type III antiarrhythmic agent. Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study				
Platelet count <50x10³/mm³		Suspected or active		
SCr ≥3.5 mg/dL or dialysis Peripheral vascular disease with rest claudication or leg ulceration CCB (except amlodipine) or type or type III antiarrhythmic agent. Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study				
Peripheral vascular disease with rest claudication or leg ulceration CCB (except amlodipine) or type I or type III antiarrhythmic agent. Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study				
with rest claudication or leg ulceration CCB (except amlodipine) or type I or type III antiarrhythmic agent. Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study		SCr <u>></u> 3.5 mg/dL or dialysis		
ulceration CCB (except amlodipine) or type I or type III antiarrhythmic agent. Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study		Peripheral vascular disease		
CCB (except amlodipine) or type I or type III antiarrhythmic agent. Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study		with rest claudication or leg		
type I or type III antiarrhythmic agent. Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study		ulceration		
type I or type III antiarrhythmic agent. Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study		CCB (except amlodipine) or		
Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study		type I or type III		
Abdominal operation planned Psychiatric disease /Substance abuse Participating in another clinical study		antiarrhythmic agent.		
Psychiatric disease /Substance abuse Participating in another clinical study		Abdominal operation		
/Substance abuse Participating in another clinical study				
/Substance abuse Participating in another clinical study				
clinical study		/Substance abuse		
clinical study		Participating in another		
		clinical study		
Other condition with survival		Other condition with survival		
< 3 y		< 3 y		

LVAD as Destination for pts undergoing intravenous inotropic therapy: a subset analysis from REMATCH, Stevenson LW, 2004 <u>15313942 (</u> 284)	To analyze outcomes in pts undergoing inotropic infusions at randomization for LVAD destination therapy	Post- hoc analysis	91 (on inotrope at randomizat ion)	LVEF ≤25% NYHA IV symptoms for 60 of 90 d despite attempted therapy with ACEI, diuretics, and digoxin. Peak VO2 ≤12-14 mL/kg/min with evidence of anaerobic metabolism, Dependence on IV inotropic agents supported by completion of a weaning failure form.	Advanced age, Diabetes with end-organ damage, SCr >2.5 mg/dL for <u>></u> 90 d	All-cause mortality during the 180 d following randomization	QoL at 1 y	1 y Mortality: LVAD 51% OMM 76% p=0.0014 2yr Mortality: LVAD 72% OMM 89%	Enrollment 5/98-7/01;	In pts undergoing inotropic therapy at randomization, 1 y survival with LVAD was 49% vs 24% for OMM and by 2 y, 28% were alive with LVAD group compared with 11% in OMM group (p=0.0014).	N/A
Investigation of Nontransplant- Eligible Pts Who Are Inotrope Dependent (INTrEPID Trial), Rogers JG, 2007 <u>17707178 (</u> 286)	To evaluate the impact of LVAD support on survival and QoL in inotrope- dependent HF pts ineligible for cardiac transplantation	Prospec tivenonr andomiz ed clinical trial	55	Adults with inotrope- dependent stage D HF; LVEF < 25%, NYHA IV symptoms for ≥ 3 mo before enrollment and were not candidates for cardiac transplantation Treated with maximally tolerated doses of ACEI, beta-blockers, digoxin, diuretics, and/or other vasodilators.	BSA <1.5 m2 Contraindication to chronic anticoagulation Presence of a mechanical aortic valve constituted an exclusion criterion for LVAD support CVA or TIA within 6 mo before enrollment, a 70% carotid stenosis, or an ulcerated carotid plaque. Unresolved drug or alcohol dependency Active systemic infection SCr >5.0 mg/dL, Tbilli >5.0 mg/dL, Mechanical ventilatory support for >48 h at the time of enrollment Comorbid medical condition limiting life expectancy < 2 y	All-cause mortality at 6 mo	AEs, functional capacity HRQoL	1st y mortality 73% (LVAD) vs 89% (OMT) 6mo mortality: 54% (LVAD) vs 78% (OMT)	Enrollment 39 mo (3/00- 5/03); 12 mo follow-up	6 mo survival 46% (LVAD) vs 22% (OMT) (HR 0.47; 95% Cl 0.23- 0.93; p=0.03) 1 y survival 27% (LVAD) vs 11% (OMT) Absolute reduction of 1 y mortality by 16% with LVAD (HR: 0.48; 95% Cl: 0.25-0.85; p=0.02)	CVA 34.5% Infection 24%
Advanced HF treated with continuous-flow LVAD, (HeartMatell DT), Slaughter MS, 2009 <u>19920051 (</u> 287)	To compare the outcomes of pts ineligible for cardiac transplantation with pulsatile versus continuous flow	RCT	200	Age >18 y BSA > 1.5m2 for a pt to be randomized HM XVE - HM II. If BSA < 1.5 m2and > 1.2 m2, the pt must meet the remaining criteria and can be enrolled in the Small Size	HF is due to uncorrected thyroid disease, obstructive cardiomyopathy, pericardial disease, amyloidosis, active myocarditis or RCM. Technical obstacles, which pose an inordinately high surgical risk, in the	The primary composite endpoint was, at 2 y, survival free from disabling stroke and reoperation to	Secondary endpoints included survival, frequency of AE, the QoL, and functional capacity.	1st y mortality: 32% (continuous flow LVAD) vs 42% (pulsatile flow LVAD)	Enrollment 5/05-5/07 (2 y) Follow-up ≥ 2 y or until death, cardiac transplant, or	The primary composite endpoint was achieved in more pts assigned to receive a continuous- flow LVAD than in those assigned to receive a pulsatile-flow LVAD (46% vs. 11%)	Higher complication rate with pulsatile LVAD (p<0.001) Pump replacement Sepsis Respiratory failure Renal failure RV failure requiring extended inotrope Rehospitalization

LVAD destination	Cohort.	judgment of the investigator.	repair or	explant of	On the basis of the as-
therapy	NYHA IIIB or IV HF and 1	Ongoing mechanical	replace the	LVAD	treated analysis, the
	of following:	circulatory support other	device.		Kaplan–Meier estimate
	i. On OMM, including	than IABP.			of actuarial survival was
	dietary salt restriction,	BMI >40 kg/m2.			significantly better for
	diuretics, digitalis, beta	Positive pregnancy test			pts who had a
	blockers, spironolactone	Presence of mechanical AV			continuous- flow LVAD
	and ACE-I, for > 45 out of	that will not be converted to			as compared with those
	the last 60 d and failing	a bioprosthesis			with a pulsatile-flow
	to respond;	History of cardiac transplant			LVAD
	ii. NYHA III-IV HF for ≥14	or cardiomyoplasty.			Improvements in
	d and dependent on IABP	Platelet count < 50,000			functional status by
	for 7 d and/or inotropes	Untreated aortic aneurysm >			NYHA Class and
	for <u>></u> 14 d	5cm.			6MWT did not differ
	iii. Treated with ACE-I or	Psychiatric disease,			between the two
	beta blockers for <u>></u> 30 d	irreversible cognitive			groups.
	and found to be	dysfunction, psychosocial			
	intolerant.	issues that are likely to			Primary composite
	Female pts of	impair compliance			endpoint:
	childbearing potential	Active, uncontrolled			HR 0.38; 95%CI: 0.27
	must agree to use	infection.			to 0.54; p<0.001
	adequate contraception	Intolerance to anticoagulant			Actuarial survival, RR:
	Ineligible for cardiac	or antiplatelet therapies or			0.54
	transplant.	any other peri/post			95% CI, 0.34 to 0.86;
	VO2max ≤ 14 mL/kg/min	operative therapy that may			p=0.008
	or <50% of predicted	be required			
	VO2max with attainment	INR > 2.5, not due to anti-			
	of anaerobic threshold, if	coagulant therapy, or Plavix			
	not contraindicated due to	within 5 days			
	IV inotropes, angina or	AST, ALT, or total bilirubin			
	physical disability.	> 5x normal or biopsy			
	LVEF is <u><</u> 25%.	proven liver cirrhosis			
		Severe COPD or restrictive			
		lung disease.			
		Fixed pHTN with a PVR >8			
		Wood units			
		Stroke w/in 90 d, or cerebral			
		vascular disease with >80%			
		extra cranial stenosis.			
		SCr >3.5 mg/dl or on			
		dialysis			
		Significant peripheral			
		vascular disease with rest			
	1				

BTT					pain or ulceration. Moderate to severe Aly without plans for correction Participation in any other clinical investigation CCB (except amlodipine), or Type I /III antiarrhythmic (except amiodarone) within 28 d prior to enrollment. Any condition that could limit survival to <3 y.						
Use of a continuous-flow device in pts awaiting heart transplantation (HMII BTT), Miller LW, 2007 <u>17761592</u> (289)	To assess the efficacy of continuous-flow LVAD for providing hemodynamic support of at least 6 mo to pts awaiting heart transplantation	Cohort	133	Transplant listed. BSA > 1.2 m2. NYHA IV HF symptoms. Female pts of childbearing potential must agree to use adequate contraception On inotropic support, if tolerated. Despite medical therapy, the pt must meet one of the following criteria: a. No contraindication for Status 1A listing b. No contraindication for Status 1B listing PCWP or PAD > 20 mmHg, CI < 2.2 L/min/m2 or SBP < 90 mmHg	HF due to uncorrected thyroid disease, obstructive/restrictive cardiomyopathy, pericardial disease, or amyloidosis. Technical obstacles, which pose an inordinately high surgical risk. Ongoing mechanical circulatory support other than IABP BMI > 40 kg/m2. Positive pregnancy test Mechanical aortic valve that will not be converted to a bioprosthesis Hx of cardiac transplant. Platelet count <50,000/mL. Untreated aortic aneurysm > 5cm. Psychiatric dz irreversible cognitive dysfunction, psychosocial issue Active uncontrolled infection. Intolerance to anticoagulant or antiplatelet therapies or any other peri/post operative therapy that may be required Any one of the following	The principal outcomes were the proportions of pts who, at 180 d, had undergone transplantatio n, had undergone explantation of the device because of recovery of ventricular function, or had ongoing mechanical support and remained eligible for transplantatio n (i.e., were not removed from the waiting list owing to irreversible complications or clinical	Secondary outcomes included overall survival, survival while receiving device support, survival after transplantatio n, frequency of AEs, assessment of functional class by a 6- min walk test, independent evaluation of NYHA functional class by a physician, and QoL.	1 y mortality 32%	Enrollment 3/05-5/06 (15mo); follow-up through 180d	75% reached principal outcomes 18.8% died before 180d of support	Bleeding requiring pRBCs Local infection, non-LVAD Ventricular arrhythmias Sepsis Right HF

					risk factors for and	deterioration)					
					indicators of severe end-	actorioration					
					organ dysfunction or failure:						
					a) INR >2.5 not due to						
					anticoagulant therapy or						
					Plavix within 5 d.						
					b) Total bilirubin > 5mg/dl,						
					or shock liver (AST, ALT						
					>2,000), or biopsy proven						
					liver cirrhosis.						
					c) Severe COPD or severe						
					restrictive lung disease.						
					d) Fixed pulmonary						
					hypertension, with a recent						
					PVR >6 Wood units,						
					e) Unresolved stroke or						
					uncorrectable						
					cerebrovascular disease.						
					f) SCr >3.5 mg/dL or the						
					need for chronic dialysis.						
					g) Significant peripheral						
					vascular disease with rest						
					pain or ulceration						
					Moderate to severe aortic						
					insufficiency without plans						
					for AVR						
					Participation in any other						
		• • •			clinical investigation		.				
Extended	To evaluate the	Cohort	281	Same as above (HMII	Same as above (HMII	Survival and	Pts were	6 mo Mortality	Enrollment	79% of LVAD pts	Bleeding requiring pRBCs
Mechanical	use of a	Study		Study)	Study)	transplantatio	assessed for	18% (95% CI:	3/05-4/08 (38	reached primary	Respiratory failure
Circulatory	continuous-flow					n rates were	AEs	77-87%)	mo); 18 mo	outcome measure,	Local infection, non-LVAD
Support with a	rotary LVAD as a					assessed at	throughout	1 y Mortality	follow-up	either received	Ventricular arrhythmias
Continuous-	bridge to heart					18 mo.	the study and	27% (95% CI:		a transplant,	Sepsis
Flow Rotary	transplantation						for	66-80%) 18 Mo		recovered cardiac	Right HF requiring extended
LVAD (HMII	over an extended						QoL,	Mortality 28%		function and	inotropic support
BTT), Pagani	period, up to 18						functional	(95% CI: 65-		underwent device	
FD, 2009	mo						status, and	79%)		explantation, or	
<u>19608028 (</u> 288)							organ			remained alive with	
							function for 6			ongoing LVAD	
							mo.			support at 18-mo	
										follow-up	

Evaluate the Safety and Efficacy of a Percutaneous LVAD vs. IABP for Treatment of Cardiogenic Shock Caused by Myocardial Infarction, Seyfarth M, 2008 <u>19007597</u> (263)	To test whether the percutaneous LVAD Impella LP2.5 provides superior hemodynamic support compared with IABP	RCT	26	Pts with acute MI within 48 h and cardiogenic shock within 24 h CI ≤ 2.2 l/min/m2 and PCWP >15 mm Hg <i>or</i> an angiographically measured LVEF <30% and LVEDP >20 mm Hg	Age <18 y; Prolonged resuscitation (>30 min) HCM; LV thrombus; Treatment with intra-aortic balloon pump; Severe valvular disease or mechanical heart valve; Cardiogenic shock caused by mechanical complications of AMI such as ventricular septal defect, acute mitral regurgitation greater than second degree, or rupture of the ventricle; Predominant RV failure or the need for a RVAD; Sepsis; Known cerebral disease; bleeding with a need for surgical intervention; Allergy to heparin or any known coagulopathy; Moderate to severe AI; Pregnancy; Inclusion in another study or trial	The hemodynamic improvement at 30 min after implantation defined as the change in CI from baseline.	Hemodynami c and metabolic parameters; All-cause mortality at 30 d; Device- related complications including hemolysis, major bleeding, cerebrovasc- ular events, limb ischemia, and multiple- organ dysfunction scores at 30 d using MODS and SOFA criteria.	n/a	N/A; follow-up of 30d	The CI after 30 min of support was significantly increased in pts with the Impella LP2.5 compared with pts with IABP (Impella:DCI=0.49±0.4 6 I/min/m2; IABP: DCI=0.11±0.31 I/min/m2). p= 0.02	No difference in adverse effects between pLVAD and IABP
Impact of Center Volume on Outcomes of LVAD Implantation as DT: Analysis of the Thoratec HeartMate Registry, 1998 to 2005, Lietz K, 2009 <u>19808309 (</u> 300)	To examine the impact of LVAD center volume on the outcomes of DT	Registry ; Retrosp ective analysis	351	NYHA IV symptoms for ≥ 60 d despite maximized oral therapy or requirement of inotropic support LVEF ≤ 25% Peak VO2 <12 mL/kg/min	Not specifically outlined; similar to REMATCH	1 y survival with DT		1 y Mortality low volume: 52.2% medium volume:42.8% high volume: 32.6%	Enrollment: 5/98-12/05 (92 mo); total duration of observation: 102 mo; median follow-up period 9.5mo	High volume center compared with low volume center has an absolute benefit of 19.6% reduction in mortality at 1 y (1y mortality of 32.6% vs 52.2%) OR 0.4; 95% CI 0.2- 0.7; p=0.006;	Sepsis Multiorgan failure Stroke Right HF LVAD failure/complications

				other comorbidities.							
Predictors of death and transplant in pts with a mechanical circulatory support device: a multi- institutional study (INTERMACS), Holman WL, 2009 <u>19134530 (</u> 301)	To identify predictors for death and transplantation based on initial results from INTERMACS	Registry	420	Pt underwent implantation of mechanical circulatory support device (INTERMACS registry)	Not specifically stated	1 y survival post LVAD implantation	AEs	1 y Mortality DT: 37% BTT: 24%	19 mo, 12 mo follow-up	Risk factors for death 1. INTERMACS level 1 ($p=0.02$) 2. Older age (\geq 60yr) ($p<0.01$) 3. Presence of ascites ($p=0.003$) 4. Elevated total bilirubin ($p=0.05$) 5. BiVAD ($p=0.002$) 6. Total artificial heart ($p=0.03$)	CNS events Infection
European results with a continuous-flow VAD for advanced HF pts, Lahpor J, 2010 <u>19616963 (</u> 290)	To report on the European experience with the Heart Mate II LVAD	Registry	411	NYHA IIIB-IV CHF on maximum medical treatment including IV inotropic support At least LVAD implantation took place at least 6 mo prior to closing date of study	Not specifically stated	6 mo and 1 y survival	AEs	6 mo mortality: 26% 1st y mortality: 8.5%	52mo (3/04- 8/08)	Overall survival to transplantation, recovery of natural heart function with evice removal, or ongoing device support at end of study: 69%	Multiorgan failure Infections (sepsis, local non- VAD related, drive line) Right heart failure Bleeding Ventricular arrhythmias Neurologic complications

Post–cardiac transplant survival after support with a continuous-flow LVAD: Impact of duration of LVAD support and other variables, John R, 2010 <u>20447659 (</u> 302)	To determine factors related to posttransplant survival in pts supported with continuous-flow LVADs	Registry	468	Adult pts with end-stage HF and listed for heart transplantation (SAME AS HMII BTT STUDIES)	Severe renal, pulmonary, o hepatic dysfunction, Active uncontrolled infection Mechanical aortic valve or aortic insufficiency, Aortic aneurysm, Other MCS (other than IABP) Technical obstacles though to pose an increased surgical risk	survival; survival after transplantatio n		Overall 1 y mortality: 13%	Enrollment 38 mo (3/05- 4/08); follow- up for 1 y post- transplant and for 18 mo post-LVAD if not transplanted	Post-transplant survival at 1y: <30 d LVAD support: 94% 30-89 d LVAD support: 93% 90-179 d LVAD support: 84% >180 d LVAD support: 81% (p=0.18)	Bleeding requiring pRBCs
Results of the Post-U.S. FDA- Approval Study With a Continuous Flow LVAD as a Bridge to Heart Transplantation (INTERMACS), Starling RC, JACC 2011 <u>21545946 (291)</u> BIVAD	To determine whether results with the HMII LVAD in a commercial setting are comparable to other available devices for the same indication	Registry	338	INTERMACS registry, LVAD for BTT		Survival (transplant or death)	30 d mortality, inhospital mortality, LOS, QOL, AE	12 mo mortality 13% HMII vs. 22%COMP	Enrollment 9/07-2/09; at least 12 mo follow-up post VAD	12 mo survival: 85% HMII vs 70% COMP no difference between INTERMACS profiles within each group 12 mo survival: log rank p<0.001	Bleeding event rate/pt-y 1.44 HMII v 1.79 COMP, p=0.19 Infection event rate/pt-y 1.0 HMII v 2.12 COMP, p<0.0001
Survival after biventricular assist device implantation: An analysis of INTERMACS database, Cleveland JC, 2011 21621423 (303)	To identify the underlying pre- implant characteristics of the population requiring BiVAD support that contribute to reduced survival, and to identify differences in postoperative outcomes with respect to AEs compared with pts supported with LVAD alone.	Registry	1852	INTERMACS registry, LVAD or BiVAD implantation	N/A Su	ırvival	AEs	6 mo mortality BiVAD: 44% LVAD: 14% p<0.0001	15 mo (6/06- 9/09)	Risk factors for death with BiVAD Older age Higher BSA Presence of Ascites Elevated creatinine Elevated total bilirubin Elevated INR History of valve surgery Failure to wean from bypass	Bleeding Infection

of the Orqis percu Medical contin	compare cutaneous	RCT	168	LVEF<35%							
Enhanced (flow <u>r</u> Treatment of HF up to Unresponsive to Medical vs. m	ntinuous aortic			Persistent clinical, hemodynamic, and renal derangement despite standard oral medication and treatment for \geq 24 h with \geq 1 of the following drugs at minimum dosage (stable for \geq 6 h): a) dobutamine 2.5 mg/kg/min b) milrinone 0.3mg/kg/min c) dopamine 5 mg/kg/min c) dopamine 5 mg/kg/min e) nitroprusside 0.25mg/kg/min e) nitroprusside 0.25mg/kg/min PCWP \geq 18 mm Hg continuously for 12 h and \geq 20 mm Hg at time of randomization; CI < 2.4 L/min/m 2; SCr >1.2 mg/dL or IV furosemide dose \geq 120 mg/d or equivalent.	Recent Q-wave MI or cardaic revascularization; Severe lung disease; Primary liver disease; SCr >4.0 mg/dL or on dialysis; CRT device implanted within 14 d; SBP <80 mm Hg; Need for cardiac mechanical support; Platelet count <50 000/ L; INR > 1.5 in the absence of anticoagulation; Systemic infection; CVA or TIA within 3 mo; Active status on the cardiac transplantation list unless transplant was considered unlikely within 65 d; Peripheral vascular disease with absent pedal pulse or evidence of limb ischemia; Significant uncorrected primary valvular disease.	Overall success composite based on technical (device group only), hemodynamic, and clinical success defined as follows: technical success (device group only), insertion and attainment of flow ≥1 L/min for ≥24 h; hemodynamic success, mean PCWP decrease from baseline of 5 mmHg calculated as the average of values at 72-96 h; and clinical success, from d 1- 35 after randomization, any of the following: ≥10 consecutive d alive out of hospital, no alternative mechanical support, absence of death, and absence of readmission for HF	Change in SCr at d 3 Change in body weight at d 4 Change in CI (72-96 h average), Change in NT- proBNP at d 3; Change in KCCQ Overall Summary score at 2 wk and 35 d.	65 d mortality pVAD 33.9% control 32.2% (HR:1.05; p=0.87)	Enrollment 9/04-8/07 (3y), out to 64 d since randomization	Primary efficacy endpoint success (hemodynamic and clinical success for both groups plus technical success in the device group) was seen in 13.6% of the control group and 17.4% of the device group pts (p=0.45) No significant difference was found in SCr, NT- proBNP, or body weight. KCCQ Overall Summary and Clinical Summary scores increased more in the device group (p=0.10) than in the control group (p=0.095), but treatment differences were not significant	Any bleed (40.4% device vs 13.6% control, p=0.0004)

Longitudinal Change in QoL and Impact on Survival After LVAD Implantation, Grady KL, 2004 <u>15063260</u> (293)	To describe change with time (from 1mo to 1 y) in pts who received a Heart Mate vented elecric LVAD as BTT and to identify QOL (predictors of survival after LVAD implantation)	Cohort Study	78	Received either HeartMate VE LVAD or Heart Mate implantatble pneumatic LVAD between 8/1/94 and 8/31/99 at 1 of 9 medical centers in US and one medical center in Australia as BTT Age ≥ 18 y Able to read and write English Physically able to participate	N/A	QOL questionnaires: QOL Index, Rating Question Form, HF Symptom Checklist, and Sickness Impact Profile	N/A	N/A	N/A	QoL outcomes were fairly good and stable from 1 mo to 1 y after LVAD implantation. Overall QoL was unchanged, however both positive and negative changes in subareas of QoL were noted. Pt satisfaction with life improved in area of health/functioning but worsened in satisfaction with significant others. Cardiopulmonary, neurologic, psychological, and physical symptom distress improved. Functional disability with respect to work, sleep/rest, self-care, and physical disability	N/A
Continuous	To assess the	Cohort	655	Pts enrolled in either HM II	N/A	NYHA Functional	N/A	N/A	N/A	improved over time. However, functional disability with respect to home management and social interaction worsened. LVAD pts demonstrated	N/A
Flow LVAD Improves Functional Capacity and QoL of Advanced HF Pts, Rogers JG, 2010 20413033 (304)	impact of continuous flow LVADs on functional capacity and HF- related QoL	Study		BTT or DT clinical trials		Class assess by clinician Pt reported activity levels (METS) and 6MWT Heart failure- related QOL by MLWHF and KCCQ				early and sustained improvements in functional status and QOL. NYHA functional class improved from class IV to class I or II in majority of pts (about 80%). Improved 6MWT distance as well as MLWHF and KCCQ scores.	

AAA indicates abdominal aortic aneurysm; ACEI, angiotensin-converting-enzyme inhibitor; AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AV, atrioventricular; AVR, aortic valve replacement; BMI, body mass index; BSA, body surface area; BTT, bridge to transplantation; CABG, coronary artery bypass surgery; CCB, calcium channel blocker; CHF, congestive heart failure; CI, clearance; COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular accident; DM, diabetes mellitus; DT, destination therapy; dz, disease; FEV, forced expiratory volume; HCM, hypertrophic cardiomyopathy; HF, heart failure; HM II, HeartMate II; HM XVE, HeartMate XVE; HT, heart transplantation; hx, history; IABP, intra-aortic balloon pump; INR, international normalized ratio; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; IV, intravenous; KCCQ, Kansas City Cardiomyopathy Questionnaire; LOS, length of stay; LV, left ventricle; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; MCS, mechanical circulatory support; METS, metabolic equivalents; MLWHF, Minnesota Living with Heart Failure; MWT, minute walk test; MODS, multiple organ dysfunction scores; N/A, not applicable; NT-proBNP, N-terminal pro-B-Type natriuretic peptide; NYHA, New York Heart Association; OMM, optimal medical management; PAD, peripheral arterial disease; pRBC, packed red blood cells; PCWP, pulmonary capillary wedge pressure; pHTN, pulmonary hypertension; pts, patients; PVR, peripheral vascular resistance; QoL, quality of life; RCM, Restrictive cardiomyopathy; RCT, randomized control trial; RV, right ventricule; SAE, serious adverse event; SBP, systolic blood pressure; SCr, serum creatinine; SOFA, sequential organ failure assessment; SVT, supraventricular tachycardia; Tbilli, total bilirubin; TIA, transient ischaemic attack; VAD, ventricular assist device; and VO2, oxygen volume.

