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BACKGROUND: As technology enables new and increas-
ingly complex laboratory tests, test utilization presents a
growing challenge for healthcare systems. Clinical deci-
sion support (CDS) refers to digital tools that present
providers with clinically relevant information and rec-
ommendations, which have been shown to improve test
utilization. Nevertheless, individual CDS applications
often fail, and implementation remains challenging.

CONTENT: We review common classes of CDS tools
grounded in examples from the literature as well as our
own institutional experience. In addition, we present a
practical framework and specific recommendations for
effective CDS implementation.

SUMMARY: CDS encompasses a rich set of tools that
have the potential to drive significant improvements in
laboratory testing, especially with respect to test utiliza-
tion. Deploying CDS effectively requires thoughtful de-
sign and careful maintenance, and structured processes
focused on quality improvement and change manage-
ment play an important role in achieving these goals.

Introduction

Improving test utilization is a key healthcare priority, as
both the underuse and overuse of laboratory tests lead
to diagnostic errors and unnecessary costs (1–7). The
underlying drivers of inappropriate testing are complex
and involve provider education, rapid advances in tech-
nology, and professional incentives (8, 9). Addressing
these effectively requires a comprehensive strategy incor-
porating multiple tools, and, as healthcare data are in-
creasingly digital, approaches that leverage information
technology are of particular interest (10–13).

Clinical decision support (CDS) refers to a collec-
tion of tools that layer clinically relevant information
over standard healthcare data interfaces—including

electronic health records (EHRs) and computerized
physician order entry (CPOE) systems—to enhance pa-
tient care and improve clinical workflows (14).
Common examples include critical value alerts, medi-
cation interaction warnings, and duplicate order
notifications. CDS has been successfully deployed in
diverse clinical settings, ranging from outpatient clin-
ics to intensive care units (15–18). In addition, CDS
has been shown to improve test utilization throughout
laboratory medicine (19–24). Nevertheless, many
CDS interventions fail to meet their objectives or have
unintended consequences, and understanding these
failure modes is critical for designing effective applica-
tions (25–27).

In this review, we describe the basic structure of
common CDS tools as well as the processes underlying
successful implementation. By building expert knowl-
edge directly into healthcare data interfaces, well-
designed CDS has the potential to play a central role in
improving test utilization. In addition, given their exper-
tise in both quality improvement and quality assurance,
laboratory professionals have an opportunity to be lead-
ers in this space (28).

Overview of CDS Tools

While the architectures of different CDS interventions
vary, they generally consist of a user interface, a clinical
database, and a knowledge base (13). The most com-
mon user interfaces are EHRs and CPOEs, although
some CDS tools are implemented as separate web or
mobile applications and/or communicate with users via
text messages or e-mail (29). The clinical database is
typically the EHR, which allows the system to execute
tasks based on patient-specific information. The knowl-
edge base refers to the rules that determine how the sys-
tem responds to user actions and patient data streams.
Currently, most knowledge bases consist of rules that
are explicitly programmed by human experts.
Alternatively, there is growing interest in using machine
learning to extract clinically relevant patterns from large
healthcare datasets to inform decision making.
Conventionally, these two approaches (manual vs auto-
mated) are designated “knowledge-based” and “non-
knowledge–based” CDS.

In practice, CDS interprets user interactions with
the interface in the context of patient-specific data and
executes predefined actions based on the logic encoded

Department of Pathology and Immunology, Washington University School of Medicine,
St. Louis, MO, USA.

*Address correspondence to this author at: Campus Box 8118, 660 S. Euclid Avenue,
St. Louis, MO 63110, USA. Fax 314-362-1461; e-mail rjackups@wustl.edu.

Received April 22, 2021; accepted August 24, 2021.
DOI: 10.1093/clinchem/hvab201

VC American Association for Clinical Chemistry 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com. 402

Clinical Chemistry 68:3 Review402–412 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/clinchem

/article/68/3/402/6453839 by AAC
C

 M
em

ber Access user on 07 M
arch 2022

https://orcid.org/0000-0001-7788-3655
mailto:rjackups@wustl.edu


in the knowledge base. In general, CDS actions present
providers with clinically relevant information, which can
be displayed passively or require additional user interac-
tion. Regarding applications, CDS tools can be broadly
grouped into those related to data entry and ordering,
data review, and provider education (Table 1) (14).

DATA ENTRY AND ORDERING

While CDS is commonly associated with reactive tools
(e.g., alerts), some of the most effective interventions oc-
cur through the design and organization of the interface.
For example, electronic test menus often contain non-
standard names or abbreviations as well as tests with

Table 1. Common CDS interventions.

Group Tool Strengths Limitations

Data entry and

ordering

Test names and

aliases

Integrates into workflow; high impact Lack of national standards for

identifiers

Preference lists Integrates into workflow; high impact Risk of adding inappropriate

orders

Test menu search Integrates into workflows; high impact Non-alphanumeric order can

make search results difficult

to navigate

Order sets Integrates into workflow; promotes

standardization and appropriate use

Fixed components; risk that

design errors lead to

inappropriate use

Diagnostic algorithms Integrates into workflow; promotes

standardization and appropriate

use; promotes interpretability and

cost-effectiveness

Increased turnaround time;

providers may desire tests

run in parallel

Order alerts Immediate intervention for errors that

impact patient safety

Disrupts workflow; risk of alert

fatigue; can lead to reactive

behavior

Documentation

templates

Integrates into workflow; promotes

standardization; limits transcrip-

tional errors

Risk of overreliance on

templates

Data review Flowsheets Organizes raw data clearly to facilitate

efficient review; trends over time

Complex tests may require cus-

tom displays

Dashboards Summarizes raw data clearly to facili-

tate efficient monitoring

Fixed components

Result alerts Immediate notification of results

impacting patient safety; promotes

appropriate follow-