Data Supplement 36. Transplantation (Section 7.4.6)

Study Name,	Aim of study	Study Type	Background Therapy	Study			Severity	Endpoints	Mortality	Trial	Absolute Benefit	P Values
Author, Year				Size						Duratio	or Major Finding	95% CI:
										n ()(aara)		
			Pretrial standard treatment.	N (Total Study Size)	Inclusion Criteria	Exclusion Criteria	Severity of HF Symptoms	Primary Endpoint	1st Year Mortality	(Years)		
PATIENT SELECTIO)N											
Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory pts with HF, Mancini DM, Circulation, 1991 <u>1999029</u> (27)	To determine whether measurement of peak VO2 during maximal exercise testing can be used to identify pts in whom transplantation can be safely deferred	Case-control	ACEI 95% Diuretics 100% Digoxin 100% Vasodilators 98% PDE3 inhibitors 13% Antiarrhythmics 10% ICD 1%	122	Ambulatory HF pt referred for cardiac transplantation evaluation	Dependent on inotrope or mechanical support; Unable to achieve anaerobic threshold on CPX	NYHA II 13% NYHA III 70% NYHA IV 17%	Death	1 y mortality peak VO2 ≤14, accepted for transplant: 30% peak VO2 >14: 6% peak VO2 ≤14, rejected for transplant: 53%	3	Pts with preserved exercise capacity despite severe resting hemodynamic impairment have survival and functional capacity equal to those afforded by cardiac transplantation	N/A

Predicting Survival in Ambulatory Pts With Severe HF on Beta Blocker Therapy, Lund LH, Am J Cardiol 2003 <u>14636921 (</u> 306)	To examine the predictive value of peak VO2 and the HFSS in pts referred for cardiac transplantation in the beta blocker era	Case-control	Beta blockers 65%	221	Ambulatory HF pts referred for heart transplant evaluation	N/A	N/A	Outcome events: death before transplant, LVAD implantation, inotrope- dependent transplantation	1 y event-free survival: beta blocker 75% no beta blocker 56%	6	No difference in 1 y event-free survival amongst beta blocker users by peak VO2 statum; however, significant difference by HFSS statum	Survival by HFSS, p<0.0002 (total cohort), p<0.02 (beta blocker pts) Survival by VO2, p=0.3 (total cohort), p=0.29 (beta blocker pts)
Selection of Pts for Heart Transplantation in the Current Era of HF Therapy, Butler J, JACC 2004 <u>14998618 (</u> 307)	To assess the relationship between survival, peak exercise oxygen consumption (VO2), and HF survival score (HFSS) in the current era of HF (HF) therapy	Case-control	ACEI 92% Diuretic 96% Digoxin 94% beta blocker 10% (past) vs. 72% (current) Spironolactone 2% (past) vs. 41% (current) Antiarrhythmic 13% AICD 11% (past) v 19% (current)	507	HF pts with LVEF <40%; Underwent CPX in 1994-1997 (past era) or 1999-2001; (current era) Underwent OHT in 1993-2000	On inotrope; Angina or orthopedic issue restricting exercise capacity; Significant valvular stenosis; Exertional oxygen desaturation	NYHA III- IV 84%	1 y event-free survival (without need for LVAD or urgent- Status 1A- transplantation) for HF pts; Overall 1-y survival for transplanted pts	Overal 1-y survival Transplanted: 88% Current era HF: 88% Past era HF: 78%	N/A	No difference in 1 y event-free survival in current era by initial peak VO2; trend towards difference in survival when stratified by HFSS	N/A
Peak VO2 and VE/VCO2 slope in pts with HF: a prognostic comparison, Arena R, Am Heart J, 2004 <u>14760336 (</u> 308)	To examine the ability of peak VO2 and VE/VCO2 slope to predict cardiac-related mortality and hospitalization	Retrospectiv e analysis	ACEI 70% Digitalis 57% Diuretic 63% Oral nitrate 29% beta blocker 42% CCB 15% anticoagulant 35% Antiarrhythmic 15%	213	HF diagnosis; Evidence of LV systolic dysfunction by echocardiogram or cardiac catheterization		N/A	Cardiac-related mortality and hospitalization 1- y after exercise testing via medical chart review and the Social Security Death Index	1 year mortality VE/VCO2 < 34: 0.8% VE/VCO2 ≥34: 16.9%	8 y, 7 mo (CPX from 4/93- 10/01), plus 1 y f/u	Peak VO2 (≤14 ml/kg/min) was revealed by multivariate Cox regression analysis to add significantly to the VE/VCO2 slope (≥34) in predicting 1-y cardiac-related hospitalization (residual X ² =6.5; p=0.01). The addition of peak VO2 did not provide additional value to the VE/VCO2 slope in predicting overall cardiac-related mortality (residual	1 y cardiac mortality VE/VCO2 slope ≥34, p <0.0001

											X2 = 0.2; p=0.89) or 1-year cardiac-related mortality (residual X2= 1.5; p=0.29).	
Prognostic usefulness of the functional aerobic reserve in pts with HF, Chase P, Am H J, 2010 <u>21095281 (</u> 309)	To develop a prognostic model using FAR as a continuous variable that incorporates pts with an undetectable VT. Secondarily, to determine the prognostic power of the FAR with that of VO2pk and the VE/VCO2 slope in pts with HF	Case-control	Beta blocker 86% (no VT) vs 75% (VT) ACEI 76% CCB 7% Diuretic 90% (no VT) vs 70% (VT)	874	Chronic HF with stable HF symptoms and medications for at least 1 mo before exercise testing, LVEF <u>4</u> 5%	N/A	NYHA III- IV 89% (no VT) vs. 45% (VT)	Major cardiac- related events (heart transplantation, LVAD implantation, and cardiac-related death) for 2 y after CPX testing	2 y event-free survival based upon CPX responses favorable responses defined as VE/VCO2 <36, VO2pk > 10 mL O2/kg/min, FAR > 3ml O2/kg/ min) All favorable responses: 95% 1 unfavorable: 83.1% 2 unfavorable: 76.0% All unfavorable: 58.3%	11 y (CPX between 5/97- 5/08); 2 yfollow- up	Pts without a detectable VT had worse prognosis. VE/VCO2 slope (≥36) is the strongest overall univariate and multivariate predictor; FAR (≤3 ml O2/kg/min) and peak VO2 (≤10ml O2/kg/min) are additive to the VE/VCO2 slope	No VT vs VT: p<0.001, 95% CI 2.3- 4.8 Prognostic classification p<0.001
Ventilatory Efficiency and the Selection of Pts for Heart Transplantation, Ferreira AM, Circulation HF, 2010 <u>20176714 (</u> 310)	To assess whether Ve/VCO2 slope would identify individuals likely to benefit from heart transplant more accurately than current exercise criteria for listing	Case-control	N/A	663	HF pts who underwent cardiopulmonary testing at 4 laboratories; NYHA II-IV; LVEF ≤40%	Primary valve disease; Congenital heart disease; Planned coronary; revascularization; Planned cardiac surgery; Age <18 y; Primary pulmonary disease; Previous cardiac transplantation; Submaximal CPX (peak RER	NYHA II-IV	Death or heart transplant	During follow-up period, 15.2% underwent transplant 13,7% died	Median f/u 26 mo	Ve/VCO2 slope <43, 1y survival 97% 3y survival 89.4% Ve/VCO2 slope ≥43 1y survival 77.8% 3y survival 55.1%	Ve/VCO2 slope <43, 1y survival: 95% CI: 95.4-98.6, y survival: 95% CI: 85.8-93.0 p<0.001 Ve/VCO2 slope ≥43 1 y survival: 95% CI: 71.3-84.3%, 3 y survival: 95% CI: 45.2-65.0

						ratio <1.05).						
The HF Survival Score outperforms the peak oxygen consumption for heart transplantation selection in the era of device therapy, Goda A, JHLT 2011 21093299 (311)	To evaluate peak VO2 and HFSS as prognostic tools in pts with and without CRT-D referred for heart transplant evaluation	Case-control	ACEI/ARB 80% b-blocker 64% (no device) v 76% (any device)	715	Systolic HF pt referred for heart transplant evaluation	Excluded pts unable to exercise for any reason	mean NYHA class 2.82 (total), 2.7 (no device) vs 2.9 (any device)	Outcome events were defined as death, urgent transplantation (UNOS Status 1), or implantation of LVAD. Pts who underwent transplant as non-urgent (UNOS status 2) were censored alive on the date of the transplant.	1 y event-free survival with peak VO2 10.1- 14 Total cohort: 77% CRT+/-ICD: 84% ICD +/- CRT: 80% Any device: 80% 1 year event- free survival with peak VO2 \leq 10 Total cohort: 65% CRT+/-ICD: 52% ICD +/- CRT: 59% Any device: 58%	N/A	HFSS significantly discriminates between the 3 risk strata across all device groups, whereas peak VO2 <10 only discriminates high risk from low/medium risk.	1y event- free survival, amongst CRT+/-ICD pts low risk HFSS 90%, medium risk HFSS 72%, high risk HFSS 56%
FUNCTIONAL/QOL		1			1			1 -	1			
Improvement in QoL in Pts with HF who Undergo Transplantation, Grady KL, 1996 <u>8878757</u> (312)	To compare QoL of pts with HF at time of loisting for a heart transplant with that 1 y after transplantation	Cohort	Post-transplant maintanence immunosuppression included cyclosporine, prednisone and azathioprine. Some received induction anti- T-cell therapy.	148	Underwent cardiac transplantation at Loyola University of Chicago Medical Center or University of Alabama at Birmingham	N/A	N/A	Symptoms, health perception, functional status, stress, coping, life satisfaction, and overall QoL as measured by 6 point- completed instruments. Demographic and clinical data from chart review.	N/A	N/A	Total symptom distress decreased after heart transplantation. Overall level of functional disability improved after heart transplantation, though remained low.	N/A

A Controlled Trial of Exercise Rehabilitation After Heart Transplantation, Kobashigawa JA, 1999 <u>9920951 (</u> 313)	To assess the effects of structured 6 mo training (cardiopulmonary rehabilitation) on the capacity for exercise early after cardiac transplantation	RCT	All pts were treated with triple-drug immunosuppression cyclosporine, azathioprine, and prednisone.	27	Underwent cardiac transplantation	Multiple medical issues limiting ability to participate in exercise training	N/A	Differences in results of cardiopulmonary exercise stress testing at 1- and 6- mo after transplantation	N/A	Enrollme nt 11 mo; 6 mo followup (total 17mo)	6 mo D peak VO2: +4.4 L/min/kg (exercise) +1.9 L/min/kg (control)	p=0.01
Predictors of QoL in Pts at 1 y After Heart Transplantation, Grady KL, 1999 <u>10328145</u> (314)	To describe QoL, examine relationships between quality of life and demographic, physical, and psychosocial variables, and identify predictors of Q0L in pts 1 y post- transplant	Cohort study	Some pt receieved induction anti-T celll therapy with HATG or OKT3, some did not. All pts were on maintenance immmunosuppression consisting of cyclosporine, prednisone, and azathioprine. Prednisone was rapidly tapered to 0.1mg/kg/d by 1 y post-OH.	232	Pts who survived to 1 y post-cardiac transplant and completed the study booklet	N/A	N/A	QoL domains and multiple subscales within these domains: somatic sensation, psychological state, physical and occupational function, social interaction	N/A	Recruite d pts listed for OHT from 3/88- 8/96	Predictors of better QoL at 1 y post-OHT were: less total stress, more helpfulness of information, better health perception, better compliance with transplant regimen, more effective coping, more functional ability, less symptom distress, older age, fewer complications Predictors of POOR outcome were primarily psychological	p<0.00001 for all
Lifestyle and QoL in Long- Term Cardiac Transplant Recipients, Salyer J, 2003 <u>12633699 (</u> 315)	To describe long-term (>1 y) cardiac transplant recipients' perceptions of barriers to health-promoting behaviors; ability to manage their health, health- promoting lifestyle, health status and QoL; and determine predictors of QoL.	Cross- sectional study	N/A	93	Cardiac transplant recipients who were: (1) >18 y of age at the time of transplant; (2) could read and write English; and (3) had the visual acuity to read and respond to written questionnaires.	N/A	N/A	Self-report questionnaire incorporating: (1) pt characteristics; (2) barriers to health promotion, perceived health competence and health-promoting lifestyle; (3) perceived health status; and (4) QoL.	N/A	Mean time since transpla nt was 101.4 mo (SD 49.44 mo, range 12-188 mo)	Despite having multiple co-morbidities, heart transplant recipients evaluate their health as good. QoL in recipients who are, on average, 8.5 y post-transplant and demonstrate that, overall, they are moderately satisfied with their lives Predictors of better perceptions of QoL included less education, longer time since transplant,	N/A

											ischemic etiology of HF, fewer barriers, higher perceived health competence and a health- promoting lifestyle (R ² =0.51; F=14.77; p=0.001).	
Changes in exercise capacity, ventilation, and body weight following heart transplantation, Habedank D, 2007 <u>17023206</u> (316)	To prospectively examine changes in peak VO2 and ventilatory efficiency (VE/VCO2 slope) over 24 mo following heart transplantation and evaluate the potentially confounding effects of weight gain	Case control	In txplt pts Immunosuppression: cyclosporine/tacrolimus 100% prenisolone 100% azathioprine/MMF 100% ACE-I/ARB 99% CCB 93% Diuretics 92% alpha blocker 17% beta blocker 12%	125	Underwent cardiac transplantation between 9/97 and 1/02 at German Heart Institute, Berlin; Healthy volunteers	N/A	N/A	Peak VO2, Ve/VCO2 slope	N/A	N/A	Ve/VCO2 slope improved (decreased) at 6 mo and remained improved at 12, 24 mo post-txplt compared with pre-txplt value and no different than matched normal at 6 mo. Peak VO2 improved at 6 mo and remained improved at 12, 24 mo post-txplt compared to pre-txplt baseline but remained lower than normal matched controls.	Ve/VCO2, p<0.001 vs. baseline, p=0.12 vs matched normals Peak VO2, p<0.01 vs baseline, p<0.0001 vs matched normals
Patterns and Predictors of QoL at 5 to 10 Y After Heart Transplantation, Grady KL, 2007 <u>18022086 (</u> 317)	To describe QoL over time and identify predictors of QoL longitudinally from 5-10 y after heart transplantation	Cohort	N/A	555	Transplanted between 7/1990 and 6/1999; Survived 5-10 y post-transplant Completed pt survey pamphlet; Age ≥21y; Literate in English	N/A	N/A	N/A	N/A	N/A	QoL is positive and stable at 5 to 10 y after heart transplantation. Bio-psychosocial variables predicted satisfaction with overall QoL and HRQoL.	N/A
SURVIVAL OUTCOM	NES											
Long-term Results of Cardiac Transplantation in Pts Older than 60 Y, Bull DA, 1996	To examine the long-term results of cardiac transplantation in pts >60 y	Case-control	N/A	527	NYHA IV HF unremedial to surgical treatment other than cardiac replacement,	Severe pHTN (PVR >6 Wood units, irreversible) Severe irreversible	NYHA IV	Survival after transplant	6 y mortality >60y/o: 46% <60y/o: 28%	9 y	18% worse survival/higher mortality at 6 y post- transplant for pts transplanted at age > 60 y.	6-y mortality: p<0.05 Death from infection: p<0.003

<u>8583816 (</u> 318)					Limited life expectancy, 1-y mortality >50% Age <65 y; No systemic illness other than abnormalities related to HF, Emotional stability, Strong family support system.	hepatic, renal or pulmonary disease, Active systemic or pulmonary infection, Recent pulmonary infarction, Uncontrollable HTN, Uncorrectable peripheral vascular disease, Active peptic ulcer disease, History of substance abuse (including alcohol) or behavior problem that would interfere with medical compliance					Older transplant recipient (> $60y/o$) more likely to die of an infectious complication after transplantation. Older transplant recipient (> $60y/o$) more likely to die of malignant disease after transplantation. Older pts (> $60y/o$) had significantly fewer rejection episodes per pt than those < 60 years at transplantation (1.9 ± 1.3 vs 2.6 ± 1.8)	Death from cancer: p=0.015 Rejection episodes: p=0.009
Comparative Outcome and Clinical Profiles in Transplantation (COCPIT) Study, Deng MC, 2000 <u>10968814</u> (319)	To determine whether there is a survival benefit associated with cardiac transplantation in Germany.	Prospective observational cohort	N/A	889	Age ≥16 y, listed for cardiac transplantation	N/A	NYHA IV	Mortality, stratified by HF severity.	1 y mortality after listing: high risk: 51% medium risk: 32% low risk: 29% p <0.0001 1y mortality while waiting on transplant list: high risk: 32% medium risk: 20% low risk: 19% p <0.0003 for high risk compared with low/medium	N/A	For the total cohort there was no survival benefit from transplantation. However, for high risk pts, a mortality risk reduction was observed within 2 wk of transplantation (RR <1.0). This benefit disappeared after eight months.	p=0.04 (mortality risk reduction for high risk pts)

									1y mortality s/p transplant high risk: 64% medium risk: 76% low risk: 75% p=0.2			
Reversible pulmonary HTN in heart transplant candidates— pretransplant evaluation and outcome after OHT, Klotz S, 2003 <u>14607204 (</u> 320)	To assess the value of prostaglandin E1 (PG-E1) for reduction of PHT and to predict the postoperative outcome, compared to pts without PHT	Case-control	ACEI 81% Digitalis 74% Diuretics 75% beta blockers 38%	151	Referred for heart transplant evaluation at Munster University between 3/98- 4/01	Pts with implanted MADs; clinical decompensation or inotropic- support at initial evaluation	NYHA IIIB- IV	1 y post- transplant Mortality	y post-txplt mortality Non-pHTN: 14.8% Reversible pHTN: 22% Wait list mortality Non-pHTN: 17% Reversible pHTN: 17% Non-wait list Mortality Non-pHTN: 7% Reversible pHTN: 13%, p= 0.39 Irreversible pHTN: 50%, p<0.05	>3 y	Non-wait list, wait list, and 1y post-txplt mortality rates are similar for pts with reversible pHTN as those without pHTN.	N/A
Evolving trends in risk profiles and causes of death after heart transplantation: A 10 y multi- institutional study, Kirklin JK, 2003 <u>12698152</u> (321)	To examine differences in risk-adjusted expected versus observed actuarial outcomes of cardiac transplantation over time at a single institution	Cohort, Registry	N/A	7290	7290 pts undergoing cardiac trans- plantation at 42 institutions over a 10-y period (1990-2000)	N/A	N/A	The primary end point of this study was death from all causes.	1y post-txplt mortality 1990- 1992: 16% 1993-1995: 15% 3 y post-txplt mortality 1990-1992: 24% 1993-1995: 21% 1996-1999: 21%	10 y registry + 3 y follow- up, 13 y observat ion period	Later transplantation date reduced late post- transplant mortality, particularly that due to rejection and graft vasculopathy, refelcting increasing institutional expertise, changing immunosuppression regimens.	N/A

Retransplantation in 7,290 Primary Transplant Pts: A 10-Y Multi-Institutional Study (Cardiac Transplant Research Database Group), Radovancevic B, 2003 <u>12909465 (</u> 322)	To determine subsets of pts for whom cardiac retransplantation is appropriate therapy	Cohort, Registry	N/A	7290	Pts in CTRD that underwent a second cardiac transplantation between January 1990 and December 1999		NYHA IIIB- IV	Freedom from events (retransplantation and subsequent death, rejection, and infection)	1 y retransplantation rate: 0.8% 10 y retransplantation rate: 3.2% 1y mortality 15% after first transplant 46% after 2 nd transplant 1y mortality post-2 nd txplt by indication for re- txplt 68% acute rejection 50% early graft failure	10 y	Major indications for cardiac retransplantation: 1. Acute rejection 2. Early graft failure 3. Allograft vasculopathy Improved survival post re-txplt if primary reason is allograft vasculopathy, not acute rejection or early graft failure; survival similar to that of pts undergoing primary OHT	Improved survival post-retxplt if done for CAV, p=0.02 Post-retxplt survival for CAV no different than that for primary txplt of any cause, p=0.67
Outcome in Cardiac Recipients of Donor Hearts With Increased LV WT, Kuppahally SS, 2007 <u>17845572 (</u> 323)	To evaluate the outcome in recipients of donor hearts with increased LVWT ≥1.2	Case-control	Cyclosporine 58% Tacrolimus 41% Sirolimus 31% Mycophenolate 69%	157	Pts transplanted between 1/01 and 12/04 at Stanford University Medical Center and the affiliated Northern California Kaiser Permanente heart transplant programs	Pediatric pts, multiple organ recipients, recipients who died within 3 d after transplantation	N/A	Incidence of cardiac recipient death or cardiac retransplantation	Overall mortality (mean 3 y f/u) donor LVH (≥1.2): 21.3% donor normal LVWT: 20% donor LVH (>1.4): 50% total: 20.4%	N/A	Donor heart LVWT>1.4cm increases post- transplant mortality and risk of allograft vasculopathy	Increased mortality with donor LVWT>1.4, p=0.003, 95% CI 1.8- 21.5 VAD BTT, p=0.04, 95% CI 1.02-6.85
Long-term outcomes of cardiac transplantation for PPCM: a multiinstitutional analysis (CTRDG), Rasmusson KD, 2007 <u>18022074 (</u> 324)	To assess outcomes in a relatively large group of PPCM allograft recipients with long-term follow- up	Registry	Induction cytolytic rx 31% Steroids (at 1y): 88%	671	1. Age ≤40 y at time of cardiac transplant 2. Etiology of HF: PPCM or IDCM	N/A	N/A	Rejection, infection, cardiac allograft vasculopathy, and survival	N/A	15 y registry	PPCM recipients had similar long-term survival as male IDCM recipients; PPCM recipients trended towards better survival compared with female IDCM, +h/o pregnancy recipients; PPCM recipients appeared to have better survival than	Overall survival PPM vs male IDCM, p=0.9 PPM vs +P, P=0.05 PPM vs -P, p=0.07

											femail idiopathic DCM, never pregnancy recipients but not statistically significant.	
Clinical outcomes after cardiac transplantation in muscular dystrophy pts (CTRDG), Wu RS, 2010 <u>19864165 (</u> 325)	To investigate the clinical out- comes of cardiac transplantation in muscular dystrophy pts with an extended follow-up period and to assess the outcomes in comparison with an age-matched control cohort	Case- controlled	Calcineurin inhibitors Cyclosporine 87% Tacrolimus 9% Unknown 4% Azathioprine 61% Mycophenolate 33% Uknown 6% Steroids (@1yr) 25%	304	Muscular dystrophy pts who underwent cardiac transplantation and matched- control cohort of IDCM pts (matched by age, BMI, gender, and race)	N/A	N/A	Survival after transplant	1y post-txplt mortality: Muscular dystrophy 11% Matched-control 9% 5 y post-txplt mortality: Muscular dystrophy 17% Matched-control 21% p=0.5	15 y registry	N/A	p=0.5 (post- txplt mortality)
The effect of transplant center volume on survival after heart transplantation: A multicenter study, Shuhaiber JH, 2010 <u>20138635 (</u> 326)	To elucidate the effect of transplant center volume on 1-y mortality	Case-control	N/A	147 transplant centers/ 13230 heart transplants	Data from the Scientific Registry of Transplant Recipients of heart transplantations between 1/1/99 and 5/31/05	N/A	N/A	1 y mortality	1 st y post- transplant mortality significantly higher at very low-volume transplant centers compared with low to high volume transplant centers.	5.5 y registry	Low-, medium, and high-volume transplant centers have lower 1y post-transplant mortality than very-low volume transplant centers.	p<0.001 for each group compared with very- low volume center group, 95% CI: Low volume 0.62-0.82 Med volume 0.56-0.74 High volume 0.48-0.65

ACEI indicates angiotensin-converting-enzyme inhibitor; AICD, automatic internal cardiac defibrillator; BMI, body mass index; BTT, bridge to transplant; CAV, cardiac allograft vasculopathy; CCB, calcium channel blocker; COCPIT, Comparative Outcome and Clinical Profiles in Transplantation; CPX, cardiopulmonary stress testing; CRT, cardiac resynchronization therapy defibrillator; CTRD, Cardiac Transplant Research Database; DCM, dilated cardiomyopathy; FAR, functional aerobic reserve; f/u, follow-up; HATG, anti-T cell therapy; HF, heart failure; HFSS, heart failure survival score; h/o, history of; HTN, hypertension; ICD, implantable cardioverter defibrillator; IDCM, idiopathic dilated cardiomyopathy; LVEF, left ventricular ejection fraction; LVSD, left ventricular systolic dysfunction; LVWT, left ventricular wall thickness; MAD, mechanical assist device; N/A, not applicable; NYHA, New York Heart Association; OH, organ harvest; OHT, orthotopic heart transplantation; OKT3, Othoclone; PG-E1, prostaglandin E1; PDE3, phosphodiesterase enzyme; pHTN, pulmonary hypertension; PPCM, peripartum cardiomyopathy; PVR, pulmonary vascular resistance; QoL, quality of life; RCT, randomized controlled trial; RER, espiratory exchange ratio; SD, standard deviation; txplt, transplant; UNOS, United Network for Organ Sharing; VAD, ventricular assist device; VE/VCO2, carbon dioxide production; VO2, oxygen consumption; and VT, ventricular tachychardia.

Data Supplement 37. Comorbidities in the Hospitalized Patient (Section 8.1)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patient I	Population	Endpoints	Absolute Benefit	P Values & 95% CI:	OR: HR: RR:
			Pretrial standard treatment.	N (Total Study Size)	Ischemic/Non- Ischemic	Inclusion Criteria	Exclusion Criteria	Primary Endpoint			
Diabetes and Hyperglyce Intensive vs. Conventional	mia Randomization of	RCT	Tight gluppop	6104	N/A	Hospitalized pts	N/A	Death	-2.60%	95% CI: 1.02 -	OR:1.02 death at 90
Glucose Control in Critically III Pts: The NICE-SUGAR Investigators. NEJM 2009; 360: 1283-97 (327) <u>19318384</u>	ICU pts to intensive vs. conventional glucose control	KUI	Tight glucose control recommended by some	6104	N/A	nospitalized pis	N/A	Death	-2.00%	1.28 (p=0.02)	d
Elevated Admission Glucose and Mortality in Elderly Pts Hospitalized with HF. Kosiborod M, Inzucchi SE, Spertus JA, Wang Y, Masoudi FA, Havranek EP, Krumholz HM. Circulation 2009; 119: 1899-1907. (328) <u>19332465</u>	To investigate the association between admission glucose and mortality in elderly pts hospitalized with HF	Cohort	Tight glucose control recommended by some	50,532	59.7% ischemic	Hospitalized pts	N/A	Death	N/A	p=0.64	0.998 fully adjusted model per 10 mg/dL increase in admission glucose
Seven-Year mortality in HF pts with undiagnosed DM: an observational study. Flores-LeRoux JA et al. Cardiovasc Diabetol 2011; 10:39 (329) <u>21569580</u>	To assess the prognosis of hyperglycemia (previously undiagnosed DM) in pts admitted to the hospital with HF	Cohort	N/A	400	43% ischemic	Acute HF admission	Lost to follow-up	Total mortality	N/A	95% CI: 1.17 - 2.46 (p=0.006); 95% CI: 1.10 - 1.99 (p=0.009)	aHR unknown DM 1.69 (ACM); HR clinical DM 1.48 (ACM)
Berry C, Brett M, Stevenson K, McMurray JJV, Norrie J. Nature and prognostic importance of abnormal glucose tolerance and diabetes in acute HF. Heart 2008;94:296-304. (330) <u>17664189</u>	To investigate the nature and importance of blood glucose abnormalities in an unselected HF population	Cohort	N/A	454	N/A	N/A	N/A	Inhospital mortality	N/A	p=0.0023; (95% CI: 1.03-1.13)	1.08, aHR per 2 mmol/L increase in glucose
Anemia											

Blood Transfusions for Acute Decompensated HF: Friend or Foe? Garty et al. Am Heart J 2009;158:653- 8. (331) <u>19781427</u>	To assess the impact of blood transfusion among pts with ADHF	Propensity score analysis, national HF survey	Unknown	2335	~85% ischemic	ADHF	Chronic HF admitted for another reason	Mortality; 39.6 vs. 28.5% in BT vs. no BT pts	N/A	In hosp 0.08 (95% CI: 0.21- 1.11); 30 d 0.02 (95% CI: 0.13- 0.64); 1 y 0.12 (95% CI: 0.50- 1.09); 4 y 0.29 (95% CI: 0.64- 1.14)	aOR for BT: 0.48; 0.29; 0.74; 0.86
COPD Bronchodilator Therapy in ADHF in Pts without a History of Chronic Obstructive Pulmonary Disease. Singer AJ et al. Ann Emerg Med. 2008;51: 25-34. (332) <u>17949853</u>	The association between inhaled bronchodilators and HF pts with and without COPD	Registry (AD HF National Registry Emergency Module registry)	N/A	10,978	N/A	ED discharge diagnosis of ADHF as a primary condition, adult	N/A	Mortality (inhospital)	N/A	For pts without COPD bronchodilator use associated with mortality (95% CI: 0.67– 1.56); mechanical ventilation (95% CI: 1.21–2.37) [adjusted, propensity- scored model]. For pts with COPD, no significant difference	1.02; 1.69
Should acute treatment with inhaled beta agonists be withheld from patients with dyspnea who may have heart failure? Maak CA et al. J Emerg Med. 2011 Feb;40(2):135-45. (333) <u>18572345</u>	To determine the safety and efficacy of acute administration of inhaled beta-2 agonists to pts with HF	Review; evidence synthesis from MEDLINE and EMBASE searches	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

ACM indicates all cause mortality; ADHF, acute decompensated heart failure; BT, blood transfusion; COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; ED, emergency department; EMBASE, Excerpta Medica Database; HF, heart failure; ICU, intensive care unit; MEDLINE, Medical Literature Analysis and Retrieval System Online; N/A, not applicable; NICE-SUGAR, Normoglycaemia in Intensive Care Evaluation and Survival Using Glucose Algorithm Regulation; pt, patient; and RCT, randomized control trial.

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient	Population	End	points	Statistical Analysis (Results)
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint	
Damien Logeart, 2008 (334) <u>17651843</u>	Study prevalence, causes and consequences of WRF during hospitalization for acute HF	Observational	416 pts admitted for acute HF	Pts hospitalized for acute HF	Chronic and severe renal failure (admission SCr >230 µmol/lol/L); cardiogenic shock or severe low output requiring inotropic agents during the hospitalization; inhospital death	Combined death; first unscheduled readmission for HF Outcome during the 6 mo after discharge was determined by contacting the pts or their general practitioners by telephone.	N/A	WRF occurred in 152 cases (37%), 5±3 d after admission. Old age, DM, HTN and acute coronary syndromes increased the risk of WRF. Inhospital furosemide doses as well as discharge treatment were similar in WRF and no-WRF pts. Serum Crelevation was the strongest independent determinant of a longer hospital stay (p=0.001). AEs occurred in 158 pts (38%) during follow-up, with 23 deaths and 135 readmissions. Cox analysis showed that WRF, transient or not, was an independent predictor of the risk of death or readmission (HR: 1.74 95%CI: 1.14–2.68; p=0.01).
Grace L. Smith, 2006 (335) <u>16697315</u>	Estimate prevalence of renal impairment in HF pts and the magnitude of associated mortality risk using a systematic review of published studies.	Meta-analysis	80,098 hospitalized and non- hospitalized HF pts.	Cohort studies and secondary analyses of several RCTs.	Studies with <6 mo follow-up and a study that defined renal impairment using ICD- 9 code but no direct serum measures	All-cause mortality risks associated with any renal impairment (Cr>1.0 mg/dL, CrCl or estimated eGFR <90 mL/min, or cystatin- clopidogrel >1.03 mg/dL) and moderate to severe impairment (Cr≥1.5, CrCl or eGFR <53, or cystatin- clopidogrel ≥1.56)	Cardiovascular mortality (all cardiovascular mortality and HF or pump failure mortality) and functional decline by validated functional status scales such as NYHA functional class or activities of daily living assessment	A total of 63% of pts had any renal impairment, and 29% had moderate to severe impairment. After follow-up \geq 1 y, 38% of pts with any renal impairment and 51% with moderate to severe impairment died vs 24% without. Adjusted all- cause mortality was increased with any impairment (aHR: 1.56; 95% CI: 1.53-1.60, p <0.001) and moderate to severe impairment (aHR: 2.31; 95% CI: 2.18-2.44, p<0.001). Mortality worsened incrementally across the range of renal function, with 15% (95% CI: 14%-17%) increased risk for every 0.5 mg/dL increase in Crand 7% (95% CI: 4%-10%) increased risk for every 10 mL/min decrease in eGFR.
Marco Metra, 2008 (336) <u>18279773</u>	Association between hospitalizations for acute HF and WRF	Observational	318 consecutive pts admitted for acute HF.	Diagnosis of acute HF, as established by the ESC guidelines; treatment with an IV agent, which in all cases included furosemide with or without other vasoactive medications.	Inability to give informed consent and those with evidence of ACS, acute arrhythmia, myocarditis, valve stenosis, cardiac tamponade, aortic dissection, pulmonary embolism, high output syndrome or evidence of non-cardiovascular factors	Cardiac death and urgent, unplanned hospitalizations	N/A	53 pts (17%) died and 132 (41%) were rehospitalized for HF. WRF-Abs-% occurred in 107 (34%) pts. In multivariable survival analysis, WRF- Abs-% was an independent predictor of death or HF rehospitalization (aHR: 1.47; 95%CI: 1.13–1.81; p=0.024). The independent predictors of WRF-Abs- %, evaluated using multivariable logistic regression, were history of chronic kidney disease (p=0.002), LVEF (p=0.012), furosemide daily dose (p=0.03) and NYHA class (p=0.05) on admission.

Data Supplement 38. Worsening Renal Function, Mortality and Readmission in Acute HF (Section 8.5)

					as main cause of symptoms development of complications or undergoing procedures which may cause a rise in Cr during the hospitalization			
Cowie MR, 2006 <u>16624834</u> (337)	To determine the prevalence and risk factors for WRF among pts hospitalized for decompensated HF and the association with subsequent rehospitalization and mortality.	Observational	299	Age >20 y, documented history of chronic HF defined according to the ESC criteria; documented evidence of impaired LVSF, as demonstrated by an EF 40% on TTE or other imaging technique on the index admission or within the preceding 6 mo	Pts with a planned discharge within 24 h of admission; an investigator-defined history of ACS or cardiogenic shock within 1 mo prior to the index admission; receiving a new prescription for potentially nephrotoxic drugs within 2 d prior to admission; severe aortic stenosis, valvular disease anticipated to require surgery within 6 mo, 'high output' cardiac failure, or those undergoing chronic renal replacement therapy or cancer chemotherapy	All-cause mortality during the initial hospitalization and within 30+7 d and 180+7 d of the index hospitalization; date and cause of subsequent hospital re-admissions were also recorded.	N/A	1/3 of pts [72 of 248 pts, 29% (95% CI: 26-32%)] developed WRF during hospitalization. The risk of WRF was independently associated with SCr levels on admission (OR: 3.02, 95% CI: 1.58-5.76), pulmonary edema OR: 3.35, 95% CI: 1.79-6.27, and a history of AF: OR 0.35: 95% CI: 0.18-0.67. Although the mortality of WRF pts was not increased significantly, the length of stay was 2 d longer [median 11 d (90% range (4-41) vs 9 d (4- 34), p=0.006]. The rehospitalization rate was similar in both groups.
Komukai K, 2008 <u>18577827</u> (338)	To investigate whether renal dysfunction is associated with rehospitalization for CHF after successful discharge	Observational	109 pts	Pts with CHF who had been admitted and followed up after discharge at the outpatient clinic were reviewed. CHF was diagnosed by ≥2 cardiologists on the basis of the Framingham criteria	HF complicated by acute MI, undergoing or starting dialysis during the follow-up period, or undergoning cardiac surgery during the follow-up period	Rehospitalization for HF after discharge	N/A	Pts with decreased renal function (estimated GFR on admission <45ml Emin.1 E1.73m2) were rehospitalized more frequently than were pts with preserved renal function (estimated GFR on admission .45). Pts with decreased renal function were older and had higher rates of anemia, WRF during hospitalization, and previous HF hospitalization. Independent predictors of rehospitalization for HF identified with multivariate analysis were age, previous hospitalization for HF, decreased renal function, and non-use of an ACEI or ARB.
Akhter MW, 2004 <u>15464689</u> (339)	Evaluate the relation between elevated SCr at baseline, as well as WRF during hospitalization, and	Secondary analysis of the VMAC trial	481 (215 had RI and 266 did not)	Patients with dyspnea at rest caused by acute HF	N/A	Length of hospitalization, 30 d readmission rate as well as 30-d and 6-mo mortality	N/A	Elevated baseline Cr was associated with length of hospital stay (median 6 vs 7 d, p=0.003). RI was associated with a 59% increase in 30-d readmissions (17% vs 27%, p=0.016). Higher Cr on admission was associated with both morbidity and mortality. All-cause mortality at 6 mo increased

	outcomes pts hospitalized for decompensated HF in the VMAC trial							(37.4% vs 12.3%, p <0.0001). Baseline RI was an independent predictor of 6-mo mortality with a RR: 2.72; 95% CI 1.76-4.21; p=0.0001.
Nohria A, 2008 <u>18371557</u> (340)	Examine the ESCAPE database to assess the impact of renal dysfunction in patients with acute HF	Secondary analysis of the ESCAPE trial	A total of 433 pts were enrolled at 26 sites	LVEF ≤30%, recent hospitalization or escalation of outpatient diuretic therapy, and SBP ≤125 mm Hg who were admitted to the hospital with at least 1 sign and 1 symptom of HF, despite adequate treatment with ACEIs and diuretics	Creatinine >3.5 mg/dL, the use of dobutamine/dopamine >3 µg/kg/min or milrinone before randomization, and requirement for early right heart catheterization.	D alive and out of the hospital for 6 mo after randomization	30-d mortality and length of stay	Baseline and discharge RI, but not WRF, were associated with an increased risk of death and death or rehospitalization. Among the hemodynamic parameters measured in pts randomized to the PAC arm (n=194), only right atrial pressure correlated weakly with baseline SCr (r=0.165; p=0.03). There was no correlation between baseline hemodynamics or change in hemodynamics and WRF. A PAC-guided strategy was associated with less average increase in Cr, but did not decrease the incidence of defined WRF during hospitalization or affect renal function after discharge relative to clinical assessment alone.
Owan et al., 2006 <u>16679257</u>	Whether the severity of renal dysfunction, the incidence of WRF or outcomes has changed over time (secular trends) in pts hospitalized for HF therapy.	Observational	6440	All consecutive HF pts admitted to Mayo Clinic hospitals in Rochester, MN, between January 1, 1987, and December 31, 2002	N/A	Change in the incidence of WRF or outcomes over time	N/A	The incidence of WRF, defined as an increase in Crof >0.3 mg/dL increased slightly over the study period (p=0.01). Renal dysfunction and development of WRF were associated with mortality. When adjusted for the changes in baseline characteristics, later admission year was associated with lower 3-mo (aOR: 0.98 per y; 95% CI: 0.96–0.99; p=0.008) and overall mortality (HR: 0.99 per y; 95% CI 0.98–1.00; p 0.002).
Krumholz, 2000 <u>10781761</u> (341)	To determine the incidence and identify factors associated with the development of worsening renal function in elderly patients with acute HF and to examine the impact of WRF on clinical and economic outcomes.	Retrospecrive	1,681 pts from 18 Connecticut hospitals	Age ≥65 y; discharge with HF without having clear precipitants for renal dysfunction	Pts <65 y of age; pts whose diagnosis could not be validated by medical record review, pts with severe aortic stenosis, severe mitral stenosis, or HF secondary to a medical illness (e.g., sepsis); major complications (stroke, acute MI shock, heart arrest, hypotension, pneumonia, and infection) or underwent a cardiac procedure requiring contrast (cardiac catheterization or angioplasty) or bypass	The outcome variable for the first phase of the study was worsening renal function, defined as in the ELITE study as an increase in SCr level during hospitalization of >0.3 mg/dL from admission. The principal endpoints for the 2nd phase of the study were inhospital mortality, length of stay and cost, 30-d mortality and readmission, and 6-mo mortality and readmission	N/A	WRF occurred in 28% of the cohort and was associated with male gender, HTN, rales > basilar, pulse >100 beats/min, SBP >200 mm Hg, and admission Cr>1.5 mg/dL. Based on the number of these factors, a pt's risk for developing WRF ranged between 16% (≤1 factor) and 53% (≥5 factors). After adjusting for confounding effects, WRF was associated with a significantly longer length of stay by 2.3 d, higher inhospital cost by \$1,758, and an increased risk of inhospital mortality (aOR:2.72; 95% CI:1.62-4.58)

					surgery during hospitalization		
Forman , 2004 <u>14715185</u> (342)	To determine the prevalence of WRF among hospitalized HF pts, clinical predictors of WRF, and hospital outcomes associated with WRF.	Cohort (retrospective)	1,004	HF pts hospitalized between July 1, 1997, and June 30, 1998, at 11 academic medical centers.	Pts were excluded if their hospitalizations were for an elective procedure (e.g., percutaneous transluminal coronary angioplasty, pacemaker, or cardioversion) or if their hospital length of stay was <2 d. Other exclusion criteria included severe aortic stenosis, anticipated cardiac transplantation, transfer from another inhospital setting, chronic dialysis, use of a LV assist device, high-output HF, age <20 y, concomitant use of an investigational product or device, and patients receiving chemotherapy. Subjects were also excluded if Crvalues were not documented at admission.	The principal outcome was WRF, defined as an increase in SCr of >0.3 mg/dL (26.5 µmol/L) from admission, consistent with several previous investigations; hospital length of stay, inhospital mortality, and complications occurring after the rise in creatinine. Complications were defined as shock, MI, stroke, major infection/sepsis, clinically significant hypotension, and new onset AF with ventricular rates >100 beats/min.N/A	Among 1,004 HF pts studied, WRF developed in 27%. In the majority of cases, WRF occurred within 3 d of admission. History of HF or DM, admission Cr≥1.5 mg/dL (132.6 µmol/L), and SBP >160 mm Hg were independently associated with higher risk of WRF. A point score based on these characteristics and their RR ratios predicted those at risk for WRF. Hospital deaths aRR: 7.5; 95% CI: 2.9-19.3), complications (aRR: 2.1; 95% CI: 1.5- 3.0), and length of hospitalizations >10 d (aRR: 3.2, 95% CI: 2.2-4.9) were greater among pts with WRF

Klein,	To investigate the	Retrospective	949	Pts >18 y who had	Active myocardial ischemia	Total no. of d hospitalized for	N/A	Although both lower admission eGFR and higher
2008 <u>19808267</u> (343)	relation between admission values and changes in BUN and eGFR and rate of death by 60 d after discharge	analysis of OPTIME-CHF (multicenter, randomized, double-blind, placebo- controlled trial)		known systolic HF and had been hospitalized for exacerbation of no more than 48 h earlier	within the past 3 mo, AF with poor ventricular rate control (>110/min), sustained ventricular tachycardia or ventricular fibrillation, baseline SBP <80 mm Hg or SCr level >3.0 mg/dL (265 µmol/L)	cardiovascular causes within 60 d of randomization. D lost to follow-up and d deceased were prospectively included in the primary endpoint to avoid bias toward a therapy with an increased death rate.		admission BUN were associated with higher risk of death by 60 d after discharge, multivariable proportional-hazards analysis showed that BUN was a stronger predictor of death by 60 d than was eGFR (χ^2 =11.6 and 0.6 for BUN and eGFR, respectively). Independently of admission values, an increase of ≥10 mg/dL in BUN during hospitalization was associated with worse 60-d
								survival rate: BUN (per 5-mg/dL increase) had a HR: 1.08; 95% CI: 1.01-1.16). Although milrinone treatment led to a minor improvement in renal function by discharge, the 60-d death and readmission rates were similar between the milrinone and placebo groups

ACEI indicates angiotensin-converting-enzyme inhibitor; ACS, acute coronary syndrome; AE, adverse event; AF, atrial fibrillation; BUN, blood urea nitrogen; CHF, congestive heart failure; Cr, creatinine; CrCL, creatinine clearance; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; ELITE, Evaluation of Losartan in the Elderly; ESC, European Society of Cardiology; ESCAPE, Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness; HTN, hypertension; ICD-9, international classification of diseases – 9th edition; IV, intravenous; LVSF, left ventricular systolic function; MI, myocardial infarction; NYHA, New York Heart Association; OPTIME-CHF, the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure study ; Pts, patients; RCT, randomized clinical trial; RI, renal insufficiency; SBP, systolic blood pressure; SCr, serum creatinine; TTE, transthoracic echocardiography; VMAC, Vasodilation in the Management of Acute Congestive Heart Failure; and WRF, worsening renal function.

Data Supplement 39. Nesiritide (Section 8.7)

Study Name, Author, Year	Aim of study	Study Type	Backgrou nd Therapy	Study Size	Etiology	Pt Po	oulation	Seve	erity	Endpo	pints	Mortality	Trial Duration (Years)	Statistical Analysis (Results)	Study Limitations	Complications /AEs
			Pre-trial standard treatment.	N (Total) n (Experimental) n (Control)	Ischemic/ Non- Ischemic	Inclusion Criteria	Exclusion Criteria	Severity of HF Symptoms	<i>Study</i> Entry Sverity Criteria	Primary Endpoint	Secondar y Endpoint	1st Year Mortality				
Nesiritide Study Group (NSGT), Colucci WS, 2000. <u>10911006</u> (344)	Determine efficacy/clinic al use of nesiritide for short term treatment of ADHF.	RCT	Chronic medication regimen N/A; any IV medication (dobutamin e, milrinone, dopamine, or vasodilator) was	Efficacy trial: 127 Comparative trial: 305. NESIRITIDE Efficacy trial: 43 (0.015 g/kg/min), 42 (0.03 mg/kg/min) Comparative trial: 103 (0.015mg/kg/min)	Efficacy trial: 46% ICM, Comparativ e trial: 54% ICM.	Symptomatic HF warranting hospitalizatio n for ≥1 IV medication in addition to diuretics. Efficacy trial: PCWP ≥18 mmHg, CI, <2.7L/min/m,	MI/UA within prior 48 h. Clinically important valvular stenosis, HCM or RCM, constrictive pericarditis, primary pHTN, or active myocarditis.	Efficacy trial: 98% NYHA III-IV mean PCWP 28 mmHg, mean Cl 1.9 L/min/m2, mean SBP 116 mmHg. Comparativ	Symptomat ic ADHF requiring ≥1 intravenou s medication in addition to diuretics.	Efficacy: change from baseline PCWP @ 6 h after treatment Comparativ e: Global clinical status (independen	Efficacy trial: Global clinical status. Clinical symptoms Other hemodyn amic measure	N/A	<1y (10 mo enrollme nt 10/96- 7/97); Compara tive trial: 68-73% rx with nesiritide x 1-2 d 14-21%	Efficacy trial: PCWP - 6.0±7.2mm Hg (@ 0.015 g/kg/min) vs. - 9.6±6.2mm Hg (@ 0.03 g/kg/min) vs. +2.0±7.2mm Hg (placebo) Comparative	Subjective measureme nts of global clinical status and clinical symptoms. Background medical therapy not reported. 3. Change in	Asymptomatic/ mildly symptomatic hypotension. NSVT (Comparative trial).

discontinue	, 100 (0.03	2, SBP, <u>></u> 90	e: 92%	t ments.	x 3-5d,	trial: none.	PCWP is a
d; diuretics	mg/kg/min).	mmHg.	NYHA III-	assessment	9-14% x		surrogate
were held 4			IV.	by pt and	5d.	Efficacy trial:	outcome.
h before,	Efficacy trial: 42			investigator,		p<0.001	
during, and	placebo,			5-point		(pairwise	
6 h after	Comparative			scale:		with	
study drug	Trial: 102			markedly		placebo).	
infusion in	standard rx			better,			
Efficacy	(investigator			better, no			
trial.	choice of up to 2			change,			
	IV agents			worse, or			
	milrinone,			markedly			
	dobutamine,			worse).			
	nitroglycerin, or			Clinical			
	nitroprusside,			symptoms			
	along with			(dyspnea			
	diuretics and			and fatigue,			
	other oral HF			jointly pt			
	medications).			and			
				investigator			
				assessment			
				, 3 point			
				scale:			
				improved,			
				no change,			
				or worse).			

Vasodilation in the Managemen t of Acute CHF (VMAC), 2002. <u>11911755</u> (345) (345)	To compare the efficacy and safety of intravenous nesiritide, intravenous nitroglycerin, and placebo.	RCT	Diuretics 86%, ACEI 60%, ARB 11%, beta blockers 33%, oral nitrates 35%, CCB 14%, digoxin 60%, warfarin 33%, ASA 45%, statins 25%.	489 204(nesiritide) 143 (nitroglycerin) 142 (placebo)	Ischemic 55%	Dyspena at rest due to decompensat ed CHF Severe enough dyspnea to require hospitalizatio n & IV therapy. A cardiac etiology for dyspnea was established by estimated or measured elevation of cardiac filling pressures (PCWP ≥20 mm Hg in catheterized pts) and ≥ 2 of the following: (a) JVD, (b) PND or 2- pillow orthopnea within 72 h before study entry, (c) abdominal discomfort due to mesenteric congestion, or (d) a CXR consistent with decompensat ed CHF.	SBP <90 mm Hg, cardiogenic shock or volume depletion, any condition that would contraindicate an IV vasodilator, acutely unstable clinical status that would not permit a 3 h placebo period, use of IV nitroglycerin that could not be withheld, mechanical ventilation, and anticipated survival of <30-35 d.	100% NYHA IV at time of presentatio n/entry or at least dyspneic at rest, 84% chronic NYHA III-IV (prior to decompens ation), 19% SBP <100mmHg	NYHA IV at presentatio n (dyspnea at rest).	PCWP Pt self- assessment of dyspnea @ 3 h of study drug infusion (3 point scale: improved, no change, worse).	Comparis ons between nesiritide and nitroglyce rin: Onset of effect on PCWP. Effect on PCWP @ 24 hr after start of study drug. Self- assessed dyspnea and global clinical status. Overall safety profile. Use of other IV vasoactiv e agents or diuretics. Effects on other hemodyn amic variables.	N/A	Enrollme nt October 1999 and July 2000 (10 mo); study drug infusion, median time 24- 25 h.	PCWP at 3 h (mean (SD)) Nesiritide: -5.8 (6.5) mmHg* Nitroglycerin : -3.8 (5.3) mmHg Placebo: -2 (4.2) mmHg ABSOLUTE BENEFIT IN PCWP Nesiritde vs. Placebo : - 3.8 mmHg. *p<0.05 (compared with placebo, compared with nitroglycerin) N/A	Subjective measureme nts of global clinical status and clinical symptoms. Change in PCWP is a surrogate outcome.	Generalized headache (8% nesiritide group vs. 20% nitroglycerin group) Asymptomatic (4%) hypotension in nesiritide group.
---	--	-----	---	---	-----------------	---	--	--	---	---	---	-----	--	--	--	---

Prospective	To evaluate	RCT	Diuretics	237	N/A	1. Pt	1. Pt not a	61% NYHA	Dyspnea at	No pre-	N/A	N/A	11 mo	Total	No pre-	Asymptomatic
Randomize	the safety	RUI	77%,	231	N/A	presented to	candidate for	III-IV at	rest or with	defined	N/A	IN/A	enrollme	hospital LOS	defined	
d Outcomes				120		ED with a		baseline.								hypotension
	and efficacy		ACEI 58%, ARB 14%,	120		medical Hx	observation	baseline.	<20 feet ambulation	primary endpoints.			nt period (3/01-	through	primary end-	(10% with nesiritide vs
Study of	of a standard			117		with HF,	(e.g.,		ampulation				(3/01-	study Day	points;	3% with
Acutely	care		beta	117			presented with		•	Efficacy				30 excluding	49% of pts	
Decompens	treatment		blockers			along with	any condition			measures			mean	index visit	were NYHA	placebo,
ated	regimen with		46%,			fluid overload	that obviously			included			study	(days)	I-II or	p=0.03).
Congestive	the addition		aldosteron			or elevated	mandated			admission			drug	Mean <u>+</u> SD:	without any	
HF Treated	of either		е			cardiac filling	hospital			to the			infusion	7.1 <u>+</u> 4.25	Hx of HF.	
Initially as	nesiritide or		antagonist			pressures by	admission,			hospital			time ~20	(placebo +		
Outpts With	placebo in		14%, CCB			clinical	such as acute			after the			h (same	standard		
Nesiritide	ED/OU pts		22%,			assessment,	MI, or			index visit,			for both	care) vs. 3.1		
(PROACTIO	with		digoxin			dyspnea at	requirement			readmission			groups);	<u>+</u> 2.20		
N), Peacock	decompensa		48%			rest or with	for invasive			within 30 d			30d	(nesiritide +		
IV WF,	ted HF.		placebo vs.			minimal	monitoring or			for any			follow-up	standard		
2005.			34%			exertion	mechanical			reason,			period.	care); 2.		
<u>16183441</u>			nesiritide,			(defined as	ventilation,			length of				Subjects		
(346)			nitrates			walking 20	including			stay in the				readmitted		
			45%,			ft), and	BPAP);			hospital,				after index		
			statins			judged to	2. SBP <90			assessment				hospitalizatio		
			29%,			require <u>></u> 12 h	mmHg;			of dyspnea,				n, excluding		
			ASA 46%.			of hospital	3. Admitted to			and				those who		
						therapy for	the ED			resource				died or were		
						HF.	primarily for a			utilization.				lost to		
						2. Evidence	diagnostic			Safety				follow- up:		
						of HF as	evaluation			measures				23%		
						primary	(e.g., rule out			included:				(placebo +		
						etiology of	ACS);			vital signs,				standard		
						the dyspnea	4. Receiving			AEs				care) vs. 9%		
						required >2	chronic			(defined as				(nesiritide +		
						of the	dialysis;			any pre-				standard		
						following: a)	5. Had cardiac			existing				care).		
						PND or 2-	markers			medical				,		
						pillow	indicative of			event that				1. p=0.032		
						orthopnea	myocardial			worsened or				2. p=0.049		
						within 72 h	necrosis;			any new						
						before the	6. Medical			medical				N/A		
						start of study	condition so			event that						
						drug; b) JVD;	severe that 30			occurred						
						c) abdominal	d survival was			during						
						symptoms,	unlikely;			administrati						
						as manifest	7. Medical			on of study						
						by	condition			drug,						
				1		by	CONULION			uluy,					1	

discomfort, (such as whether or decreased cardiogenic not related appetite, or shock or to study nausea volume drug), and attributed by depletion) that SAEs investigator d use of IV AEs that investigator 8. If within 2 h threatening, hnic before the resulted in congestion; start of study hospitalizati d) 25lb drug on, or weight gain administration death).	
appetite, or nausea shock or volume to study attributed by the depletion) that contraindicate GAEs investigator d use of IV AEs that to be due to vasodilatators. were life- hepatosplanc 8. If within 2 h threatening, hnic before the congestion; start of study hospitalizati d) 25lb drug on, or weight gain administration death).	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
attributed by the depletion) that contraindicate SAEs (defined as investigator d use of IV AEs that to be due to vasodilatators. were life- hepatosplanc 8. If within 2 h threatening, hnic before the resulted in congestion; start of study hospitalizati d) ≥5lb drug on, or weight gain administration death).	
the contraindicate investigator d use of IV to be due to vasodilatators. hepatosplanc 8. If within 2 h hnic before the congestion; start of study d) ≥5lb drug on, or weight gain administration death).	
investigator d use of IV AEs that to be due to vasodilatators. were life- hepatosplanc 8. If within 2 h threatening, hnic before the resulted in congestion; start of study hospitalizati d) ≥5lb drug on, or weight gain administration death).	
investigator d use of IV AEs that to be due to vasodilatators. were life- hepatosplanc 8. If within 2 h threatening, hnic before the resulted in congestion; start of study hospitalizati d) ≥5lb drug on, or weight gain administration death).	
to be due to vasodilatators. were life- hepatosplanc 8. If within 2 h threatening, hnic before the resulted in congestion; start of study hospitalizati d) ≥5lb drug on, or weight gain administration death).	
hepatosplanc 8. If within 2 h threatening, hnic before the resulted in congestion; start of study hospitalizati d) ≥5lb drug on, or weight gain administration death).	
hnic before the resulted in congestion; start of study hospitalizati d) ≥5lb drug on, or weight gain administration death).	
congestion; start of study hospitalizati d) ≥5lb drug on, or weight gain administration death).	
d) ≥5lbdrugon, orweight gainadministrationdeath).	
weight gain administration death).	
in the pt received IV	
previous vasodilatators	
month; e) or oral ACEI;	
CXR with or they were	
findings anticipated to	
indicative of require either	
HF; or f) IV vasodilators	
pulmonary during the first	
rales. 3 h after the	
start of study	
drug or oral	
ACEI during	
the first 30 min	
after the start	
of study drug.	
	I/A
Worsening investigated analy (see original (1288 pts RCTs original were 21% analysis	
Renal the renal sis original 797 RCTs) were enrolled RCTs reviewed for (nesiritide) Inability to	
Function effects of RCTs adjust and the vs. 15% adjust	
With nesiritide as included in 472 randomized, incidence of	
Nesiritide in treatment for meta-	
Pts With ADHF. analysis). underwent differences	
Acutely function function function function function	
ated HF, function) SCr >0.5 11% beyond	
Sackner- reported the mg/dL (nesiritide) treatment	
Bernstein effects of vs. 4% group	
JD, 2005. any time (control) assignment	
15781736 during the WRF that could	
(347) as measured input portion requiring have	

Chart form	Ta	Mata	Voriable	960		by the frequency of increased (SCr) ≥0.5 mg/dL forming the basis of meta- analyses.		Verichler	Sec	of the trial).				hemodialysis : 2% vs 2%. 1) p=0.001 2) p=0.03 3) p=0.71 1) RRмн: 1.54; 95% Cl: 1.19 to 1.98; 2) RRмн: 2.29; 95% Cl: 1.07-4.89; 3) 95% Cl: 0.50- 2.76;	influenced the developmen t of renal dysfunction. WRF is a surrogate marker for clinical outcome.	
Short-term Risk of Death After Treatment With Nesiritide for Decompens ated HF A Pooled Analysis of RCTs, Sackner- Bernstein JD, 2005. <u>15840865</u> (348)	To investigate the safety of nesiritide relative to noninotrope- based con trol therapies, primarily consisting of diuretics or vasodilators.	Meta- analy sis	Variable (see original RCTs included in meta- analysis).	862 485 377	N/A (see original RCTs)	Randomized double-blind study of pts with acutely decompensat ed HF, therapy administered as single infusion (≥6 h), inotrope not mandated as control, and reported 30 d mortality (NSGET, VMAC, PROACTION).	N/A	Variable: 60-98% NYHA III- IV, overall 79% NYHA III-IV.	See original RCTs	30 d survival was assessed by meta- analysis using a fixed-effects model and time- dependent risk by Kaplan- Meier analysis with Cox proportional hazards regression modeling.	N/A	N/A	N/A	1) 30 d mortality: 7.2% (nesiritide) vs. 4.0% (control). 1) p=0.059. 1) RR: 1.74; 95% CI: 0.97-3.12.	1) The NSGET, VMAC, and PROACTIO N studies were not de- signed to definitively determine whether nesiritide is associated with risk of death, although each prospectivel y monitored for deaths following therapy. 2) None of the 3 studies collected complete information on the use	

															of additional medications or procedures through the 30 d follow- up period. (possible confounders). 3) It is possible that these results are due to chance.	
BNP- CARDS, Witteles RM, 2007. <u>17980248</u> (349)	To evaluate the impact of nesiritide on renal function in pts with acute decompensa ted HF and baseline renal dysfunction.	RCT	Beta blocker 65%, ACEI/ARB 49%, aldosteron e antagonist 13%, digoxin (26%), amiodaron e (21% nesiritide vs. 6% placebo), CCB 24%, hydralazine (5% nesiritide vs. 25% placebo).	75 39 36	CAD: 77% (nesiritide) vs. 56% (control)	Newly admitted with primary dx of ADHF. Calculated GFR (using the Cockcroft- Gault formula) between 15 to 60 ml/min (changed from 15 to 50 ml/min in December 2004 to be consistent with the published definition of "moderate renal impairment"). Age \geq 18 y.	Baseline SBP <90 mm Hg. Hemodynamic ally significant aortic stenosis. Need for IV vasodilator therapy. Admission to ICU. Hx of cardiac transplantation Allergy to nesiritide. Prior enrollment in the trial.	N/A	N/A	A significant decline in renal function (defined as a peak SCr increase of ≥20% at any time during the first 7 d of hospitalizati on compared with the admission creatinine). Change in SCr from the admission value to discharge and/or Day 7 of hospitalizati on, whichever	Net negative diuresis ≥1 I/day while on the infusion. Change in weight during the infusion. Need to discontinu e the infusion due to hypoten- sion. Total diuretic use while receiving the infusion. Median length of stay. Death or	N/A	30 mo (3/04 - 8/06); up to 30 d follow up.	No significant differences in the incidence of a 20% creatinine rise (23% nesiritide vs. 25% placebo). No significant difference in the change in SCr (-0.05 vs. +0.05 mg/dl). No significant differences in the secondary end points of 3a) weight (- 2.19 vs 1.58 kg), 3b) IV	Small # of participants still could allow for a type II error. Exclusion of important subgroups of ADHF pts, including those needing intensive care and those requiring IV vasodilator therapy; the results of this trial certainly do not exclude a potentially important effect of nesiritide (positive or	13% discontinued infusion d/t hypotension; 10% transferred to ICU; 10% 30 d mortality; 33% 30 d mortality/readm ission (of note: no difference in these SAE/complicati ons compared with placebo control).

										was sooner.	rehospitali zation within 30 d. Resource utilization defined by need for dialysis, intensive care monitorin g, pulmonar y artery catheteriz ation, and intubation			furosemide (125 vs. 107 mg), 3c) discontinuati on of infusion due to hypotension (13% vs. 6%), 3d) 30 d death/hospit al readmission (33% vs. 25%) 1) p=0.85 2) p=0.46 3a) p=0.26 3b) p=0.53 3c) p=0.28 3d) p=0.43	negative) on renal function in those pts. Although trial was not powered to evaluate mortality and hospital readmission, there were nonsignifica nt trends observed in favor of placebo. Due to the relatively small sample size, the lack of statistical significance does not rule out differences in these outcomes.	
Follow-Up Serial Infusions of Nesiritide, FUSION I, Yancy CW, 2006. <u>16828598</u> (350)	To test the feasibility of nesiritide as adjunctive therapy for pts with advanced HF and a Hx of recurrent hospitalizatio ns.	RCT	Diuretics 100%, beta blockers 75%, ACEI 56%, ARB 17%, oral nitrates 49%, aldosteron e antagonist 36%, IV milrinone 28%, IV	138 49 (0.005 g/kg/min) 46 (0.010 g/kg/min) 43 (standard care)	65% ICM	Adults (aged ≥18 y). NYHA III or IV HF for ≥60 d before randomizatio n. ≥2 hospital admissions or unscheduled outpt visits requiring IV vasoactive	SBP<90 mm Hg. Recipient of or listed for cardiac transplantation Placement of a BiV PM within previous 60 d or AICDd within previous 30 d. Currently	100% NYHA III-IV	N/A	Safety, as predetermin ed by the ability to tolerate out- pt infusions of nesiritide without evidence of an increased AE rate compared with SC.	N/A	N/A	Enrollme nt period N/A; 12 wk follow- up.	The frequency of all-cause hospitalizatio n through wk 12 was lower in pts receiving SC plus either nesiritide 0.005 g/kg/min or nesiritide 0.010	The study was not powered to assess outcomes.	AEs related to renal function (i.e., abnormal renal function, acute renal failure, increased blood urea nitrogen, increased SCr, and oliguria, as defined in Coding Symbols for a

dobut	utamin	treatment for	receiving long-		g/kg/min	Thesaurus of
e 109		ADHF within	term dialysis		than in those	Adverse
dopa		the 12 mo	or likely to		receiving SC	Reaction
11%.		preceding	require		only. Also,	Terms),
1170.		randomizatio	dialysis during		pts in the	occurred in
		n.	the study		nesiritide	22% of all pts.
			period.		groups were	An increase in
		4. <u>></u> 1 admission in	Inability to		alive and out	SCr to >0.5
		the	complete a 6		of the	mg/dl higher
		preceding 5	m walk test.		hospital for	than baseline
		to 30 d.	Evidence of		more days	occurred at
		5. 6MWT	acute MI		(median 84	some time
		<400 m.	within		d for the 2	during the
		6. Currently	previous 30 d.		groups) than	study in 18 of
		receiving	previous 30 d.		those in the	
		optimal HF			SC-only	41 pts (44%) in the standard
		treatment				
					group (median 77	care-only
		with long- term oral			· · ·	group, 17 of 49
					d).	pts (35%) in
		medications.			All	the nesiritide
					All cause	0.005 g/kg/min
					hospitalizatio	group, and 16
					n: p=0.037	of 46 pts (35%)
					(nesiritide	in the nesiritide
					0,005	0.010 g/kg/min
					mg/kg/min	group
					vs. standard	(p=0.614).
					care alone),	The most
					p=0.011	frequently
					(nesiritide	reported AEs
					0,010	among all pts
					mg/kg/min	with RI were
					vs. standard	worsening HF
					care alone).	(42%),
					Days alive	asymptomatic
					and out of	hypotension
					hospital:	(16%),
					p=0.005	dyspnea
					(nesiritide	(13%), and
					vs. standard	symptomatic
					care only).	hypotension
						(12%).

Second	To evaluate	RCT	Loon	911	64%	<u>></u> 2 HF	SBP <90	100%	N/A	Time to all-	No. of	N/A	Enrollme	All-cause	"Because of	SCr >0.5 mg/dl
Follow-Up	the potential	RUI	Loop diuretics	911	lschemic	hospitalizatio	mmHg.	NYHA III-IV	IN/A	cause death	cardiovas	IN/A	nt 4/04-	mortality or	the much	in 32.1%
Serial	clinical utility		75%, ACEI	605	Ischemic	ns or the	Dependence			or the first	cular and		6/06.	cardiovascul	lower than	(nesiritide) vs.
Infusions of			43%, ACEI	000									Follow-	ar and renal		
	of outpt,			306		equivalent	on (or inability			hospitalizati	renal				expected	38.8%
Nesiritide,	intermittent		14%, beta	300		within 12 mo,	to discontinue)			on for	hospital		up ended	hospitalizatio	event rates,	(placebo),
FUSION II,	nesiritide		blocker			with the most	intermittent or			cardiovascul	admission		in 12/06.	ns through	FUSION II	p=0.046.
Yancy CW,	infusions in		65%,			recent within	continuous IV			ar or renal	S.			Week 12	was	
2008.	ACCF/AHA		aldosteron			the prior 60	vasoactive			causes from	D alive			occurred in	underpower	
<u>19808265</u>	stage C/D		е			d. (A	medications.			randomizati	and out of			36.8% of the	ed to	
(351)	HF pts.		antagonist			hospitalizatio	>2 output			on through	the			placebo	evaluate the	
			37%,			n equivalent	infusions of			Week 12.	hospital.			combined	effect of	
			nitrates			was defined	vasoactive				Time to			group and	nesiritide on	
			18%, ICD			as an	therapy within				cardiovas			36.7% of the	the primary	
			39%, CRT			unscheduled	30 d without a				cular			nesiritide	end point.	
			24%.			outpt	hospitalization				death, all			combined	The	
						treatment for	Biventricular				evaluated			group. No	resulting	
						ADHF with	pacemaker				through			statistically	power	
						an	within 45 d or				Wk 12.			significant	calculation	
						intravenous	a single- or				QoL as			difference in	based on	
						vasoactive	dual-chamber				assessed			secondary	the	
						drug or 3	pacemaker,				by			end-points.	observed	
						unscheduled	ICD within 15				change in				placebo	
						intravenous	d.				the KCCQ			Log-rank	event rates	
						diuretic	Cardiogenic				summary			test p=0.79.	yielded only	
						treatments	shock or				score				37% power	
						for ADHF	volume				from			HR: 1.03;	to detect a	
						within 60 d.)	depletion.				baseline			95% CI:	conservative	
						LVEF <40%	Chronic				to Wk 13.			0.82-1.3.	relative risk	
						within 24 wk.	dialysis.								reduction of	
						Investigator	-								15%	
						documentatio									between	
						n of									groups. In	
						consistent									retrospect, a	
						NYHA III or									sample size	
						IV symptoms									of 3500 pts	
						during the									would have	
						previous 60 d									been	
						(estimated									needed for	
						creatinine									90% power	
						clearance									to detect this	
						<60 mL/min									treatment	
						calculated by									effect.	
						the									However, it	

						Cockcroft- Gault									should be noted that	
						equation; 24									on the basis	
						h urine collection									of the actual results, the	
						was also									wide	
						required for									confidence	
						NYHA class									limits with a	
						III pts).									nearly	
						Optimal									indistinguish	
						treatment									able event	
						with oral									rate	
						medications									between	
						and device									active	
						therapy									treatment	
						unless a documented									and placebo exclude a	
						contraindicati									benefit in	
						on or									the primary	
						intolerance									end point as	
						was present.									small as	
															15%,	
															making it	
															relatively	
															unlikely that	
															an important	
															positive	
															effect was	
Acute Study	To evaluate	RCT	ACEI/ARB	7007	60% ICM	Ago >17.4	Hospitalized	100%	NYHA III-	Two	Self-	30 d	Enrollme	No	missed." Primarily	30 d all-cause
of Clinical	the effect of	RUI	60%, beta	7007		Age >17 y. Pts	>48 h before	NYHA III-IV	IV; at least	coprimary	reported	mortality:	nt 5/07-	significant	addressed	mortality and
Effectivenes	nesiritide, in		blocker	3496 (nesiritide)		hospitalized	randomization.	at time of	1 of	end points:	overall	4.0%	12/10;	effect on 30	safety	worsening
s of	addition to		58%,			for ADHF.	Probable	enrollment.	following	Composite	well-being	placebo	study	d	concerns,	renal function:
Nesiritide in	standard		Aldosteron	3511 (placebo)		Pts	discharge in		signs:	of HF	at 6 and	vs. 3.6%	drug	rehospitaliza	thus broad	31.4% vs.
Decompens	care, on		е			hospitalized	<24h.		respiratory	rehospitaliz	24 h after	nesiritide.	infusion,	tion (6.0%	range of pts.	29.5%
ated HF,	rates of self-		antagonist			for a reason	Hypotension		rate <u>></u> 20	ation and	study		at least	nesiritide vs.	Rudimentary	(Nesiritide vs.
ASCEND-	reported		28%,			other than	risk.		breaths/mi	all-cause	drug		24 h and	6.1%	, pt	Placebo,
HF,	dyspnea at 6		nitrate			ADHF, but	Uncontrolled		n or	mortality	initiation.		up to 7 d.	placebo) or	assessment	p=0.11).
O'Connor	and 24 h,		23%,			diagnosed	hypertension.		pulmonary	from	Composit			30 d	of dyspnea.	2. Higher rate
CM, 2011.	rehospitalizat		hydralazine			with ADHF	Experimental		congestion	randomizati	e of			mortality	Low clinical	of hypotensive
<u>21732835</u>	ion for HF or		7.4%, loop			within 48 h of	medication		or edema	on through	persistent			(3.6%	event rate.	events
(352)	death from		diuretic 95%,			admission.	(including		with rales	D 30.	or			nesiritide vs. 4.0%		amongst
	any cause at		90%,				nesiritide) or		<u>></u> 1/3 way	Change in	worsening			4.0%		nesiritide group

30 d, and	inotropic	device use.	up lung self-	HF and	placebo).	(26.6% vs.
renal	agent 4%,	Pregnant or	field; at report		p=0.31 Nesiritide	15.3%,
dysfunction.	vasodilator 15%.	suspected	least 1 of dyspr			p<0.001).
	15%.	pregnancy.	following sympt		improved	
			objective 6 and		dyspnea at 6	
			measures: after s	tudy ation	h and 24 h	
			congestion drug or edema initiati	through	after	
					treatment	
			on CXR,	discharge	compared to	
			BNP <u>></u> 400	3. # of	placebo but	
			pg/ml or		did not reach	
			NT-pro- BNP	days alive and	prespecified level for	
			<u>></u> 1000	outside	significance.	
			<u></u> 1000 pg/ml,	the	p=0.03 (6hr),	
			PCWP >20	hospital	p=0.03 (011), p=0.007	
			mmHg,	from	(24hr)	
			LVEF	randomiz	(2411) 3) No	
			<40% in	ation	difference in	
			prior 12	through	rate of	
			mo.	Day 30.	worsening	
			mo.	Composit	renal	
				e of CV	function.	
				death and	p=0.11.	
				rehospitali	p 0.11.	
				zation		
				due to CV		
				causes		
				from		
				randomiz		
				ation		
				through		
				Day 30.		

ACCF/AHA indicates American College of Cardiology Foundation/American Heart Association; ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; ADHF, acute decompensated heart failure; AE, adverse events; ARB, angiotensin-receptor blocker; ASA, aspirin; BPAP, bilevel positive airway pressure; BNP, b-type natriuretic peptide; CAD, coronary artery disease; CCB, calcium channel blocker; CHF, congestive heart failure; CI, confidence interval; CRT, cardiac resynchronization therapy; CV, cardiovascular; CXR, chest X-ray; ED, emergency department; FUSION, Follow-Up Serial Infusions of Nesiritide; GFR, glomerular filtration rate; HCM, hypertrophic cardiomyopathy; HF, heart failure; HR, hazard ratio; Hx, history; ICD, implantable cardioverter-defibrillator; ICM, ischemic cardiomyopathy; ICU, intensive-care unit; IV, intravenous; JVD, jugular venous distention; KCCQ, Kansas City Cardiomyopathy Questionnaire; LOS, length of stay; MI, myocardial infarction; N/A, not applicable; NSGET, Nesiritide Study Group Efficacy Trial; NSVT, non-sustained ventricular tachycardia; NYHA, New York Heart Association; OU, observation unit; PCWP, pulmonary capillary wedge pressure; pHTN, pulmonary hypertension; PND, paroxysmal nocturnal dyspnea; PROACTION, Prospective Randomized Outcomes study of Acutely decompensated CHF Treated Initially as Outpatients with Nesiritide; Pt, patient; RCM, restrictive cardiomyopathy; RCT, randomized controlled trial; RI, renal insuficiency; RR, relative risk; RR_{MH}, relative risk Mantel-Haenszel fixed-effects model; SAE, serious adverse event; SBP, systolic blood pressure; SC; SCr, serum creatinine; SD, standard deviation; UA, unstable angina; and VMAC, Vasodilator in the Management of Acute Heart Failure.

Data Supplement 40. Hospitalized Patients – Oral Medications (Section 8.8)

Study Name, Author, Year	Aim of Study	Study Type	Study Size	Patient Popu	ulation	Results	P Values & 95% CI:	OR: HR: RR:	Study Limitations
				Inclusion Criteria	Exclusion Criteria				
Beta Blockers During and at Di	scharge of HF Hospital	ization							
Fonarow GC, Abraham WT, Albert NM et al. Influence of Beta blocker Continuation or Withdrawal on Outcomes in Pts Hospitalized with HF: Findings From the OPTIMIZE-HF Program. J Am Coll Cardiol 2008 July 15;52(3):190-9. <u>18617067 (</u> 353)	To determine whether beta-blocker therapy should be continued or withdrawn during hospitalization for decompensated HF.	Registry (OPTIMIZE-HF)	5791 pts admitted with HF at 91 academic and community hospitals throughout the U.S.	Hospitalization for episode of worsening HF as primary cause of admission.	N/A	Among 2373 pts eligible for beta blockers at discharge: 1350 (56.9%) receiving beta blockers before admission and continued on therapy, 632 (26.6%) newly started, 79 (3.3%) in which therapy was withdrawn, and 303 (12.8%) eligible but not treated. Continuation of beta blockers with lower risk for death (HR: 0.60; p=0.04) and death/rehospitalization (HR: 0.69; p=0.01). Withdrawal of beta blocker associated with higher risk for mortality (HR: 2.3; p=0.01), but with similar risk as HF pts eligible but not treated with beta blockers.	95% CI: 0.37- 0.99; p=0.04	HR: 0.60	Registry
Fonarow GC, Abraham WT, Albert NM et al. Dosing of Beta blocker Therapy Before, During, and After Hospitalization for HF (OPTIMIZE-HF). <i>Am J Cardiol</i> 2008 December 1;102(11):1524-9. <u>19026308 (</u> 354)	The doses of beta blockers used in pts with HF in routine clinical practice before, during, and after hospitalization for HF.	Registry (OPTIMIZE-HF).	5791 pts admitted with HF at 91 academic and community hospitals throughout the U.S.	Hospitalization for episode of worsening HF as primary cause of admission.	None	The mean total daily dose for beta blockers before hospital admission <1/2 the recommended target dose (carvedilol 21.5 +/- 17.8 mg and metoprolol succinate 69.2 +/- 51.9 mg), with infrequent up- or down-titration during the HF hospitalization. 2/3 of pts had no change in their beta blocker doses in the first 60-90 d after hospital discharge. At 60-90 d postdischarge follow-up, only 17.5% and 7.9% of pts treated with recommended target doses of carvedilol and metoprolol succinate	N/A	N/A	Registry

Gattis WA, O'Connor CM, Gallup DS, Hasselblad V, Gheorghiade M. Predischarge Initiation of Carvedilol in Pts Hospitalized for Decompensated HF: Results of the Initiation Management Predischarge: Process for Assessment of Carvedilol Therapy in HF (IMPACT-HF) trial. <i>J Am Coll Cardiol</i> 2004 May 5;43(9):1534-41. <u>15120808 (</u> 355)	To evaluate if predischarge carvedilol initiation in stabilized pts hospitalized for HF increased the number of pts treated with beta-blockade at 60 d after randomization without increasing side effects or length of hospital stay.	RCT (IMPACT-HF)	363	Pts hospitalized for HF.	N/A	At 60 d 165 pts (91.2%) randomized to predischarge carvedilol initiation treated with a beta blocker, compared with 130 pts (73.4%) randomized to initiation postdischarge (p < 0.0001). Predischarge initiation was not associated with increased risk of SAEs. The median length of stay was 5 d in both groups.	p<0.0001	N/A	N/A
Metra M, Torp-Pedersen C, Cleland JG et al. Should Beta- blocker Therapy be Reduced or Withdrawn After an Episode of Decompensated HF? Results From COMET. <i>Eur J Heart Fail</i> 2007 September;9(9):901-9. <u>17581778 (</u> 356)	To study the relationship between changes in beta blocker dose and outcome in pts surviving a HF hospitalization in COMET.	Retrospective subgroup analysis of RCT.	3029	Pts with LVEF <35, NYHA class II-IV HF hospitalized for HF were subdivided on the basis of the beta blocker dose administered at the visit following hospitalization, compared to that administered before.	Intolerance to beta blockers	752/3029 pts (25%) with HF hospitalization. 61 (8%) had beta- blocker treatment withdrawn, 162 (22%) had a dose reduction and 529 (70%) maintained on the same dose. 1 and 2 y cumulative mortality rates 28.7% and 44.6% for pts withdrawn from study medication, 37.4% and 51.4% for those with a reduced dosage, 19.1% and 32.5% for those maintained on the same dose (HR: 1.59; 95% CI: 1.28 to 1.98; p<0.001). No interaction with the beneficial effects of carvedilol, compared to metoprolol.	95%CI: 1.28- 1.98; p<0.001	HR:1.59	Post-hoc analysis
Fonarow GC, Abraham WT, Albert NM et al. Prospective Evaluation of Beta-blocker use at the Time of Hospital Discharge as a HF Performance Measure: Results From OPTIMIZE-HF.J Card Fail 2007;13:722-31. <u>17996820 (</u> 357)	To prospectively evaluate beta blocker use at hospital discharge as an indicator of quality of care and outcomes in pts with HF.	Registry	20118	Data from the OPTIMIZE-HF registry for pts hospitalized with HF from 259 hospitals were prospectively collected and analyzed. 20118 pts with systolic dysfunction were included.	N/A	At discharge, 90.6% of pts eligible to receive beta blockers, 83.7% ACEI or ARB. Eligible pts discharged with beta blockers significantly more likely to be treated at follow-up than those not discharged with beta blockers (93.1% vs. 30.5%; P<0.0001). Discharge use of beta blockers in eligible pts lowers risk of death (HR: 0.48; 95% CI: 0.32-0.74; p<0.001) and death/rehospitalization (OR: 0.74; 95% CI: 0.55-0.99; p=0.04).	95% CI: 0.32- 0.74; p<0.001	HR: 0.48	Registry

Fonarow GC, Abraham WT, Albert NM et al. Carvedilol use at Discharge in Pts Hospitalized for HF is Associated With Improved Survival: an Analysis From OPTIMIZE-HF. <i>Am Heart</i> J 2007 January;153(1):82-11. <u>17174643</u> (358)	Examine effects on mortality and rehospitalization of carvedilol use at discharge in pts hospitalized for HF and LVSD compared with outcomes in pts who are eligible for, but do not receive, beta blockers before discharge.	Registry	5791	OPTIMIZE-HF program enrolled 5791 pts adm with HF, web-based re 91 hospitals participati prespecified 60-90 d for from March 2003 to December 2004.	iitted egistry at ing with	N/A	2373 (87.2%) eligible to receive a beta blocker at discharge. Carvedilol prescribed in 1162 (49.0%). Discharge carvedilol associated with a significant reduction in mortality (HR: 0.46; p=0.0006) and mortality and rehospitalization (OR: 0.71, p=0.0175) compared to no predischarge beta blocker.	p=0.0006	HR: 0.46	N/A
Ace-Inhibitors During and at Di	v .									
Willenheimer R, van Veldhuisen DJ, Silke B et al. Effect on Survival and Hospitalization of Initiating Treatment for Chronic HF With Bisoprolol Followed by Enalapril, as Compared With the Opposite Sequence: Results of the Randomized CIBIS III. Circulation 2005;112:2426-35. <u>16143696 (</u> 186)	To determine whether the sequence of initiation of beta blockers or ACEI during hospitalization make a difference in outcomes.	RCT	101	Mild to moderate HF and LVEF ≤35%, who were not receiving ACEI, beta blocker, or ARB therapy randomized to open-label bisoprolol (target dose 10 mg QD; n=505) or enalapril (target dose 10 mg BID; n=505) for 6 mo, followed by their combination for 6 to 24 mo.	N/A		Bisoprolol-first treatment noninferior to enalapril-first treatment (HR: 1.17). Primary end point in 178 pts allocated to bisoprolol-first treatment vs 186 allocated to enalapril-first treatment (HR: 0.94; 95% CI: 0.77-1.16). Bisoprolol-first treatment: 65 pts died, vs 73 with enalapril-first treatment (HR: 0.88; 95% CI: 0.63 to 1.22), and 151 vs 157 pts hospitalized (HR: 0.95; 95% CI: 0.76-1.19).	p=ns	HR: 0.94	N/A
Thilly N, Briançon S, Juillière Y, Dufay E, Zannad F. Improving ACE inhibitor use in patients hospitalized with systolic heart failure: a cluster randomized controlled trial of clinical practice guideline development and use. J Eval Clin Pract. 2003 Aug; 9(3):373-82. <u>12895159</u> (359) Spironolactone During and at I	To evaluate the effect of developing and implementing CPGs on the quality of care given to pts receiving ACEI for systolic HF.	RCT	20 cardiology units in France (Experimental group (n=10) in each experimental unit, doctors were involved in drafting and implementing CPGs; those at control units were not.)	HF pts <75 y old	Age >75	у	Compliance with the CPG relating to ACEI dose on discharge higher in the experimental group (p=0.003).	N/A	N/A	N/A

Hamaguchi S, Kinugawa S, Tsuchihashi-Makaya M et al. Spironolactone use at Discharge was Associated With Improved Survival in Hospitalized Pts With Systolic HF. Am Heart J 2010;160:1156-62. <u>21146672 (</u> 360)	Whether the discharge use of spironolactone is associated with better mortality and rehospitalization among hospitalized s ystolic HF pts.	Prospective cohort	946	Hospitalized HF pts with reduced LVEF <40%.	N/A	Spironolactone prescribed at discharge in 435 pts (46%). Discharge use of spironolactone associated with reduction in death (HR: 0.612; p=0.020) and cardiac death (HR: 0.524; p=0.013).	p=0.02	HR: 0.612	N/A
Ko DT, Juurlink DN, Mamdani MM et al. Appropriateness of Spironolactone Prescribing in HF Pts: a Population-Based Study. J Card Fail 2006;12:205- 10. <u>16624686 (</u> 361)	Appropriateness of spironolactone prescription at discharge.	Population based Cohort	9165	Hospitalized HF pts in Ontario, Canada, 1999-2001.	N/A	1502 pts prescribed spironolactone at discharge. 18% had hyperkalemia during hospitalization and 23% were discharged on concurrent potassium supplements. Although only 8% of pts with SCr >2.5 mg/dL, many with stage III (53.1%), stage IV (12.8%), or stage V (3.9%) chronic renal insufficiency.	N/A	N/A	N/A
Digoxin During and at Discharg	<u> </u>		0.47				0.00		
Dhaliwal AS, Bredikis A, Habib G, Carabello BA, Ramasubbu K, Bozkurt B. Digoxin and Clinical Outcomes in Systolic HF Pts on Contemporary Background HF Therapy. Am J Cardiol 2008;102:1356-60. <u>18993155 (</u> 362)	the effect of digoxin at discharge in pts hospitalized with HF.	hort	347	Hospitalized pts with HF.	Competing non-HF diagnoses	HF hospitalizations (HR: 1.08; 95% CI: 0.77-1.50; p=0.66), total mortality (HR: 1.03; 95% CI: 0.78-1.35, p=0.85), or the combined end point of HF hospitalization and total mortality (HR: 1.11, 95% CI: 0.81-1.53, p=0.52) not different in pts treated with digoxin compared with those not treated with digoxin.	p=0.66	HR: 1.08	Retrospective cohort
Ahmed A, Allman RM, DeLong JF. Inappropriate use of Digoxin in Older Hospitalized HF Pts. J Gerontol A Biol Sci Med Sci 2002;57:M138-M143. <u>11818435 (</u> 363)	the correlates of inappropriate dig oxin use in older HF pts.	hort	603	Older hospitalized HF pts with documented LVEF and EKG.	N/A	Digoxin use considered inappropriate if pts had preserved LVEF (≥40%) or if they had no AF. 376 pts (62%) discharged on digoxin, and 223 (37%) without indication for use. Of 132 pts without an indication and not already on digoxin, 38 (29%) initiated on it.	N/A	N/A	N/A
Adherence to Performance Mea				U I					
Krantz MJ, Ambardekar AV, Kaltenbach L, Hernandez AF, Heidenreich PA, Fonarow GC. Patterns and Predictors of	To assess noncontraindicated use patterns for ACEI/ARBs, beta	Registry (GTWG- HF)	9474	N/A		Of those treated before hospitalization, continuation rates: 88.5% for ACEI/ARBs, 91.6% for beta blockers, and 71.9% for aldosterone-antagonists.	N/A	N/A	N/A

Evidence-Based Medication Continuation Among Hospitalized HF Pts (from Get With the Guidelines-HF). Am J Cardiol 2011 June 15;107(12):1818-23. <u>21482418 (</u> 364)	blockers, and aldosterone antagonists using the GWTG-HF registry.					Of pts untreated before admission, 87.4% started on ACEI/ARBs, 90.1% beta blocker and 25.2% on an aldosterone antagonist during hospitalization or at discharge. Admission therapy most strongly associated with discharge use (OR: 7.4, 6.0, and 20.9 for ACEI/ARBs, beta blockers, and aldosterone antagonists, respectively)			
Fonarow GC, Gheorghiade M, Abraham WT. Importance of In- hospital Initiation of Evidence- based Medical Therapies for HF-a Review. <i>Am J Cardiol</i> 2004 November 1;94(9):1155- 60. <u>15518610 (</u> 365)	Review of AHF therapies.	Review	N/A	N/A	N/A	Message: Adopting in-hospital initiation of HF therapies as the standard of care could improve treatment rates, decrease the risk of future hospitalizations, and prolong life.	N/A	N/A	Review paper
Fonarow GC, Yancy CW, Heywood JT. Adherence to HF Quality-of-care Indicators in US Hospitals: Analysis of the ADHERE Registry. <i>Arch Intern</i> <i>Med</i> 2005 July 11;165(13):1469-77. <u>16009861 (</u> 366)	To determine the current rates of conformity with quality of care indicators or their variability across hospitals.	Registry (ADHERE)	81142 admissions	81142 admissions occurring between July 1, 2002, and December 31, 2003, at 223 academic and non-academic hospitals in the US participating in the ADHERE.	N/A	Median rates of conformity with HF-1, HF-2, HF-3, and HF-4 24.0%, 86.2%, 72.0%, and 43.2%, respectively.	N/A	N/A	Registry
Fonarow GC, Abraham WT, Albert NM et al. Association Between Performance Measures and Clinical Outcomes for Pts Hospitalized With HF. JAMA 2007 January 3;297(1):61-70. <u>17200476 (</u> 367)	To examine the relationship between current (ACCF/AHA) performance measures for pts hospitalized with HF and relevant clinical outcomes.	Registry (OPTIMIZE-HF)	5791 pts at 91 US hospitals	OPTIMIZE-HF, a registry and performance improvement program.	Incomplete data	Mortality during follow-up 8.6% and mortality/rehospitalization 36.2%. None of the 5 ACCF/AHA HF performance measures was significantly associated with reduced early mortality risk. Only ACEI or ARB use at discharge was associated with 60 to 90 d postdischarge mortality or rehospitalization. Beta-blockade at the time of hospital discharge, (not a HF performance measure then) strongly associated with reduced mortality (HR: 0.48; 95% CI: 0.30-0.79; p=0.004).	p=0.004 for beta- blocker, p<0.05 for ACEI.		Registry

Lappe JM, Muhlestein JB, Lappe DL et al. Improvements in 1 y Cardiovascular Clinical Outcomes Associated With a Hospital-based Discharge Medication Program. <i>Ann Intern</i> <i>Med</i> 2004 September 21;141(6):446-53. <u>15381518 (</u> 368)	To develop and implement a program ensuring appropriate prescription of aspirin, statins, beta blockers, ACEI, and warfarin at hospital discharge.	Prospective cohort	57465 enrolled from 10 largest hospitals in the Utah-based Intermountain Health Care system.	A nonrandomized / before-after study comparing pts hospitalized before (1996-1998) and after (1999-2002) implementation of a DMP.		Rate of prescription of each medication increased significantly to >90% (p<0.001). RR for death and readmission at 30 d decreased after DMP implementation; HRs for death and readmission: 0.81 (95% CI: 0.73-0.89) and 0.92 (95% CI: 0.87-0.99) (p<0.001 and p=0.017, respectively). At 1 y, risk for death still low (HR: 0.79; 95% CI: 0.75-0.84; p<0.001) while risk for readmission stabilized (HR: 0.94; 95% CI: 0.90-0.98; p=0.002).	95% CI: 0.75- 0.84; p<0.001	HR: 0.79	Observational and nonrandomized , authors could not control for potential confounders or determine the extent to which secular trends accounted for the observed improvements.
AHA Scientific Statement for Tr		,						T	
Weintraub NL, Collins SP, Pang PS et al. Acute HF Syndromes: ED Presentation, Treatment, and Disposition: Current Approaches and Future Aims: a Scientific Statement From the AHA. Circulation 2010 November 9;122(19):1975-96. <u>20937981 (</u> 369)	To characterize acute HF syndromes: from presentation, treatment, and disposition.	AHA scientific statement	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Recent Studies with Other Oral	Medications for Treatn	nent of Acute HF					•		
Gheorghiade M, Konstam MA, Burnett JC, Jr. et al. Short-term Clinical Effects of Tolvaptan, an Oral Vasopressin Antagonist, in Pts Hospitalized for HF: the EVEREST Clinical Status Trials. <i>JAMA</i> 2007 March 28;297(12):1332-43. <u>17384438 (</u> 153)	To evaluate short- term effects of tolvaptan when added to standard therapy in pts hospitalized with HF.	RCT (EVEREST)	2048 trial A, 2085 (trial B) 4133 tolvaptan (30 mg/d), or matching placebo, within 48 h of admission.	Age ≥18 y; current hospitalization for CHF with admission up to 48 h prior to randomization; chronic HF is defined as requiring treatment for a minimum of 30 d prior to hospitalization. Subject must have signs of extracellular volume expansion, defined as ≥2 of the following: a) JVD; b) pitting edema (>1+); or c) dyspnea. NYHA Class III or IV	Women who will not adhere to the reproductive precautions as outlined in the ICF. Positive urine pregnancy test. Inability to provide written informed consent. Cardiac surgery within 60 d of potential study enrollment, excluding PCI. Planned revascularization procedures, EP device implantation, cardiac mechanical support implantation, cardiac transplantation, or other cardiac surgery within 30 d following study enrollment. Subjects who are on cardiac mechanical support. Hx of biventricular pacer placement	Tolvaptan had no effect on long-term mortality or HF-related morbidity. Mortality for tolvaptan vs placebo not different (HR: 0.98; 95% CI: 0.87-1.11; p=0.68). Composite of CV death or hospitalization for HF not different (HR: 1.04; 95% CI: 0.95-1.14; p=0.55). Secondary end points CV mortality, CV death or hospitalization, and worsening HF not different between tolvaptan and placebo. Tolvaptan significantly improved secondary end points of Day 1 pt- assessed dyspnea, Day 1 body weight, and Day 7 edema. In pts with hyponatremia, serum sodium levels significantly increased.	95% Cl: 0.87- 1.11; p=0.68	HR: 0.98	N/A

at the time of		Г	
at the time of	within the last 60 d. Co-		
hospitalization.	morbid condition with an		
LVEF ≤40% within 1	expected survival less than 6		
у.	mo. Subjects with acute		
	STEMI at the time of		
	hospitalization. Hx of		
	sustained ventricular		
	tachycardia or ventricular		
	fibrillation within 30 d, unless		
	in the presence of an		
	automatic ICD. Hx of a		
	cerebrovascular accident		
	within the last 30 d.		
	Hemodynamically significant		
	uncorrected primary cardiac		
	valvular disease. Hypertrophic		
	cardiomyopathy (obstructive		
	or non-obstructive). CHF due		
	to uncorrected thyroid		
	disease, active myocarditis or		
	known amyloid		
	cardiomyopathy.		
	Subjects with progressive or		
	episodic neurological disease		
	such as multiple sclerosis or		
	Hx of multiple strokes. Hx of		
	primary significant liver		
	disease or acute hepatic		
	failure, as defined by the		
	investigator. Hx of poorly		
	controlled DM.		
	Morbid obesity, defined as		
	>159 kg (or 350 lbs) or BMI		
	>40. Supine systolic arterial		
	blood pressure <90 mmHg.		
	SCr >3.5 mg/dL or >309.4 mmol/L.		
	Serum potassium >5.5 mEg/L		
	or >5.5 mmol/L.		
	Hgb <9 g/dL or <90 g/L. Hx of		
	hypersensitivity and/or		
	idiosyncratic reaction to		
	benzazepine derivatives (such		

Konstam MA, Gheorghiade M, Burnett JC, Jr. et al. Effects of Oral Tolvaptan in Pts Hospitalized for Worsening HF: the EVEREST Outcome Trial. JAMA 2007 March 28;297(12):1319-31. <u>17384437 (</u> 154)	o investigate the ffects of tolvaptan nitiated in pts ospitalized with HF. RCT (EVEREST- Outcome)	mg once per day (n=2072) or placebo (2062) within 48 h of admission. Ch de tre mi pri ho Th ha ex ex as fol pit or Ny at ho	ge ≥18 y. Current ospitalization for hronic CHF with dmission up to 48 prior to andomization. Chronic HF is efined as requiring eatment for a ninimum of 30 d rior to ospitalization. The subject must ave signs of xtracellular volume xpansion, defined s ≥2 of the ollowing: a) JVD; b) itting edema (>1+); r c) dyspnea. IYHA Class III or IV t the time of ospitalization. VEF ≤40% within 1	as benazapril). Hx of drug or medication abuse within the past year, or current alcohol abuse. Inability to take oral medications. Participation in another clinical drug or device trial within the past 30 d. Previous participation in this or any other tolvaptan clinical trial Women who will not adhere to the reproductive precautions as outlined in the ICF. Positive urine pregnancy test. Inability to provide written informed consent. Cardiac surgery within 60 d of potential study enrollment, excluding PCI. Planned revascularization procedures, EP device implantation, cardiac mechanical support implantation, cardiac transplantation, or other cardiac surgery within 30 d following study enrollment. Subjects who are on cardiac mechanical support. Hx of biventricular pacer placement within the last 60 d. Comorbid condition with an expected survival less than 6 mo. Subjects with acute STEMI at the time of hospitalization. Hx of sustained ventricular tachycardia or ventricular fibrillation within 30 d, unless in the presence of an automatic ICD. Hx of a cerebrovascular accident within the last 30 d. Hemodynamically significant uncorrected primary cardiac	Tolvaptan had no effect on long-term mortality or HF-related morbidity. Mortality for tolvaptan versus placebo not different (HR: 0.98; 95% CI: 0.87-1.11; p=0.68). Composite of CV death or hospitalization for HF not different (HR: 1.04; 95% CI: 0.95-1.14; p=0.55). Secondary end points CV mortality, CV death or hospitalization, and worsening HF not different between tolvaptan and placebo. Tolvaptan significantly improved secondary end points of Day 1 pt- assessed dyspnea, Day 1 body weight, and Day 7 edema. In pts with hyponatremia, serum sodium levels significantly increased.	95% CI: 0.87- 1.11; p=0.68	HR: 0.98	N/A	
--	--	---	--	--	---	-------------------------------	----------	-----	--

	valvular disease. Hypertrophic
	cardiomyopathy (obstructive
	or non-obstructive). CHF due
	to uncorrected thyroid
	disease, active myocarditis or
	known amyloid
	cardiomyopathy.
	Subjects with progressive or
	episodic neurological disease
	such as multiple sclerosis or
	Hx of multiple strokes. Hx of
	primary significant liver
	disease or acute hepatic
	failure, as defined by the
	investigator. Hx of poorly
	controlled DM.
	Morbid obesity, defined as
	>159 kg (or 350 lbs) or BMI
	>40. Supine systolic arterial
	blood pressure <90 mmHg.
	SCr >3.5 mg/dL or >309.4
	mmol/L.
	Serum potassium >5.5 mEq/L
	or >5.5 mmol/L.
	Hgb <9 g/dL or <90 g/L. Hx of
	hypersensitivity and/or
	idiosyncratic reaction to
	benzazepine derivatives (such
	as benazapril). Hx of drug or
	medication abuse within the
	past y, or current alcohol
	abuse. Inability to take oral
	medications. Participation in
	another clinical drug or device
	trial within the past 30 d.
	Previous participation in this
	or any other tolvaptan clinical
	trial.
ACCE/ALLA indicates American College of Condisions	which a NULEDE Aside Decomponented UE National Deviates AFE esticit the illustices AUE estate head failures ADD an electronic resource head on D

ACCF/AHA indicates American College of Cardiology Foundation/American Heart Association; ACEI, angiotensin-converting enzyme inhibitor; ADHERE, Acute Decompensated HF National Registry; AF, atrial fibrillation; AHF, acute heart failure; ARB, angiotensin-receptor blocker; BMI, body mass index; CHF, congestive heart failure; CI, confidence interval; CIBIS, Cardiac Insufficiency Bisoprolol Study; COMET, Carvedilol or Metoprolol European Trial; CPG, clinical practice guidelines; CV, cardiovascular; DM, diabetes mellitus; DMP, discharge medication program; ED, emergency department; EKG, electrocardiogram; EP, electrophysiology; GWTG-HF, Get With the Guidelines-HF; HF, heart failure; Hx, history; ICD, implantable cardioverter-defibrillator; JVD, jugular venous distention; LVEF, left ventricular ejection fraction; LVSD, left ventricular systolic dysfunction; NS, not significant; NYHA, New York Heart Association; OPTIMIZE-HF, Organized Program to Initiate Lifesaving Treatment in Hospitalized Pts with HF; PCI, percutaneous coronary intervention; Pts, patients; RCT, randomized controlled trial; SAE, serious adverse event; SCr, serum creatinine, STEMI, ST segment elevation myocardial infarction; and US, United States.

Data Supplement 41. Atrial Fibrillation (Section 9.1) Patient Population Findings/ Comments Aim of Study Study Endpoints Statistical Analysis (Results) **Study Limitations** Study Study Type Size Name, Author, Year Primary Endpoint Inclusion Criteria Exclusion Secondarv Criteria Endpoint LVEF ≤35%. Death from all CV causes: 27% in Death from any The use of rhythm-control did not AF CHF Rhythm control Multi-1.376 N/A Death from CV Results cannot be Roy, 2008 reduces mortality center history of CHF. cause, worsening of rhytm-control group vs. 25% in rategeneralized to pts with HF reduce the rate of death from CV causes 19102036 as compared to RCT and history of AF CHF. or stroke. control group and preserved LV function causes compared with rate-(370) HR: 1.0 6; p=0.59; 95% CI: 0.86-1.30 (in whom AF is common). control. No significant rate control differences in secondary outcomes either. AFFIRM. 4,060 ≥65 y with history Difference in mortality not statistically Rhythm-control strategy did not Multi-N/A Rhythm control Overall mortality Composite death, Findings cannot be significant. HR: 1.15 95%CI: 0.99of AF and other 2002 reduces mortality center dsabling stroke. generalized to pts with improve morality when 12466506 RCT risk factors for more severe AF or to as compared to diabling anoxic 1.34; ; p=0.08 compared to rate-control. (371) younger pts without risk rate control stroke or death encephalopathy, major bleeding or factors for stroke cardiac arrest Dabigatran 110 mg twice d compared Both doses of Dabigatran were RE-LY. Compare 2 doses Multi-18.113 Pts with AF and at N/A N/A Major bleeding N/A Eikelboom, (110 mg and 150 with warfain: 2.87% vs. 3.57 % associated with lower risks of center least 1 additional mg) of dabigatran RCT (p=0.0002) 2011 risk factor for major bleeding than warfarin. 21576658 2 x d vs. warfarin Dabigatran 150 mg twice d vs stroke Found an interaction between (372) warfarin: 3.31% vs. 3.57% (p=0.32) for stroke treatment and age for major prevention in pts Dabigatran 150 mg twice d vs. bleeding. Both doses of with AF Dabigatran 110 mg: 3.31% vs. Dabigatran associated with lower 2.87% (p=0.04) risk of extracranial bleeding in pts <75 y, though associated with similar or higher risks in pts ≥75 y. Risk of intracranial bleeding was lower with either dose of Dabigatran, regardless of age. The 150 mg dose of Dabigatran was Both doses of Dabigatran were RE-LY. Compare 2 doses Mutli-18.113 Pts with previous N/A Stroke or systemic N/A N/A Connolly, SJ, superior to warfarin in reducing stroke noninferior to warafin with (110 mg and 150 stroke or TIA. center embolism mg) of dabigatran RCT LVEF <40% and systemic embolism (RR:0.66; 2009 respect to the primary outcome NYHA class II or 95% CI: 0.53-0.82; p<0.0001) but the 19717844 2x d vs. warfarin (193) in pts with AF at higher 110 mg dose was not when increased risk of compared to warafin (RR: 0.91; 95%) CI: 0.74-1.11; p=0.34) stroke

ROCKET AF, Fox KAA, 2011 <u>21873708</u> (373)	Compare rivaroxaban with warfarin in prevention of stroke or systemic embolism in pts with AF	Double blind RCT	14,264; 2,950 pts with moderate renal impairment	Pts with non- valvular AF and moderate renal impairment (CrCl 30-49 mL/min)	N/A	Stroke or systemic embolism	N/A	Primary outcome occurred in 2.32 per 100 pt-y in rivaroxaban vs. 2.77 per 100 pt-y in warafin group. Fatal bleeding was 0.28% in rivaroxaban vs. 0.74% per 100 pt-y in warafin (ITT analysis HR: 0.86; 95% CI: 0.63-1.17; p=0.0047)	Analysis was not powered to detect differences between drugs in pts with renal insuficiency	While not able to show a difference between drugs, rivaroxaban was associated with reduction in fatal bleeding in pts with renal insufieniency.
ROCKET AF, Patel MR, 2011 <u>21830957</u> (196)	Compare rivaroxaban with warfarin in prevention of stroke or systemic embolism in pts with AF	Double blind RCT	14,264	Non-valvular AF	N/A	Stroke or systemic embolism	N/A	Primary outcome occurred in less often in rivaroxaban group than warfarin group (2.1 % vs. 2.4% per y) ITT analysis noninferiority: HR: 0.88; 95% CI: 0.74-1.03; p<0.0001	No between group differences in the ITT analysis.	Showed noninferiority of rivaroxaban.

AF indicates atrial fibrillation; AFFIRM, Atrial Fibrillation Follow-up Investigation of Rhythm Management; CHF, congestive heart failure; CrCI, creatinine clearance; CV, cardiovascular; HR, hazard ratio; ITT, intent-to-treat; LV, left ventricular; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; Pts, patients; RCT, randomized control trial; RE-LY, randomized evaluation of long-term anticoagulant therapy trial; ROCKET-AF, Rivaroxaban Once Daily Oral Direct Factor Xa Inhibitor Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation; RR, relative risk; and TIA, transient ischemic attack;

Data Supplement 42. HF Disease Management (Section 11.2)

Study Name, Author, Year		Study Type	Study Size	Patient P	opulation	Endpoints		Statistical Analysis (Results)	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
What Works In Chronic Care Management: The Case Of HF <u>19124869</u> (374)	The effect of delivery methods in the management of HF care on hospital readmissions	Meta analysis of RCTs	2,028	Not Reported	Not Reported	All-cause hospital readmissions and readmission d	N/A	Pts enrolled in chronic care management programs using a multidisciplinary team in addition to in-person communication had a 2.9% reduction in readmissions/ mo and a 6.4% reduction in readmission d/mo compared to routine care (p < 0.001).	Possible study selection bias; were not able to evaluate cost savings; retrospective analysis.	A team-based approach in chronic care management programs for HF pts meets AHA's principles for high-quality disease management programs and the Disease Management Association of America's key components of disease management programs.

CM in a heterogeneous CHF population: a RCT <u>12695272</u> (375)	Test the effect of CHF case management with the following 4 components: 1. early discharge planning, 2. pt and family CHF education, 3. 12 wk of telephone f/u, and, 4. promotion of optimal CHF medications	RCT	287	Primary or secondary diagnosis of CHF, LVD <40%, or radiologic evidence of pulmonary edema for which they underwent diuresis; had to be at risk for early readmission	Discharge to a long- term care facility, planned cardiac surgery, cognitive impairment, anticipated survival of <3 mo, and long- term hemodialysis	90-d readmission rate	Adherence to treatment plan and pt satisfaction	There was no difference between the 2 groups in 90-d re-admission rates (both were 37%, p>0.99). The intervention group showed greater adherence to most aspects of the treatment plan (p<0.01) and pts in this group reported greater pt satisfaction (p<0.01). Subgroup of pts who live in area and received care from local cardiologists decreased CHF readmission rate (2%vs. 14%; p=0.03).	Study was not blinded, adherence was assessed via pt self-report; and no consistent method for NYHA classification.	The intervention did not increase costs and study showed that strong working relationships between the CM and cardiologists decreased CHF hospital readmission rates.
CM for pts with chronic systolic HF in primary care: the HICMan exploratory RCT. <u>20478035</u> (376)	To compare CM vs. usual care on pt outcomes.	RCT	197	Adults with LVEF ≤45%	Not reported	HRQoL, HF self- care, and pt- reported quality of care.		Nonsignificant between group differences for the KCCQ overall summary scores favored CM: 1.7 (95%CI: -3.0-6.4; p=0.477). Heart failure self-care behavior scores were significant group differences favoring CM: -3.6 (95%CI: -5.71.6; Cohen's d 0.55; p=0.001) Significant between group differences quality of chronic illness care (0.5; 95% CI : 0.3-0.7; p=0.000) and behavior counseling (0.5; 95%CI : 0.3-0.8; p=0.000), with moderate effect sizes (Cohen's d 0.7 for each summary score).	Small, unblended sample of patients from a non- representative sample of physicians.	The intervention failed to improve overall QoL, though showed significant improvements in pt- reported quality of care and chronic HF self-care.
Impact of a specialized outpatient HF follow-up program on hospitalization frequency and functional status of pts with AHF. <u>17695729</u>	To evaluate the impact of a specialized outpatient HF follow-up program	Retrospective	147	Not reported	Not reported	Frequency and duration of hospitalization for HF and functional status		Significant improvement in NYHA class during the mean follow-up period: 55% of the pts were in class III, 37% in class II, 5% in class I and 3% in class IV (p<0.0001). Hospitalizations for acute decompensation of HF decreased: 87 at baseline vs. 25 (p<0.0001)	Small retrospective study	No significant differences were found in the proportion of pts on therapeutic drugs or in mean duration of hospitalization

(377)									
Outpatient	To evaluate an	Prospective	115	Adults with chronic	Hospitalization	MLWHF, NYHA	EF improved from 31 +/- 10 to 36	Small trial, not	Showed a decrease in the
medical and	outpatient	trial		HF in the Piedmont	and ED	functional class,	+/- 12%. ED admissions and	generalizable to	number of hospitalizations
nurse	management			region of Italy.	admissions in the	pharmacological	hospitalizations decreased (p <	populations outside of Italy.	and improvement in NYHA
management	program for pts				12 mo before the	therapies at the	0.001). NYHA classes I-II improved		functional class and
program in pts	with chronic HF				1 st evaluation and	referral time and	from 65.5 to 87.7% and NYHA		adherence to medical
with chronic HF					every y after	at the end of	classes III-IV were reduced from		therapy. These results
in a large					referral	follow-up.	34.5 to 12.3%. MLWHF score		kept constant over time in
territorial area							decreased from 25 to 21.9. Pts		the subsequent 4 y.
in Piedmont. 4							treated with ACEI + ARB increased		
y of follow-up.							from 91 to 96%, beta blockers from		
16444925							35.2 to 69%, potassium sparing		
(378)							drugs increased from 54 to 64%.		

ACEI indicates angiotensin-converting-enzyme inhibitor; AHF, acute heart failure; ARB, angiotensin receptor blockers; CHF, congestive heart failure; CM, case management; ED, emergency department; EF, ejection fraction; HF, heart failure; HRQoL, health related quality of life; KCCQ, LVD, left ventricular dysfunction; MLHF, Minnesota Living with Heart Failure; NYHA, pts, patients; and QoL, quality of life.

Data Supplement 43. Telemonitoring (Section 11.2)

Study Name,	Aim of study	Study	Study	Patien	t Population	Endpo	ints	Statistical Analysis (Results)	Study Limitations	Findings/ Comments
Author, Year		Туре	Size							
				Inclusion	Exclusion Criteria	Primary	Secondary			
				Criteria		Endpoint	Endpoint			
Telemonitoring or structured telephone support programs for pts with chronic HF: systematic review and meta-analysis. <u>17426062</u> (379)	To determine whether remote monitoring (structured telephone support or telemonitoring) without regular clinic or home visits improves outcomes for pts with chronic HF.	Meta analysis	4,264	Published RCTs comparing remote monitoring programs with usual care in patients with chronic HF managed within the community.		All-cause mortality, all-cause rate of admission to hospital, and rate of admission to hospital as a result of chronic HF		20% reduction in all-cause mortality (95% CI: 8- 31%) with telemonitoring. No change in all-cause hospital admission rate. Hospital admissions due to chronic HF saw a reduction of 21% (95% CI: 11 -31%) with remote monitoring programmes	Relatively small number of studies and pts; few trials had follow-up beyond 6 mo.	Remote monitoring programs for pts with chronic HF reduced admissions to hospital and all-cause mortality by nearly 1/5.

Structured telephone support or telemonitoring programs for pts with chronic HF <u>20687083</u> (380)	To examine the effect of telemonitoring and structured telephone support on HF outcomes.	Meta analysis	25 studies, 16 structured telephone support (n = 5613) and 11 of telemonitori ng (n = 2710)	RCTs, adults ≥18 y, diagnosed with chronic HF.	Trials of general cardiac disorders rather than chronic HF were excluded.	All-cause mortality	All-cause readmissions to hospital and chronic HF- related admission to hospital	All-cause mortality:Telemonitoring RR: 0.66; 95% CI: $0.54-0.81$, p< 0.0001Structured telephone support RR: 0.88 ; 95% CI: 0.76-1.01; p=0.08All-cause hospitalization:Telemonitoring RR:0.91; 95% CI: $0.84-0.99$; p=0.02Structured telephone support RR: 0.92 ; 95% CI: 0.85-0.99; p=0.02Chronic HF-related hospitalizations:Telemonitoring RR: 0.79; 95% CI: $0.67-0.94$; p=0.008.Structured telephone support RR: 0.77 ; 95% CI: 0.68-0.87; p<0.0001	Unable to stratify by age, sex, or NYHA class. Unable to adjust for the differing lengths of follow-up.	Telemonitoring and structured telephone support interventions for assisting with management of pts with chronic HF are beneficial and may play a significant role in the care of 'standard' management of chronic HF.
Effect of a standardized nurse case- management telephone intervention on resource use in patients with chronic HF. <u>11911726 (381)</u>	To assess the effectiveness of a standardized telephonic case- management intervention in pts with chronic HF.	RCT	358; 130 (interventio n); 228 (usual care)	N/A	N/A	HF hospitalization rates	All-cause hospitalization rates; HF readmission rate; HF hospital d	HF hospitalization rate was 45.7% lower in the intervention group at 3 mo (p=0.03) and 47.8% lower at 6 mo (p=0.01). HF hospital d (p=0.03) and multiple readmissions (p=0.03) were significantly lower in the intervention group at 6 mo – though not significant after adjustment for other covariates.	Selection bias due to randomization of physicians, rather than pts. Impossible to completely blind physicians to treatment.	Telephonic case management can reduce HF hospitalization resulting in significant cost savings.
RCT of telephone case management in Hispanics of Mexican origin with HF. <u>16624687</u> (382)	Tested the effectiveness of telephone case management in decreasing hospitalizations and improving HRQL and depression	RCT	134; 69 (interventio n); 65 (usual care)	Hospitalized Hispanics with chronic HF	N/A	HF re- hospitalization	All-cause hospitalization, d in the hospital (HF and all- cause), multiple readmissions, acute care costs, all-cause mortality, HRQL, depression	No significant group differences were found in HF hospitalizations, HF readmission rate, d in the hospital, HF cost of care, all-cause acute care use or cost, mortality, HRQL, or depression.	Small sample size. Possible confounders included very ill population, poorly educated, economically poor, and unacculturated into US society.	None
Telemonitoring in pts with HF. <u>21080835 (</u> 383)	Test the effectiveness of telemonitoring vs. usual care.	RCT	1653; 826 (interventio n); 827 (usual care)	Pts were enrolled from 2006-2009 at 33 cardiology practices across	Residence in a long-term nursing home; inability to participate in the protocol for any reason, including a low expected	All-cause readmission or all- cause mortality (within 180 d post enrollment)	HF hospitalization, d in the hospital, and number of	All-cause readmission or mortality: telemonitoring vs. usual care HR: 1.04; 95% CI: 0.91-1.19. No significant differences were seen between the 2 groups with respect to	Automated system with low adherence rate.	Telemonitoring did not improve outcomes among pts recently hospitalized for HF.

procedure

HF indicates heart failure; HR, hazard ratio; HRQL, health related quality of life; NYHA, New York Heart Association; pts, patients; RCT, randomized control trial; RR, relative risk; and US, United States.

Data Supplement 44. Quality Metrics and Performance Measures (Section 12)

Study Name, Author, Year	Aim of study	Study Type	Study Size	Patien	t Population	Endpoint	S	Statistical Analysis (Results)	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint			
Temporal trends in clinical characteristics, treatments, and outcomes for HF hospitalizations, 2002-2004: findings from ADHERE. <u>17540205</u> (384)	To assess temporal trends in clinical characteristics, treatments, quality indicators, and outcomes for HF hospitalizations.	Prospective	159,168	N/A	N/A	N/A	N/A	Inhospital treatment changed significantly over time with inotrope use decreasing from 14.7% to 7.9% (p<0 .0001). Discharge instructions increased 133%; smoking counseling, 132%; LV function measurement, 8%; and beta blocker use, 29% (all p<0.0001). Clinical outcomes improved over time, including need for mechanical ventilation, RR: 0.64, p < .0001); length of stay (mean), 6.3 to 5.5 d; and mortality, RR: 0.71, p<0.0001).	N/A	N/A
Improving evidence- based care for HF in outpatient cardiology practices: primary results of the Registry to Improve the Use of Evidence- Based HF Therapies in the Outpatient Setting (IMPROVE HF). <u>20660805</u> (385)	To evaluate the effectiveness of a practice-specific performance improvement intervention on the use of guideline- recommended therapies for pts with diagnosed HF and reduced LVEF or prior MI and reduced LVEF in outpatient cardiology practices	Prospective	34,810	HF or prior MI with LVEF ≤35%	Those with noncardiovascula r medical condition associated with an estimated survival of <1 y and those who had undergone cardiac transplantation	7 quality measures: use of 1) ACEI or ARB, 2) Beta blocker, 3) aldosterone antagonist, 4) anticoagulant therapy for AF or flutter, 5) CRT with a defibrillator/CRT with a pacemaker, 6) ICD (ICD or CRT with a defibrillator), and 7) HF education for eligible pts.	N/A	Significant improvement was demonstrated in 5 of the 7 quality measures at the practice level at 24 mo after implementation of the performance improvement intervention, use of aldosterone antagonists, CRT, ICD, beta blocker, and HF education (p<0.001); Use of anticoagulation in eligible patients with AF did not improve over time. Use of ACEI/ARB increased (+6.8%), but this was not statistically significant (p=0.063)	Data collected by chart review, which may be incomplete; selection bias as eligible pts not included in analysis may differ by contraindication from those who were; analysis not adjusted for differing lengths of follow up.	Study demonstrates the positive impact of applying performance improvement techniques of guideline- driven care and improvement tools, in real- world cardiology practices.

ACEI indicates angiotensin-converting-enzyme inhibitor; ADHERE, Acute Decompensated Heart Failure National Registry; AF, atrial fibrillation; ARB, angiotensin receptor blockers; CRT, cardiac resynchronization therapy; HF, heart failure; ICD, implantable cardioverter-defibrillator; LV, left ventricular; MI, myocardial infarction; pt, patient; and RR, relative risk.

References

- 1. Masoudi FA, Havranek EP, Smith G, et al. Gender, age, and heart failure with preserved left ventricular systolic function. J Am Coll Cardiol. 2003;41:217-23.
- 2. Aaronson KD, Schwartz JS, Chen TM, et al. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation. 1997;95:2660-7.
- 3. Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355:260-9.
- 4. Lee DS, Gona P, Vasan RS, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute. Circulation. 2009;119:3070-7.
- 5. Kane GC, Karon BL, Mahoney DW, et al. Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA. 2011;306:856-63.
- 6. Madsen BK, Hansen JF, Stokholm KH, et al. Chronic congestive heart failure. Description and survival of 190 consecutive patients with a diagnosis of chronic congestive heart failure based on clinical signs and symptoms. Eur Heart J. 1994;15:303-10.
- 7. Holland R, Rechel B, Stepien K, et al. Patients' self-assessed functional status in heart failure by New York Heart Association class: a prognostic predictor of hospitalizations, quality of life and death. J Card Fail. 2010;16:150-6.
- 8. Ammar KA, Jacobsen SJ, Mahoney DW, et al. Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation. 2007;115:1563-70.
- 9. Goldman L, Hashimoto B, Cook EF, et al. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: advantages of a new specific activity scale. Circulation. 1981;64:1227-34.
- 10. Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113:1424-33.
- 11. Lee DS, Austin PC, Rouleau JL, et al. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290:2581-7.
- 12. O'Connor CM, Abraham WT, Albert NM, et al. Predictors of mortality after discharge in patients hospitalized with heart failure: an analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J. 2008;156:662-73.
- 13. Pocock SJ, Wang D, Pfeffer MA, et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J. 2006;27:65-75.
- 14. Fonarow GC, Adams KF, Jr., Abraham WT, et al. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293:572-80.
- 15. Peterson PN, Rumsfeld JS, Liang L, et al. A validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines program. Circ Cardiovasc Qual Outcomes. 2010;3:25-32.
- 16. Abraham WT, Fonarow GC, Albert NM, et al. Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J Am Coll Cardiol. 2008;52:347-56.
- 17. Wedel H, McMurray JJ, Lindberg M, et al. Predictors of fatal and non-fatal outcomes in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA): incremental value of apolipoprotein A-1, high-sensitivity C-reactive peptide and N-terminal pro B-type natriuretic peptide. Eur J Heart Fail. 2009;11:281-91.
- 18. Auble TE, Hsieh M, McCausland JB, et al. Comparison of four clinical prediction rules for estimating risk in heart failure. Ann Emerg Med. 2007;50:127-35, 135.
- 19. Moser DK, Yamokoski L, Sun JL, et al. Improvement in health-related quality of life after hospitalization predicts event-free survival in patients with advanced heart failure. J Card Fail. 2009;15:763-9.
- 20. Lesman-Leegte I, Jaarsma T, Coyne JC, et al. Quality of life and depressive symptoms in the elderly: a comparison between patients with heart failure and age- and gender-matched community controls. J Card Fail. 2009;15:17-23.
- 21. Riegel B, Moser DK, Rayens MK, et al. Ethnic differences in quality of life in persons with heart failure. J Card Fail. 2008;14:41-7.
- 22. Calvert MJ, Freemantle N, Cleland JG. The impact of chronic heart failure on health-related quality of life data acquired in the baseline phase of the CARE-HF study. Eur J Heart Fail. 2005;7:243-51.

- 23. Lewis EF, Lamas GA, O'Meara E, et al. Characterization of health-related quality of life in heart failure patients with preserved versus low ejection fraction in CHARM. Eur J Heart Fail. 2007;9:83-91.
- 24. Dobre D, de Jongste MJ, Haaijer-Ruskamp FM, et al. The enigma of quality of life in patients with heart failure. Int J Cardiol. 2008;125:407-9.
- 25. Harrison MB, Browne GB, Roberts J, et al. Quality of life of individuals with heart failure: a randomized trial of the effectiveness of two models of hospital-to-home transition. Med Care. 2002;40:271-82.
- 26. Arena R, Myers J, Abella J, et al. Defining the optimal prognostic window for cardiopulmonary exercise testing in patients with heart failure. Circ Heart Fail. 2010;3:405-11.
- 27. Mancini DM, Eisen H, Kussmaul W, et al. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83:778-86.
- 28. O'Neill JO, Young JB, Pothier CE, et al. Peak oxygen consumption as a predictor of death in patients with heart failure receiving beta-blockers. Circulation. 2005;111:2313-8.
- 29. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261:884-8.
- 30. Chakko S, Woska D, Martinez H, et al. Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care. Am J Med. 1991;90:353-9.
- 31. Drazner MH, Hellkamp AS, Leier CV, et al. Value of clinician assessment of hemodynamics in advanced heart failure: the ESCAPE trial. Circ Heart Fail. 2008;1:170-7.
- 32. Butman SM, Ewy GA, Standen JR, et al. Bedside cardiovascular examination in patients with severe chronic heart failure: importance of rest or inducible jugular venous distension. J Am Coll Cardiol. 1993;22:968-74.
- 33. Stein JH, Neumann A, Marcus RH. Comparison of estimates of right atrial pressure by physical examination and echocardiography in patients with congestive heart failure and reasons for discrepancies. Am J Cardiol. 1997;80:1615-8.
- 34. Badgett RG, Lucey CR, Mulrow CD. Can the clinical examination diagnose left-sided heart failure in adults? JAMA. 1997;277:1712-9.
- 35. Drazner MH, Rame JE, Stevenson LW, et al. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345:574-81.
- 36. Drazner MH, Rame JE, Dries DL. Third heart sound and elevated jugular venous pressure as markers of the subsequent development of heart failure in patients with asymptomatic left ventricular dysfunction. Am J Med. 2003;114:431-7.
- 37. Meyer P, Ekundayo OJ, Adamopoulos C, et al. A propensity-matched study of elevated jugular venous pressure and outcomes in chronic heart failure. Am J Cardiol. 2009;103:839-44.
- 38. Schmidt DE, Shah PK. Accurate detection of elevated left ventricular filling pressure by a simplified bedside application of the Valsalva maneuver. Am J Cardiol. 1993;71:462-5.
- 39. Brunner-La Rocca HP, Weilenmann D, Rickli H, et al. Is blood pressure response to the Valsalva maneuver related to neurohormones, exercise capacity, and clinical findings in heart failure? Chest. 1999;116:861-7.
- 40. Givertz MM, Slawsky MT, Moraes DL, et al. Noninvasive determination of pulmonary artery wedge pressure in patients with chronic heart failure. Am J Cardiol. 2001;87:1213-5.
- 41. Sharma GV, Woods PA, Lambrew CT, et al. Evaluation of a noninvasive system for determining left ventricular filling pressure. Arch Intern Med. 2002;162:2084-8.
- 42. Felker GM, Cuculich PS, Gheorghiade M. The Valsalva maneuver: a bedside "biomarker" for heart failure. Am J Med. 2006;119:117-22.
- 43. Lucas C, Johnson W, Hamilton MA, et al. Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J. 2000;140:840-7.
- 44. Nohria A, Tsang SW, Fang JC, et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003;41:1797-804.
- 45. Levy WC, Mozaffarian D, Linker DT, et al. Can the Seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy? J Heart Lung Transplant. 2009;28:231-6.
- 46. Gorodeski EZ, Chu EC, Chow CH, et al. Application of the Seattle Heart Failure Model in ambulatory patients presented to an advanced heart failure therapeutics committee. Circ Heart Fail. 2010;3:706-14.
- 47. Rohde LE, Goldraich L, Polanczyk CA, et al. A simple clinically based predictive rule for heart failure in-hospital mortality. J Card Fail. 2006;12:587-93.
- 48. Gheorghiade M, Follath F, Ponikowski P, et al. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail. 2010;12:423-33.
- 49. Syed IS, Glockner JF, Feng D, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3:155-64.
- 50. Rizzello V, Poldermans D, Biagini E, et al. Prognosis of patients with ischaemic cardiomyopathy after coronary revascularisation: relation to viability and improvement in left ventricular ejection fraction. Heart. 2009;95:1273-7.
- 51. Allman KC, Shaw LJ, Hachamovitch R, et al. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a metaanalysis. J Am Coll Cardiol. 2002;39:1151-8.

- 52. Beanlands RS, Ruddy TD, deKemp RA, et al. Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol. 2002;40:1735-43.
- 53. Pagley PR, Beller GA, Watson DD, et al. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation. 1997;96:793-800.
- 54. Senior R, Kaul S, Lahiri A. Myocardial viability on echocardiography predicts long-term survival after revascularization in patients with ischemic congestive heart failure. J Am Coll Cardiol. 1999;33:1848-54.
- 55. Kwon DH, Halley CM, Carrigan TP, et al. Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function: a delayed hyperenhancement cardiac magnetic resonance study. JACC Cardiovasc Imaging. 2009;2:34-44.
- 56. Ordovas KG, Higgins CB. Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology. 2011;261:358-74.
- 57. Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation. 2007;116:2216-33.
- 58. Kasper EK, Agema WR, Hutchins GM, et al. The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients. J Am Coll Cardiol. 1994;23:586-90.
- 59. Fowles RE, Mason JW. Endomyocardial biopsy. Ann Intern Med. 1982;97:885-94.
- 60. Deckers JW, Hare JM, Baughman KL. Complications of transvenous right ventricular endomyocardial biopsy in adult patients with cardiomyopathy: a seven-year survey of 546 consecutive diagnostic procedures in a tertiary referral center. J Am Coll Cardiol. 1992;19:43-7.
- 61. Ardehali H, Qasim A, Cappola T, et al. Endomyocardial biopsy plays a role in diagnosing patients with unexplained cardiomyopathy. Am Heart J. 2004;147:919-23.
- 62. Holzmann M, Nicko A, Kuhl U, et al. Complication rate of right ventricular endomyocardial biopsy via the femoral approach: a retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation. 2008;118:1722-8.
- 63. Elliott P, Arbustini E. The role of endomyocardial biopsy in the management of cardiovascular disease: a commentary on joint AHA/ACC/ESC guidelines. Heart. 2009;95:759-60.
- 64. Lloyd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation. 2002;106:3068-72.
- 65. Vasan RS, Beiser A, Seshadri S, et al. Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham Heart Study. JAMA. 2002;287:1003-10.
- 66. Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557-62.
- 67. Wilhelmsen L, Rosengren A, Eriksson H, et al. Heart failure in the general population of men--morbidity, risk factors and prognosis. J Intern Med. 2001;249:253-61.
- 68. Kostis JB, Davis BR, Cutler J, et al. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. SHEP Cooperative Research Group. JAMA. 1997;278:212-6.
- 69. Staessen JA, Wang JG, Thijs L. Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003. J Hypertens. 2003;21:1055-76.
- 70. Sciarretta S, Palano F, Tocci G, et al. Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk. Arch Intern Med. 2011;171:384-94.
- 71. Lind M, Bounias I, Olsson M, et al. Glycaemic control and incidence of heart failure in 20,985 patients with type 1 diabetes: an observational study. Lancet. 2011;378:140-6.
- 72. Pfister R, Cairns R, Erdmann E, et al. A clinical risk score for heart failure in patients with type 2 diabetes and macrovascular disease: An analysis of the PROactive study. Int J Cardiol. 2011;
- 73. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347:305-13.
- 74. Kenchaiah S, Sesso HD, Gaziano JM. Body mass index and vigorous physical activity and the risk of heart failure among men. Circulation. 2009;119:44-52.
- 75. Verdecchia P, Sleight P, Mancia G, et al. Effects of telmisartan, ramipril, and their combination on left ventricular hypertrophy in individuals at high vascular risk in the Ongoing Telmisartan Alone and in Combination With Ramipril Global End Point Trial and the Telmisartan Randomized Assessment Study in ACE Intolerant Subjects With Cardiovascular Disease. Circulation. 2009;120:1380-9.
- 76. Braunwald E, Domanski MJ, Fowler SE, et al. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004;351:2058-68.
- 77. Mills EJ, Rachlis B, Wu P, et al. Primary prevention of cardiovascular mortality and events with statin treatments: a network meta-analysis involving more than 65,000 patients. J Am Coll Cardiol. 2008;52:1769-81.
- 78. Taylor F, Ward K, Moore TH, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2011;CD004816.
- 79. Abramson JL, Williams SA, Krumholz HM, et al. Moderate alcohol consumption and risk of heart failure among older persons. JAMA. 2001;285:1971-7.
- 80. Walsh CR, Larson MG, Evans JC, et al. Alcohol consumption and risk for congestive heart failure in the Framingham Heart Study. Ann Intern Med. 2002;136:181-91.

- 81. Choueiri TK, Mayer EL, Je Y, et al. Congestive heart failure risk in patients with breast cancer treated with bevacizumab. J Clin Oncol. 2011;29:632-8.
- 82. Du XL, Xia R, Burau K, et al. Cardiac risk associated with the receipt of anthracycline and trastuzumab in a large nationwide cohort of older women with breast cancer, 1998-2005. Med Oncol. 2011;28 Suppl 1:S80-S90.
- 83. Sawaya H, Sebag IA, Plana JC, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375-80.
- 84. McKie PM, Cataliotti A, Lahr BD, et al. The prognostic value of N-terminal pro-B-type natriuretic peptide for death and cardiovascular events in healthy normal and stage A/B heart failure subjects. J Am Coll Cardiol. 2010;55:2140-7.
- 85. Velagaleti RS, Gona P, Larson MG, et al. Multimarker approach for the prediction of heart failure incidence in the community. Circulation. 2010;122:1700-6.
- 86. Blecker S, Matsushita K, Kottgen A, et al. High-normal albuminuria and risk of heart failure in the community. Am J Kidney Dis. 2011;58:47-55.
- 87. deFilippi CR, de Lemos JA, Christenson RH, et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304:2494-502.
- 88. Heidenreich PA, Gubens MA, Fonarow GC, et al. Cost-effectiveness of screening with B-type natriuretic peptide to identify patients with reduced left ventricular ejection fraction. J Am Coll Cardiol. 2004;43:1019-26.
- 89. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327:669-77.
- 90. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigattors. N Engl J Med. 1992;327:685-91.
- 91. Jong P, Yusuf S, Rousseau MF, et al. Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study. Lancet. 2003;361:1843-8.
- 92. Scirica BM, Morrow DA, Cannon CP, et al. Intensive statin therapy and the risk of hospitalization for heart failure after an acute coronary syndrome in the PROVE IT-TIMI 22 study. J Am Coll Cardiol. 2006;47:2326-31.
- 93. de Lemos JA, Blazing MA, Wiviott SD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA. 2004;292:1307-16.
- 94. Bocchi EA, Guimaraes G, Mocelin A, et al. Sildenafil effects on exercise, neurohormonal activation, and erectile dysfunction in congestive heart failure: a double-blind, placebo-controlled, randomized study followed by a prospective treatment for erectile dysfunction. Circulation. 2002;106:1097-103.
- 95. VanSuch M, Naessens JM, Stroebel RJ, et al. Effect of discharge instructions on readmission of hospitalised patients with heart failure: do all of the Joint Commission on Accreditation of Healthcare Organizations heart failure core measures reflect better care? Qual Saf Health Care. 2006;15:414-7.
- 96. Koelling TM, Johnson ML, Cody RJ, et al. Discharge education improves clinical outcomes in patients with chronic heart failure. Circulation. 2005;111:179-85.
- 97. Linne AB, Liedholm H. Effects of an interactive CD-program on 6 months readmission rate in patients with heart failure a randomised, controlled trial [NCT00311194]. BMC Cardiovasc Disord. 2006;6:30.
- 98. Stromberg A, Dahlstrom U, Fridlund B. Computer-based education for patients with chronic heart failure. A randomised, controlled, multicentre trial of the effects on knowledge, compliance and quality of life. Patient Educ Couns. 2006;64:128-35.
- 99. Ferrante D, Varini S, Macchia A, et al. Long-term results after a telephone intervention in chronic heart failure: DIAL (Randomized Trial of Phone Intervention in Chronic Heart Failure) follow-up. J Am Coll Cardiol. 2010;56:372-8.
- 100. Boren SA, Wakefield BJ, Gunlock TL, et al. Heart failure self-management education: a systematic review of the evidence. Int J Evid Based Healthc. 2009;7:159-68.
- 101. Cruz F, Issa VS, Ayub-Ferreira SM, et al. Effect of a sequential education and monitoring programme on quality-of-life components in heart failure. Eur J Heart Fail. 2010;12:1009-15.
- 102. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121:e46-e215.
- 103. Luttik ML, Jaarsma T, Moser D, et al. The importance and impact of social support on outcomes in patients with heart failure: an overview of the literature. J Cardiovasc Nurs. 2005;20:162-9.
- 104. Struthers AD, Anderson G, Donnan PT, et al. Social deprivation increases cardiac hospitalisations in chronic heart failure independent of disease severity and diuretic non-adherence. Heart. 2000;83:12-6.
- 105. Gallager R, Luttik ML, Jaarsma T. Social Support and Self-care in Heart Failure. J Cardiovasc Nurs. 2011;
- 106. Dickson VV, Buck H, Riegel B. A qualitative meta-analysis of heart failure self-care practices among individuals with multiple comorbid conditions. J Card Fail. 2011;17:413-9.

- 107. Sayers SL, Hanrahan N, Kutney A, et al. Psychiatric comorbidity and greater hospitalization risk, longer length of stay, and higher hospitalization costs in older adults with heart failure. J Am Geriatr Soc. 2007;55:1585-91.
- 108. Sturm HB, Haaijer-Ruskamp FM, Veeger NJ, et al. The relevance of comorbidities for heart failure treatment in primary care: A European survey. Eur J Heart Fail. 2006;8:31-7.
- 109. Dahlstrom U. Frequent non-cardiac comorbidities in patients with chronic heart failure. Eur J Heart Fail. 2005;7:309-16.
- 110. Dansky KH, Vasey J, Bowles K. Use of telehealth by older adults to manage heart failure. Res Gerontol Nurs. 2008;1:25-32.
- 111. Ambardekar AV, Fonarow GC, Hernandez AF, et al. Characteristics and in-hospital outcomes for nonadherent patients with heart failure: findings from Get With The Guidelines-Heart Failure (GWTG-HF). Am Heart J. 2009;158:644-52.
- 112. Bagchi AD, Esposito D, Kim M, et al. Utilization of, and adherence to, drug therapy among medicaid beneficiaries with congestive heart failure. Clin Ther. 2007;29:1771-83.
- 113. Cole JA, Norman H, Weatherby LB, et al. Drug copayment and adherence in chronic heart failure: effect on cost and outcomes. Pharmacotherapy. 2006;26:1157-64.
- 114. De Smedt RH, Jaarsma T, Haaijer-Ruskamp FM, et al. The impact of perceived adverse effects on medication changes in heart failure patients. J Card Fail. 2010;16:135-41.
- 115. Fonarow GC, Albert NM, Curtis AB, et al. Associations between outpatient heart failure process-of-care measures and mortality. Circulation. 2011;123:1601-10.
- 116. Karlsson MR, Edner M, Henriksson P, et al. A nurse-based management program in heart failure patients affects females and persons with cognitive dysfunction most. Patient Educ Couns. 2005;58:146-53.
- 117. Murray MD, Loos B, Tu W, et al. Work patterns of ambulatory care pharmacists with access to electronic guideline-based treatment suggestions. Am J Health Syst Pharm. 1999;56:225-32.
- 118. Ojeda S, Anguita M, Delgado M, et al. Short- and long-term results of a programme for the prevention of readmissions and mortality in patients with heart failure: are effects maintained after stopping the programme? Eur J Heart Fail. 2005;7:921-6.
- 119. Riegel B, Moelter ST, Ratcliffe SJ, et al. Excessive daytime sleepiness is associated with poor medication adherence in adults with heart failure. J Card Fail. 2011;17:340-8.
- 120. van der Wal MH, van Veldhuisen DJ, Veeger NJ, et al. Compliance with non-pharmacological recommendations and outcome in heart failure patients. Eur Heart J. 2010;31:1486-93.
- 121. Lainscak M, Cleland JG, Lenzen MJ, et al. Nonpharmacologic measures and drug compliance in patients with heart failure: data from the EuroHeart Failure Survey. Am J Cardiol. 2007;99:31D-7D.
- 122. Bradley TD, Logan AG, Kimoff RJ, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353:2025-33.
- 123. Arzt M, Floras JS, Logan AG, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation. 2007;115:3173-80.
- 124. Ruttanaumpawan P, Logan AG, Floras JS, et al. Effect of continuous positive airway pressure on sleep structure in heart failure patients with central sleep apnea. Sleep. 2009;32:91-8.
- 125. Tamura A, Kawano Y, Naono S, et al. Relationship between beta-blocker treatment and the severity of central sleep apnea in chronic heart failure. Chest. 2007;131:130-5.
- 126. Oldenburg O, Faber L, Vogt J, et al. Influence of cardiac resynchronisation therapy on different types of sleep disordered breathing. Eur J Heart Fail. 2007;9:820-6.
- 127. Giannuzzi P, Temporelli PL, Corra U, et al. Antiremodeling effect of long-term exercise training in patients with stable chronic heart failure: results of the Exercise in Left Ventricular Dysfunction and Chronic Heart Failure (ELVD-CHF) Trial. Circulation. 2003;108:554-9.
- 128. Beckers PJ, Denollet J, Possemiers NM, et al. Combined endurance-resistance training vs. endurance training in patients with chronic heart failure: a prospective randomized study. Eur Heart J. 2008;29:1858-66.
- 129. Karapolat H, Demir E, Bozkaya YT, et al. Comparison of hospital-based versus home-based exercise training in patients with heart failure: effects on functional capacity, quality of life, psychological symptoms, and hemodynamic parameters. Clin Res Cardiol. 2009;98:635-42.
- 130. Brubaker PH, Moore JB, Stewart KP, et al. Endurance exercise training in older patients with heart failure: results from a randomized, controlled, single-blind trial. J Am Geriatr Soc. 2009;57:1982-9.
- 131. Flynn KE, Pina IL, Whellan DJ, et al. Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301:1451-9.
- 132. Hwang CL, Chien CL, Wu YT. Resistance training increases 6-minute walk distance in people with chronic heart failure: a systematic review. J Physiother. 2010;56:87-96.
- 133. Jolly K, Taylor RS, Lip GY, et al. A randomized trial of the addition of home-based exercise to specialist heart failure nurse care: the Birmingham Rehabilitation Uptake Maximisation study for patients with Congestive Heart Failure (BRUM-CHF) study. Eur J Heart Fail. 2009;11:205-13.
- 134. Kitzman DW, Brubaker PH, Morgan TM, et al. Exercise training in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. Circ Heart Fail. 2010;3:659-67.
- 135. McKelvie RS, Teo KK, Roberts R, et al. Effects of exercise training in patients with heart failure: the Exercise Rehabilitation Trial (EXERT). Am Heart J. 2002;144:23-30.

- 136. Miche E, Roelleke E, Wirtz U, et al. Combined endurance and muscle strength training in female and male patients with chronic heart failure. Clin Res Cardiol. 2008;97:615-22.
- 137. Nilsson BB, Westheim A, Risberg MA. Long-term effects of a group-based high-intensity aerobic interval-training program in patients with chronic heart failure. Am J Cardiol. 2008;102:1220-4.
- 138. O'Connor CM, Whellan DJ, Lee KL, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301:1439-50.
- 139. Piepoli MF, Davos C, Francis DP, et al. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ. 2004;328:189.
- 140. Pu CT, Johnson MT, Forman DE, et al. Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J Appl Physiol. 2001;90:2341-50.
- 141. Senden PJ, Sabelis LW, Zonderland ML, et al. The effect of physical training on workload, upper leg muscle function and muscle areas in patients with chronic heart failure. Int J Cardiol. 2005;100:293-300.
- 142. Van Berendoncks AM, Beckers P, Hoymans VY, et al. Exercise training reduces circulating adiponectin levels in patients with chronic heart failure. Clin Sci (Lond). 2010;118:281-9.
- 143. van Tol BA, Huijsmans RJ, Kroon DW, et al. Effects of exercise training on cardiac performance, exercise capacity and quality of life in patients with heart failure: a meta-analysis. Eur J Heart Fail. 2006;8:841-50.
- 144. Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364:797-805.
- 145. Massie BM, O'Connor CM, Metra M, et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med. 2010;363:1419-28.
- 146. Giamouzis G, Butler J, Starling RC, et al. Impact of dopamine infusion on renal function in hospitalized heart failure patients: results of the Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial. J Card Fail. 2010;16:922-30.
- 147. Allen LA, Turer AT, Dewald T, et al. Continuous versus bolus dosing of Furosemide for patients hospitalized for heart failure. Am J Cardiol. 2010;105:1794-7.
- 148. Thomson MR, Nappi JM, Dunn SP, et al. Continuous versus intermittent infusion of furosemide in acute decompensated heart failure. J Card Fail. 2010;16:188-93.
- 149. Peacock WF, De MT, Fonarow GC, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117-26.
- 150. Mielniczuk LM, Tsang SW, Desai AS, et al. The association between high-dose diuretics and clinical stability in ambulatory chronic heart failure patients. J Card Fail. 2008;14:388-93.
- 151. Cotter G, Dittrich HC, Weatherley BD, et al. The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J Card Fail. 2008;14:631-40.
- 152. Ahmed A, Aronow WS. A propensity-matched study of the association of physical function and outcomes in geriatric heart failure. Arch Gerontol Geriatr. 2008;46:161-72.
- 153. Gheorghiade M, Konstam MA, Burnett JC, Jr., et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials. JAMA. 2007;297:1332-43.
- 154. Konstam MA, Gheorghiade M, Burnett JC, Jr., et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297:1319-31.
- 155. Ahmed A, Husain A, Love TE, et al. Heart failure, chronic diuretic use, and increase in mortality and hospitalization: an observational study using propensity score methods. Eur Heart J. 2006;27:1431-9.
- 156. Domanski M, Tian X, Haigney M, et al. Diuretic use, progressive heart failure, and death in patients in the DIG study. J Card Fail. 2006;12:327-32.
- 157. Eshaghian S, Horwich TB, Fonarow GC. Relation of loop diuretic dose to mortality in advanced heart failure. Am J Cardiol. 2006;97:1759-64.
- 158. Salvador DR, Rey NR, Ramos GC, et al. Continuous infusion versus bolus injection of loop diuretics in congestive heart failure. Cochrane Database Syst Rev. 2005;CD003178.
- 159. Domanski M, Norman J, Pitt B, et al. Diuretic use, progressive heart failure, and death in patients in the Studies Of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 2003;42:705-8.
- 160. Rogers HL, Marshall J, Bock J, et al. A randomized, controlled trial of the renal effects of ultrafiltration as compared to furosemide in patients with acute decompensated heart failure. J Card Fail. 2008;14:1-5.
- 161. Costanzo MR, Guglin ME, Saltzberg MT, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49:675-83.
- 162. Liang KV, Hiniker AR, Williams AW, et al. Use of a novel ultrafiltration device as a treatment strategy for diuretic resistant, refractory heart failure: initial clinical experience in a single center. J Card Fail. 2006;12:707-14.
- 163. Bart BA, Boyle A, Bank AJ, et al. Ultrafiltration versus usual care for hospitalized patients with heart failure: the Relief for Acutely Fluid-Overloaded Patients With Decompensated Congestive Heart Failure (RAPID-CHF) trial. J Am Coll Cardiol. 2005;46:2043-6.
- 164. Costanzo MR, Saltzberg M, O'Sullivan J, et al. Early ultrafiltration in patients with decompensated heart failure and diuretic resistance. J Am Coll Cardiol. 2005;46:2047-51.
- 165. Agostoni P, Marenzi G, Lauri G, et al. Sustained improvement in functional capacity after removal of body fluid with isolated ultrafiltration in chronic cardiac insufficiency: failure of furosemide to provide the same result. Am J Med. 1994;96:191-9.

- 166. Pepi M, Marenzi GC, Agostoni PG, et al. Sustained cardiac diastolic changes elicited by ultrafiltration in patients with moderate congestive heart failure: pathophysiological correlates. Br Heart J. 1993;70:135-40.
- 167. Agostoni PG, Marenzi GC, Pepi M, et al. Isolated ultrafiltration in moderate congestive heart failure. J Am Coll Cardiol. 1993;21:424-31.
- 168. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N Engl J Med. 1987;316:1429-35.
- 169. Swedberg K, Kjekshus J, Snapinn S. Long-term survival in severe heart failure in patients treated with enalapril. Ten year follow-up of CONSENSUS I. Eur Heart J. 1999;20:136-9.
- 170. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med. 1991;325:293-302.
- 171. Packer M, Poole-Wilson PA, Armstrong PW, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation. 1999;100:2312-8.
- 172. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Lancet. 1993;342:821-8.
- 173. Kober L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med. 1995;333:1670-6.
- 174. Granger CB, McMurray JJ, Yusuf S, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003;362:772-6.
- 175. McMurray JJ, Ostergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet. 2003;362:767-71.
- 176. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893-906.
- 177. Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667-75.
- 178. Konstam MA, Neaton JD, Dickstein K, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet. 2009;374:1840-8.
- 179. Pfeffer MA, Swedberg K, Granger CB, et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet. 2003;362:759-66.
- 180. CBIS II Authors. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999;353:9-13.
- 181. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353:2001-7.
- 182. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651-8.
- 183. Flather MD, Shibata MC, Coats AJ, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J. 2005;26:215-25.
- 184. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344:1659-67.
- 185. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet. 2003;362:7-13.
- 186. Willenheimer R, van Veldhuisen DJ, Silke B, et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation. 2005;112:2426-35.
- 187. Homma S, Thompson JL, Pullicino PM, et al. Warfarin and aspirin in patients with heart failure and sinus rhythm. N Engl J Med. 2012;366:1859-69.
- 188. Cokkinos DV, Haralabopoulos GC, Kostis JB, et al. Efficacy of antithrombotic therapy in chronic heart failure: the HELAS study. Eur J Heart Fail. 2006;8:428-32.
- 189. Cleland JG, Ghosh J, Freemantle N, et al. Clinical trials update and cumulative meta-analyses from the American College of Cardiology: WATCH, SCD-HeFT, DINAMIT, CASINO, INSPIRE, STRATUS-US, RIO-Lipids and cardiac resynchronisation therapy in heart failure. Eur J Heart Fail. 2004;6:501-8.
- 190. Massie BM, Collins JF, Ammon SE, et al. Randomized trial of warfarin, aspirin, and clopidogrel in patients with chronic heart failure: the Warfarin and Antiplatelet Therapy in Chronic Heart Failure (WATCH) trial. Circulation. 2009;119:1616-24.

- 191. Echemann M, Alla F, Briancon S, et al. Antithrombotic therapy is associated with better survival in patients with severe heart failure and left ventricular systolic dysfunction (EPICAL study). Eur J Heart Fail. 2002;4:647-54.
- 192. Wojnicz R, Nowak J, Szygula-Jurkiewicz B, et al. Adjunctive therapy with low-molecular-weight heparin in patients with chronic heart failure secondary to dilated cardiomyopathy: one-year follow-up results of the randomized trial. Am Heart J. 2006;152:713.e1-713.e7.
- 193. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139-51.
- 194. Connolly S, Pogue J, Hart R, et al. Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial. Lancet. 2006;367:1903-12.
- 195. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981-92.
- 196. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883-91.
- 197. Belch JJ, Lowe GD, Ward AG, et al. Prevention of deep vein thrombosis in medical patients by low-dose heparin. Scott Med J. 1981;26:115-7.
- 198. Cohen AT, Davidson BL, Gallus AS, et al. Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: randomised placebo controlled trial. BMJ. 2006;332:325-9.
- 199. Tebbe U, Schellong SM, Haas S, et al. Certoparin versus unfractionated heparin to prevent venous thromboembolic events in patients hospitalized because of heart failure: a subgroup analysis of the randomized, controlled CERTIFY study. Am Heart J. 2011;161:322-8.
- 200. Kleber FX, Witt C, Vogel G, et al. Randomized comparison of enoxaparin with unfractionated heparin for the prevention of venous thromboembolism in medical patients with heart failure or severe respiratory disease. Am Heart J. 2003;145:614-21.
- 201. Turpie AG. Thrombosis prophylaxis in the acutely ill medical patient: insights from the prophylaxis in MEDical patients with ENOXaparin (MEDENOX) trial. Am J Cardiol. 2000;86:48M-52M.
- 202. Horwich TB, MacLellan WR, Fonarow GC. Statin therapy is associated with improved survival in ischemic and non-ischemic heart failure. J Am Coll Cardiol. 2004;43:642-8.
- 203. Mozaffarian D, Nye R, Levy WC. Statin therapy is associated with lower mortality among patients with severe heart failure. Am J Cardiol. 2004;93:1124-9.
- 204. Ray JG, Gong Y, Sykora K, et al. Statin use and survival outcomes in elderly patients with heart failure. Arch Intern Med. 2005;165:62-7.
- 205. Foody JM, Shah R, Galusha D, et al. Statins and mortality among elderly patients hospitalized with heart failure. Circulation. 2006;113:1086-92.
- 206. Anker SD, Clark AL, Winkler R, et al. Statin use and survival in patients with chronic heart failure--results from two observational studies with 5200 patients. Int J Cardiol. 2006;112:234-42.
- 207. Folkeringa RJ, Van Kraaij DJ, Tieleman RG, et al. Statins associated with reduced mortality in patients admitted for congestive heart failure. J Card Fail. 2006;12:134-8.
- 208. Go AS, Lee WY, Yang J, et al. Statin therapy and risks for death and hospitalization in chronic heart failure. JAMA. 2006;296:2105-11.
- 209. Krum H, Bailey M, Meyer W, et al. Impact of statin therapy on clinical outcomes in chronic heart failure patients according to beta-blocker use: results of CIBIS II. Cardiology. 2007;108:28-34.
- 210. Dickinson MG, Ip JH, Olshansky B, et al. Statin use was associated with reduced mortality in both ischemic and nonischemic cardiomyopathy and in patients with implantable defibrillators: mortality data and mechanistic insights from the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Am Heart J. 2007;153:573-8.
- 211. Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:2248-61.
- 212. Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1231-9.
- 213. Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223-30.
- 214. Macchia A, Levantesi G, Franzosi MG, et al. Left ventricular systolic dysfunction, total mortality, and sudden death in patients with myocardial infarction treated with n-3 polyunsaturated fatty acids. Eur J Heart Fail. 2005;7:904-9.
- 215. Nodari S, Triggiani M, Campia U, et al. Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2011;57:870-9.
- 216. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. N Engl J Med. 1989;321:406-12.

- 217. Waldo AL, Camm AJ, deRuyter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD Investigators. Survival With Oral d-Sotalol. Lancet. 1996;348:7-12.
- 218. Kober L, Torp-Pedersen C, McMurray JJ, et al. Increased mortality after dronedarone therapy for severe heart failure. N Engl J Med. 2008;358:2678-87.
- 219. The effect of diltiazem on mortality and reinfarction after myocardial infarction. The Multicenter Diltiazem Postinfarction Trial Research Group. N Engl J Med. 1988;319:385-92.
- 220. Goldstein RE, Boccuzzi SJ, Cruess D, et al. Diltiazem increases late-onset congestive heart failure in postinfarction patients with early reduction in ejection fraction. The Adverse Experience Committee; and the Multicenter Diltiazem Postinfarction Research Group. Circulation. 1991;83:52-60.
- 221. Figulla HR, Gietzen F, Zeymer U, et al. Diltiazem improves cardiac function and exercise capacity in patients with idiopathic dilated cardiomyopathy. Results of the Diltiazem in Dilated Cardiomyopathy Trial. Circulation. 1996;94:346-52.
- 222. Effect of verapamil on mortality and major events after acute myocardial infarction (the Danish Verapamil Infarction Trial II--DAVIT II). Am J Cardiol. 1990;66:779-85.
- 223. Elkayam U, Amin J, Mehra A, et al. A prospective, randomized, double-blind, crossover study to compare the efficacy and safety of chronic nifedipine therapy with that of isosorbide dinitrate and their combination in the treatment of chronic congestive heart failure. Circulation. 1990;82:1954-61.
- 224. Littler WA, Sheridan DJ. Placebo controlled trial of felodipine in patients with mild to moderate heart failure. UK Study Group. Br Heart J. 1995;73:428-33.
- 225. Cohn JN, Ziesche S, Smith R, et al. Effect of the calcium antagonist felodipine as supplementary vasodilator therapy in patients with chronic heart failure treated with enalapril: V-HeFT III. Vasodilator-Heart Failure Trial (V-HeFT) Study Group. Circulation. 1997;96:856-63.
- 226. Stanton E, Hansen M, Wijeysundera HC, et al. A direct comparison of the natriuretic peptides and their relationship to survival in chronic heart failure of a presumed non-ischaemic origin. Eur J Heart Fail. 2005;7:557-65.
- 227. Udelson JE, DeAbate CA, Berk M, et al. Effects of amlodipine on exercise tolerance, quality of life, and left ventricular function in patients with heart failure from left ventricular systolic dysfunction. Am Heart J. 2000;139:503-10.
- 228. Heerdink ER, Leufkens HG, Herings RM, et al. NSAIDs associated with increased risk of congestive heart failure in elderly patients taking diuretics. Arch Intern Med. 1998;158:1108-12.
- 229. Page J, Henry D. Consumption of NSAIDs and the development of congestive heart failure in elderly patients: an underrecognized public health problem. Arch Intern Med. 2000;160:777-84.
- 230. Feenstra J, Heerdink ER, Grobbee DE, et al. Association of nonsteroidal anti-inflammatory drugs with first occurrence of heart failure and with relapsing heart failure: the Rotterdam Study. Arch Intern Med. 2002;162:265-70.
- 231. Mamdani M, Juurlink DN, Lee DS, et al. Cyclo-oxygenase-2 inhibitors versus non-selective non-steroidal anti-inflammatory drugs and congestive heart failure outcomes in elderly patients: a populationbased cohort study. Lancet. 2004;363:1751-6.
- 232. Hudson M, Richard H, Pilote L. Differences in outcomes of patients with congestive heart failure prescribed celecoxib, rofecoxib, or non-steroidal anti-inflammatory drugs: population based study. BMJ. 2005;330:1370.
- 233. Gislason GH, Rasmussen JN, Abildstrom SZ, et al. Increased mortality and cardiovascular morbidity associated with use of nonsteroidal anti-inflammatory drugs in chronic heart failure. Arch Intern Med. 2009;169:141-9.
- 234. Delea TE, Edelsberg JS, Hagiwara M, et al. Use of thiazolidinediones and risk of heart failure in people with type 2 diabetes: a retrospective cohort study. Diabetes Care. 2003;26:2983-9.
- 235. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279-89.
- 236. Dargie HJ, Hildebrandt PR, Riegger GA, et al. A randomized, placebo-controlled trial assessing the effects of rosiglitazone on echocardiographic function and cardiac status in type 2 diabetic patients with New York Heart Association Functional Class I or II Heart Failure. J Am Coll Cardiol. 2007;49:1696-704.
- 237. Lipscombe LL, Gomes T, Levesque LE, et al. Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA. 2007;298:2634-43.
- 238. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373:2125-35.
- 239. Komajda M, McMurray JJ, Beck-Nielsen H, et al. Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J. 2010;31:824-31.
- 240. Giles TD, Elkayam U, Bhattacharya M, et al. Comparison of pioglitazone vs glyburide in early heart failure: insights from a randomized controlled study of patients with type 2 diabetes and mild cardiac disease. Congest Heart Fail. 2010;16:111-7.

- 241. Bourge RC, Abraham WT, Adamson PB, et al. Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J Am Coll Cardiol. 2008;51:1073-9.
- 242. Zile MR, Bourge RC, Bennett TD, et al. Application of implantable hemodynamic monitoring in the management of patients with diastolic heart failure: a subgroup analysis of the COMPASS-HF trial. J Card Fail. 2008;14:816-23.
- 243. Adamson PB, Gold MR, Bennett T, et al. Continuous hemodynamic monitoring in patients with mild to moderate heart failure: results of The Reducing Decompensation Events Utilizing Intracardiac Pressures in Patients With Chronic Heart Failure (REDUCEhf) trial. Congest Heart Fail. 2011;17:248-54.
- 244. Conraads VM, Tavazzi L, Santini M, et al. Sensitivity and positive predictive value of implantable intrathoracic impedance monitoring as a predictor of heart failure hospitalizations: the SENSE-HF trial. Eur Heart J. 2011;32:2266-73.
- 245. Abraham WT, Compton S, Haas G, et al. Intrathoracic impedance vs daily weight monitoring for predicting worsening heart failure events: results of the Fluid Accumulation Status Trial (FAST). Congest Heart Fail. 2011;17:51-5.
- 246. Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658-66.
- 247. Ritzema J, Troughton R, Melton I, et al. Physician-directed patient self-management of left atrial pressure in advanced chronic heart failure. Circulation. 2010;121:1086-95.
- 248. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140-50.
- 249. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539-49.
- 250. Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361:1329-38.
- 251. Tang AS, Wells GA, Talajic M, et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med. 2010;363:2385-95.
- 252. Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117:2608-16.
- 253. Ellenbogen KA, Gold MR, Meyer TE, et al. Primary results from the SmartDelay determined AV optimization: a comparison to other AV delay methods used in cardiac resynchronization therapy (SMART-AV) trial: a randomized trial comparing empirical, echocardiography-guided, and algorithmic atrioventricular delay programming in cardiac resynchronization therapy. Circulation. 2010;122:2660-8.
- 254. Binanay C, Califf RM, Hasselblad V, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294:1625-33.
- 255. Shah MR, Hasselblad V, Stevenson LW, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294:1664-70.
- 256. Allen LA, Rogers JG, Warnica JW, et al. High mortality without ESCAPE: the registry of heart failure patients receiving pulmonary artery catheters without randomization. J Card Fail. 2008;14:661-9.
- 257. Gray A, Goodacre S, Newby DE, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med. 2008;359:142-51.
- 258. Masip J, Roque M, Sanchez B, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema: systematic review and meta-analysis. JAMA. 2005;294:3124-30.
- 259. Kar B, Gregoric ID, Basra SS, et al. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol. 2011;57:688-96.
- 260. Thiele H, Lauer B, Hambrecht R, et al. Reversal of cardiogenic shock by percutaneous left atrial-to-femoral arterial bypass assistance. Circulation. 2001;104:2917-22.
- 261. Idelchik GM, Simpson L, Civitello AB, et al. Use of the percutaneous left ventricular assist device in patients with severe refractory cardiogenic shock as a bridge to long-term left ventricular assist device implantation. J Heart Lung Transplant. 2008;27:106-11.
- 262. Cheng JM, den Uil CA, Hoeks SE, et al. Percutaneous left ventricular assist devices vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: a meta-analysis of controlled trials. Eur Heart J. 2009;30:2102-8.
- 263. Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52:1584-8.
- 264. Burkhoff D, Cohen H, Brunckhorst C, et al. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152:469-8.
- 265. Guazzi M, Vicenzi M, Arena R, et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4:8-17.
- 266. Tedford RJ, Hemnes AR, Russell SD, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1:213-9.
- 267. Lewis GD, Shah R, Shahzad K, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116:1555-62.

- 268. Guazzi M, Samaja M, Arena R, et al. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50:2136-44.
- 269. Oliva F, Latini R, Politi A, et al. Intermittent 6-month low-dose dobutamine infusion in severe heart failure: DICE multicenter trial. Am Heart J. 1999;138:247-53.
- 270. Follath F, Cleland JG, Just H, et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet. 2002;360:196-202.
- 271. Cuffe MS, Califf RM, Adams KF, Jr., et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287:1541-7.
- 272. Felker GM, Benza RL, Chandler AB, et al. Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol. 2003;41:997-1003.
- 273. Abraham WT, Adams KF, Fonarow GC, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2005;46:57-64.
- 274. Mebazaa A, Nieminen MS, Packer M, et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA. 2007;297:1883-91.
- 275. Feldman AM, Oren RM, Abraham WT, et al. Low-dose oral enoximone enhances the ability to wean patients with ultra-advanced heart failure from intravenous inotropic support: results of the oral enoximone in intravenous inotrope-dependent subjects trial. Am Heart J. 2007;154:861-9.
- 276. Elkayam U, Tasissa G, Binanay C, et al. Use and impact of inotropes and vasodilator therapy in hospitalized patients with severe heart failure. Am Heart J. 2007;153:98-104.
- 277. Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med. 1991;325:1468-75.
- 278. O'Connor CM, Gattis WA, Uretsky BF, et al. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1999;138:78-86.
- 279. Hershberger RE, Nauman D, Walker TL, et al. Care processes and clinical outcomes of continuous outpatient support with inotropes (COSI) in patients with refractory endstage heart failure. J Card Fail. 2003;9:180-7.
- 280. Gorodeski EZ, Chu EC, Reese JR, et al. Prognosis on chronic dobutamine or milrinone infusions for stage D heart failure. Circ Heart Fail. 2009;2:320-4.
- 281. Metra M, Eichhorn E, Abraham WT, et al. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur Heart J. 2009;30:3015-26.
- 282. Brozena SC, Twomey C, Goldberg LR, et al. A prospective study of continuous intravenous milrinone therapy for status IB patients awaiting heart transplant at home. J Heart Lung Transplant. 2004;23:1082-6.
- 283. Aranda JM, Jr., Schofield RS, Pauly DF, et al. Comparison of dobutamine versus milrinone therapy in hospitalized patients awaiting cardiac transplantation: a prospective, randomized trial. Am Heart J. 2003;145:324-9.
- 284. Stevenson LW, Miller LW, Desvigne-Nickens P, et al. Left ventricular assist device as destination for patients undergoing intravenous inotropic therapy: a subset analysis from REMATCH (Randomized Evaluation of Mechanical Assistance in Treatment of Chronic Heart Failure). Circulation. 2004;110:975-81.
- 285. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435-43.
- 286. Rogers JG, Butler J, Lansman SL, et al. Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: results of the INTrEPID Trial. J Am Coll Cardiol. 2007;50:741-7.
- 287. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241-51.
- 288. Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312-21.
- 289. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885-96.
- 290. Lahpor J, Khaghani A, Hetzer R, et al. European results with a continuous-flow ventricular assist device for advanced heart-failure patients. Eur J Cardiothorac Surg. 2010;37:357-61.
- 291. Starling RC, Naka Y, Boyle AJ, et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011;57:1890-8.
- 292. University of Alabama Birmingham. INTERMACS Manual of Operations V2.3. User's Guide 2008: Available at: http://www.uab.edu/ctsresearch/intermacs/Document%20Library/Site%20Users%20Guide%20v2.3%20update%2006052009.pdf . Accessed October 18, 2011.
- 293. Grady KL, Meyer PM, Dressler D, et al. Longitudinal change in quality of life and impact on survival after left ventricular assist device implantation. Ann Thorac Surg. 2004;77:1321-7.
- 294. Elhenawy AM, Algarni KD, Rodger M, et al. Mechanical circulatory support as a bridge to transplant candidacy. J Card Surg. 2011;26:542-7.

- 295. Alba AC, Rao V, Ross HJ, et al. Impact of fixed pulmonary hypertension on post-heart transplant outcomes in bridge-to-transplant patients. J Heart Lung Transplant. 2010;29:1253-8.
- 296. Nair PK, Kormos RL, Teuteberg JJ, et al. Pulsatile left ventricular assist device support as a bridge to decision in patients with end-stage heart failure complicated by pulmonary hypertension. J Heart Lung Transplant. 2010;29:201-8.
- 297. Greenberg B, Czerska B, Delgado RM, et al. Effects of continuous aortic flow augmentation in patients with exacerbation of heart failure inadequately responsive to medical therapy: results of the Multicenter Trial of the Orqis Medical Cancion System for the Enhanced Treatment of Heart Failure Unresponsive to Medical Therapy (MOMENTUM). Circulation. 2008;118:1241-9.
- 298. Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26:1276-83.
- 299. Boyle AJ, Ascheim DD, Russo MJ, et al. Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant. 2011;30:402-7.
- 300. Lietz K, Long JW, Kfoury AG, et al. Impact of center volume on outcomes of left ventricular assist device implantation as destination therapy: analysis of the Thoratec HeartMate Registry, 1998 to 2005. Circ Heart Fail. 2009;2:3-10.
- 301. Holman WL, Kormos RL, Naftel DC, et al. Predictors of death and transplant in patients with a mechanical circulatory support device: a multi-institutional study. J Heart Lung Transplant. 2009;28:44-50.
- 302. John R, Pagani FD, Naka Y, et al. Post-cardiac transplant survival after support with a continuous-flow left ventricular assist device: impact of duration of left ventricular assist device support and other variables. J Thorac Cardiovasc Surg. 2010;140:174-81.
- 303. Cleveland JC, Jr., Naftel DC, Reece TB, et al. Survival after biventricular assist device implantation: an analysis of the Interagency Registry for Mechanically Assisted Circulatory Support database. J Heart Lung Transplant. 2011;30:862-9.
- 304. Rogers JG, Aaronson KD, Boyle AJ, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55:1826-34.
- 305. Allen JG, Weiss ES, Schaffer JM, et al. Quality of life and functional status in patients surviving 12 months after left ventricular assist device implantation. J Heart Lung Transplant. 2010;29:278-85.
- 306. Lund LH, Aaronson KD, Mancini DM. Predicting survival in ambulatory patients with severe heart failure on beta-blocker therapy. Am J Cardiol. 2003;92:1350-4.
- 307. Butler J, Khadim G, Paul KM, et al. Selection of patients for heart transplantation in the current era of heart failure therapy. J Am Coll Cardiol. 2004;43:787-93.
- 308. Arena R, Myers J, Aslam SS, et al. Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison. Am Heart J. 2004;147:354-60.
- 309. Chase P, Arena R, Guazzi M, et al. Prognostic usefulness of the functional aerobic reserve in patients with heart failure. Am Heart J. 2010;160:922-7.
- 310. Ferreira AM, Tabet JY, Frankenstein L, et al. Ventilatory efficiency and the selection of patients for heart transplantation. Circ Heart Fail. 2010;3:378-86.
- 311. Goda A, Lund LH, Mancini D. The Heart Failure Survival Score outperforms the peak oxygen consumption for heart transplantation selection in the era of device therapy. J Heart Lung Transplant. 2011;30:315-25.
- 312. Grady KL, Jalowiec A, White-Williams C. Improvement in quality of life in patients with heart failure who undergo transplantation. J Heart Lung Transplant. 1996;15:749-57.
- 313. Kobashigawa JA, Leaf DA, Lee N, et al. A controlled trial of exercise rehabilitation after heart transplantation. N Engl J Med. 1999;340:272-7.
- 314. Grady KL, Jalowiec A, White-Williams C. Predictors of quality of life in patients at one year after heart transplantation. J Heart Lung Transplant. 1999;18:202-10.
- 315. Salyer J, Flattery MP, Joyner PL, et al. Lifestyle and quality of life in long-term cardiac transplant recipients. J Heart Lung Transplant. 2003;22:309-21.
- 316. Habedank D, Ewert R, Hummel M, et al. Changes in exercise capacity, ventilation, and body weight following heart transplantation. Eur J Heart Fail. 2007;9:310-6.
- 317. Grady KL, Naftel DC, Young JB, et al. Patterns and predictors of physical functional disability at 5 to 10 years after heart transplantation. J Heart Lung Transplant. 2007;26:1182-91.
- 318. Bull DA, Karwande SV, Hawkins JA, et al. Long-term results of cardiac transplantation in patients older than sixty years. UTAH Cardiac Transplant Program. J Thorac Cardiovasc Surg. 1996;111:423-7.
- 319. Deng MC, De Meester JM, Smits JM, et al. Effect of receiving a heart transplant: analysis of a national cohort entered on to a waiting list, stratified by heart failure severity. Comparative Outcome and Clinical Profiles in Transplantation (COCPIT) Study Group. BMJ. 2000;321:540-5.
- 320. Klotz S, Deng MC, Hanafy D, et al. Reversible pulmonary hypertension in heart transplant candidates--pretransplant evaluation and outcome after orthotopic heart transplantation. Eur J Heart Fail. 2003;5:645-53.
- 321. Kirklin JK, Naftel DC, Bourge RC, et al. Evolving trends in risk profiles and causes of death after heart transplantation: a ten-year multi-institutional study. J Thorac Cardiovasc Surg. 2003;125:881-90.
- 322. Radovancevic B, McGiffin DC, Kobashigawa JA, et al. Retransplantation in 7,290 primary transplant patients: a 10-year multi-institutional study. J Heart Lung Transplant. 2003;22:862-8.

- 323. Kuppahally SS, Valantine HA, Weisshaar D, et al. Outcome in cardiac recipients of donor hearts with increased left ventricular wall thickness. Am J Transplant. 2007;7:2388-95.
- 324. Rasmusson KD, Stehlik J, Brown RN, et al. Long-term outcomes of cardiac transplantation for peri-partum cardiomyopathy: a multiinstitutional analysis. J Heart Lung Transplant. 2007;26:1097-104.
- 325. Wu RS, Gupta S, Brown RN, et al. Clinical outcomes after cardiac transplantation in muscular dystrophy patients. J Heart Lung Transplant. 2010;29:432-8.
- 326. Shuhaiber JH, Moore J, Dyke DB. The effect of transplant center volume on survival after heart transplantation: a multicenter study. J Thorac Cardiovasc Surg. 2010;139:1064-9.
- 327. Finfer S, Chittock DR, Su SY, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283-97.
- 328. Kosiborod M, Inzucchi SE, Spertus JA, et al. Elevated admission glucose and mortality in elderly patients hospitalized with heart failure. Circulation. 2009;119:1899-907.
- 329. Flores-Le Roux JA, Comin J, Pedro-Botet J, et al. Seven-year mortality in heart failure patients with undiagnosed diabetes: an observational study. Cardiovasc Diabetol. 2011;10:39.
- 330. Berry C, Brett M, Stevenson K, et al. Nature and prognostic importance of abnormal glucose tolerance and diabetes in acute heart failure. Heart. 2008;94:296-304.
- 331. Garty M, Cohen E, Zuchenko A, et al. Blood transfusion for acute decompensated heart failure--friend or foe? Am Heart J. 2009;158:653-8.
- 332. Singer AJ, Emerman C, Char DM, et al. Bronchodilator therapy in acute decompensated heart failure patients without a history of chronic obstructive pulmonary disease. Ann Emerg Med. 2008;51:25-34.
- 333. Maak CA, Tabas JA, McClintock DE. Should acute treatment with inhaled beta agonists be withheld from patients with dyspnea who may have heart failure? J Emerg Med. 2011;40:135-45.
- 334. Logeart D, Tabet JY, Hittinger L, et al. Transient worsening of renal function during hospitalization for acute heart failure alters outcome. Int J Cardiol. 2008;127:228-32.
- 335. Smith GL, Lichtman JH, Bracken MB, et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006;47:1987-96.
- 336. Metra M, Nodari S, Parrinello G, et al. Worsening renal function in patients hospitalised for acute heart failure: clinical implications and prognostic significance. Eur J Heart Fail. 2008;10:188-95.
- 337. Cowie MR, Komajda M, Murray-Thomas T, et al. Prevalence and impact of worsening renal function in patients hospitalized with decompensated heart failure: results of the prospective outcomes study in heart failure (POSH). Eur Heart J. 2006;27:1216-22.
- 338. Komukai K, Ogawa T, Yagi H, et al. Decreased renal function as an independent predictor of re-hospitalization for congestive heart failure. Circ J. 2008;72:1152-7.
- 339. Akhter MW, Aronson D, Bitar F, et al. Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am J Cardiol. 2004;94:957-60.
- 340. Nohria A, Hasselblad V, Stebbins A, et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51:1268-74.
- 341. Krumholz HM, Chen YT, Vaccarino V, et al. Correlates and impact on outcomes of worsening renal function in patients > or =65 years of age with heart failure. Am J Cardiol. 2000;85:1110-3.
- 342. Forman DE, Butler J, Wang Y, et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. 2004;43:61-7.
- 343. Klein L, Massie BM, Leimberger JD, et al. Admission or changes in renal function during hospitalization for worsening heart failure predict postdischarge survival: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circ Heart Fail. 2008;1:25-33.
- 344. Colucci WS, Elkayam U, Horton DP, et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med. 2000;343:246-53.
- 345. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA. 2002;287:1531-40.
- 346. Peacock WF, Holland R, Gyarmathy R, et al. Observation unit treatment of heart failure with nesiritide: results from the proaction trial. J Emerg Med. 2005;29:243-52.
- 347. Sackner-Bernstein JD, Skopicki HA, Aaronson KD. Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation. 2005;111:1487-91.
- 348. Sackner-Bernstein JD, Kowalski M, Fox M, et al. Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA. 2005;293:1900-5.
- 349. Witteles RM, Kao D, Christopherson D, et al. Impact of nesiritide on renal function in patients with acute decompensated heart failure and pre-existing renal dysfunction a randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol. 2007;50:1835-40.
- 350. Yancy CW, Singh A. Potential applications of outpatient nesiritide infusions in patients with advanced heart failure and concomitant renal insufficiency (from the Follow-Up Serial Infusions of Nesiritide [FUSION I] trial). Am J Cardiol. 2006;98:226-9.
- 351. Yancy CW, Krum H, Massie BM, et al. Safety and efficacy of outpatient nesiritide in patients with advanced heart failure: results of the Second Follow-Up Serial Infusions of Nesiritide (FUSION II) trial. Circ Heart Fail. 2008;1:9-16.
- 352. O'Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32-43.

- 353. Fonarow GC, Abraham WT, Albert NM, et al. Influence of beta-blocker continuation or withdrawal on outcomes in patients hospitalized with heart failure: findings from the OPTIMIZE-HF program. J Am Coll Cardiol. 2008;52:190-9.
- 354. Fonarow GC, Abraham WT, Albert NM, et al. Dosing of beta-blocker therapy before, during, and after hospitalization for heart failure (from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure). Am J Cardiol. 2008;102:1524-9.
- 355. Gattis WA, O'Connor CM, Gallup DS, et al. Predischarge initiation of carvedilol in patients hospitalized for decompensated heart failure: results of the Initiation Management Predischarge: Process for Assessment of Carvedilol Therapy in Heart Failure (IMPACT-HF) trial. J Am Coll Cardiol. 2004;43:1534-41.
- 356. Metra M, Torp-Pedersen C, Cleland JG, et al. Should beta-blocker therapy be reduced or withdrawn after an episode of decompensated heart failure? Results from COMET. Eur J Heart Fail. 2007;9:901-9.
- 357. Fonarow GC, Abraham WT, Albert NM, et al. Prospective evaluation of beta-blocker use at the time of hospital discharge as a heart failure performance measure: results from OPTIMIZE-HF. J Card Fail. 2007;13:722-31.
- 358. Fonarow GC, Abraham WT, Albert NM, et al. Carvedilol use at discharge in patients hospitalized for heart failure is associated with improved survival: an analysis from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J. 2007;153:82-11.
- 359. Thilly N, Briancon S, Juilliere Y, et al. Improving ACE inhibitor use in patients hospitalized with systolic heart failure: a cluster randomized controlled trial of clinical practice guideline development and use. J Eval Clin Pract. 2003;9:373-82.
- 360. Hamaguchi S, Kinugawa S, Tsuchihashi-Makaya M, et al. Spironolactone use at discharge was associated with improved survival in hospitalized patients with systolic heart failure. Am Heart J. 2010;160:1156-62.
- 361. Ko DT, Juurlink DN, Mamdani MM, et al. Appropriateness of spironolactone prescribing in heart failure patients: a population-based study. J Card Fail. 2006;12:205-10.
- 362. Dhaliwal AS, Bredikis A, Habib G, et al. Digoxin and clinical outcomes in systolic heart failure patients on contemporary background heart failure therapy. Am J Cardiol. 2008;102:1356-60.
- 363. Ahmed A, Allman RM, DeLong JF. Inappropriate use of digoxin in older hospitalized heart failure patients. J Gerontol A Biol Sci Med Sci. 2002;57:M138-M143.
- 364. Krantz MJ, Ambardekar AV, Kaltenbach L, et al. Patterns and predictors of evidence-based medication continuation among hospitalized heart failure patients (from Get With the Guidelines-Heart Failure). Am J Cardiol. 2011;107:1818-23.
- 365. Fonarow GC, Gheorghiade M, Abraham WT. Importance of in-hospital initiation of evidence-based medical therapies for heart failure-a review. Am J Cardiol. 2004;94:1155-60.
- 366. Fonarow GC, Yancy CW, Heywood JT. Adherence to heart failure quality-of-care indicators in US hospitals: analysis of the ADHERE Registry. Arch Intern Med. 2005;165:1469-77.
- 367. Fonarow GC, Abraham WT, Albert NM, et al. Association between performance measures and clinical outcomes for patients hospitalized with heart failure. JAMA. 2007;297:61-70.
- 368. Lappe JM, Muhlestein JB, Lappe DL, et al. Improvements in 1-year cardiovascular clinical outcomes associated with a hospital-based discharge medication program. Ann Intern Med. 2004;141:446-53.
- 369. Weintraub NL, Collins SP, Pang PS, et al. Acute heart failure syndromes: emergency department presentation, treatment, and disposition: current approaches and future aims: a scientific statement from the American Heart Association. Circulation. 2010;122:1975-96.
- 370. Roy D, Talajic M, Dubuc M, et al. Atrial fibrillation and congestive heart failure. Curr Opin Cardiol. 2009;24:29-34.
- 371. Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347:1825-33.
- 372. Eikelboom JW, Wallentin L, Connolly SJ, et al. Risk of bleeding with 2 doses of dabigatran compared with warfarin in older and younger patients with atrial fibrillation: an analysis of the randomized evaluation of long-term anticoagulant therapy (RE-LY) trial. Circulation. 2011;123:2363-72.
- 373. Fox KA, Piccini JP, Wojdyla D, et al. Prevention of stroke and systemic embolism with rivaroxaban compared with warfarin in patients with non-valvular atrial fibrillation and moderate renal impairment. Eur Heart J. 2011;32:2387-94.
- 374. Sochalski J, Jaarsma T, Krumholz HM, et al. What works in chronic care management: the case of heart failure. Health Aff (Millwood). 2009;28:179-89.
- 375. Laramee AS, Levinsky SK, Sargent J, et al. Case management in a heterogeneous congestive heart failure population: a randomized controlled trial. Arch Intern Med. 2003;163:809-17.
- 376. Peters-Klimm F, Campbell S, Hermann K, et al. Case management for patients with chronic systolic heart failure in primary care: the HICMan exploratory randomised controlled trial. Trials. 2010;11:56.
- 377. Correia J, Silva FF, Roque C, et al. Impact of a specialized outpatient heart failure follow-up program on hospitalization frequency and functional status of patients with advanced heart failure. Rev Port Cardiol. 2007;26:335-43.
- 378. Conte MR, Mainardi L, Iazzolino E, et al. [Outpatient medical and nurse management program in patients with chronic heart failure in a large territorial area in Piedmont. Four years of follow-up]. Ital Heart J Suppl. 2005;6:812-20.

- 379. Clark RA, Inglis SC, McAlister FA, et al. Telemonitoring or structured telephone support programmes for patients with chronic heart failure: systematic review and meta-analysis. BMJ. 2007;334:942.
- 380. Inglis SC, Clark RA, McAlister FA, et al. Structured telephone support or telemonitoring programmes for patients with chronic heart failure. Cochrane Database Syst Rev. 2010;CD007228.
- 381. Riegel B, Carlson B, Kopp Z, et al. Effect of a standardized nurse case-management telephone intervention on resource use in patients with chronic heart failure. Arch Intern Med. 2002;162:705-12.
- 382. Riegel B, Carlson B, Glaser D, et al. Randomized controlled trial of telephone case management in Hispanics of Mexican origin with heart failure. J Card Fail. 2006;12:211-9.
- 383. Chaudhry SI, Phillips CO, Stewart SS, et al. Telemonitoring for patients with chronic heart failure: a systematic review. J Card Fail. 2007;13:56-62.
- 384. Fonarow GC, Heywood JT, Heidenreich PA, et al. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2007;153:1021-8.
- 385. Fonarow GC, Albert NM, Curtis AB, et al. Improving evidence-based care for heart failure in outpatient cardiology practices: primary results of the Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting (IMPROVE HF). Circulation. 2010;122:585-96.

2013 ACCF/AHA Guideline for the Management of Heart Failure—ONLINE AUTHOR LISTING OF COMPREHENSIVE RELATIONSHIPS WITH INDUSTRY AND OTHERS (May 2013)

Committee Member	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational or Other Financial Benefit	Expert Witness
Clyde W. Yancy, Chair	Northwestern University—Chief, Division of Cardiology and Magerstadt Professor of Medicine	None	None	None	None	• AHA†	None
Mariell Jessup, Vice Chair	University of Pennsylvania—Professor of Medicine	None	None	None	 Amgen† Celladon† HeartWare† 	• AHA† • HFSA†	None
Biykem Bozkurt	Michael E. DeBakey VA Medical Center—The Mary and Gordon Cain Chair and Professor of Medicine	None	None	None	• NIH*	 Amgen† Corthera NIH† Novartis† 	None
Javed Butler	Emory Healthcare— Director of Heart Failure Research; Emory University School of Medicine—Professor of Medicine	None	None	None	None	 Amgen Biotronic Cardiomems Corthera FoldRx iCoapsys NIH* Johnson & Johnson — ASCEND-HF Medtronic Rule 90 Thoratec World Heart Inc. 	None
Donald E. Casey, Jr.	Clinically Integrated Physician Network, NYU Langone Medical Center—Vice President and Medical Director	None	None	None	None	None	None

Mark H. Drazner	University of Texas Southwestern Medical Center—Professor, Internal Medicine	• Optum Health	None	None	• HeartWare† • NIH/NHLBI*	 American Heart Journal Journal of Cardiac Failure Medtronic Thoratec* 	None
Gregg C. Fonarow	Director Ahmanson— UCLA Cardiomyopathy Center; Co-Chief— UCLA Division of Cardiology	• Medtronic • Novartis*	None	None	• NHLBI* (Co-I) • Novartis*	 ACCF/AHA Data Standards Committee ACTION Registry GWTG—Steering Chair GWTG—Steering Committee Medtronic— IMPROVE HF† 	None
Stephen A. Geraci	Quillen College of Medicine/East Tennessee State University— Chairman of Internal Medicine	None	None	None	None	None	None
Tamara Horwich	Ahmanson—UCLA Cardiomyopathy Center—Assistant Professor of Medicine, Cardiology	None	None	• EP Dynamics*	NHLBI* Iris Cantor-UCLA Women's Health Center UCLA Clinical and Transitional Science Institute*	None	None
James L. Januzzi	Harvard Medical School—Associate Professor of Medicine; Massachusetts General Hospital—Director, Cardiac Intensive Care Unit	 Critical Diagnostics* Roche Diagnostics* 	None	None	 Critical Diagnostics* Dade-Boehring/ Siemens* Roche Diagnostics* 	None	None
Maryl R. Johnson	University of Wisconsin–Madison– Professor of Medicine, Director, Heart Failure	CareMark Transmedics (Clinical Trials Committee)	None	None	None	 American Society of Transplantation- Current President NIH—Heart Failure 	None

	and Transplantation					Clinical Trials Network (DSMB) • UNOS Thoracic Organ Committee	
Edward K. Kasper	Johns Hopkins Hospital— E. Cowles Andrus Professor in Cardiology Director, Clinical Cardiology	None	None	None	None	None	None
Wayne C. Levy	University of Washington—Professor of Medicine, Division of Cardiology	 Boehringer Ingelheim Cardiac Dimensions* Thomson Reuters 	• GlaxoSmithKli ne	• Amgen—RED-HF • HeartWare* • NIH-DCRI	 Amgen—RED- HF* CardioMems— CHAMPION Epocrates General Electric Johnson & Johnson/Scios— ASCEND HF 	None	None
Frederick A. Masoudi	University of Colorado, Denver—Associate Professor of Medicine, Division of Cardiology	• Axio Research*	None	None	 ACC* AHA AHRQ Massachusetts Medical Society NHLBI* Oklahoma Foundation for Medical Quality* 	None	
Patrick E. McBride	University of Wisconsin School of Medicine and Public Health—Professor of Medicine and Family Medicine, Associate Dean for Students, Associate Director, Preventive Cardiology	None	None	None	None	• NIH-NIDDK— LOOK AHEAD (DSMB)	None
John J. V. McMurray	University of Glasgow, Scotland, BHF Glasgow Cardiovascular Research Center—Professor of	None	None	None	GlaxoSmithKline* Novartis Oxford/Duke University—	• Novartis— ALTITUDE/ PARADIGM-HF	None

Judith E.	Medical Cardiology	None	None	None	EXSCEL (DSMB) • Oxford/Duke University— TECOS (DSMB) • Roche— ALECARDIO (DSMB) • NHLBI—PRIDE	None	None
Mitchell	Medical Center— Director, Heart Failure Center; Associate Professor of Medicine						
Pamela N. Peterson	University of Colorado, Denver Health Medical Center—Associate Professor of Medicine, Division of Cardiology	None	None	None	None	None	None
Barbara Riegel	University of Pennsylvania School of Nursing—Professor	None	None	None	• AHA† • NIH (PI)*	None	None
Flora Sam	Boston University School of Medicine, Whitaker Cardiovascular Institute— Associate Professor of Medicine, Division of Cardiology/ Cardiomyopathy Program	None	None	None	None	None	None
Lynne W. Stevenson	Brigham and Women's Hospital Cardiovascular Division—Director, Cardiomyopathy and Heart Failure Program	None	None	None	• NHLBI† • NHLBI— INTERMACS†	• Circulation Heart Failure (Senior Associate Editor)†	None
W.H. Wilson Tang	Cleveland Clinic Foundation—Associate Professor of Medicine, Research Director for Heart Failure/Transplant	Medtronic St. Jude Medical*	None	• NIH*	 Abbott Laboratories Asahi Kasei FoldRx Medtronic St. Jude Medical 	• HFSA	None
Emily J. Tsai	Temple University School	None	None	None	AHA Scientist	None	None

	of Medicine—Assistant Professor of Medicine, Cardiology				Development Grant* • NIH* • NHLBI		
Bruce L. Wilkoff	Cleveland Clinic— Director, Cardiac Pacing and Tachyarrhythmia Devices; Director, Clinical EP Research	None	None	None	 Biotronic Boston Scientific Medtronic St. Jude Medical 	None	None

This table represents all healthcare relationships of committee members with industry and other entities that were reported by authors, including those not deemed to be relevant to this document, at the time this document was under development. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \geq 5% of the voting stock or share of the business entity, or ownership of \geq \$10 000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person's gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Please refer to <u>http://www.cardiosource.org/Science-And-Quality/Practice-Guidelines-and-Quality-Standards/Relationships-With-Industry-Policy.aspx</u> for definitions of disclosure categories or additional information about the ACCF/AHA Disclosure Policy for Writing Committees.

*Indicates significant relationship.

†No financial benefit.

ACC indicates American College of Cardiology; AHA, American Heart Association; AHEAD, Action For Health in Diabetes; AHRQ, Agency for Healthcare Research & Quality; ALECARDIO, Cardiovascular Outcomes Study to Evaluate the Potential of Aleglitazar to Reduce Cardiovascular Risk in Patients With a Recent Acute Coronary Syndrome Event and Type 2 Diabetes Mellitus; ALTITUDE, Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints; ASCEND-HF, Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure; CHAMPION, CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Patients; DCRI, Department of Clinical Research Informatics; DSMB, Data Safety Monitoring Board; EP, electrophysiology; EXSCEL, Exenatide Study of Cardiovascular Event Lowering; GWTG, Get With The Guidelines; HF, heart failure; HFSA, Heart Failure Society of America; IMPROVE HF, Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; NHLBI, National Heart, Lung, and Blood Institute; NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases; NIH, National Institute of Health; NYU, New York University; PARADIGM-HF, Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Patients With Heart Failure; PRIDE, Prolonging Remission in Depressed Elderly; SUNY, State University of New York; TECOS, Trial Evaluating Cardiovascular Outcomes with Sitagliptin in Patients with Type 2 Diabetes; UCLA, University of California, Los Angeles; UNOS, United Network for Organ Sharing; and VA, veterans affairs.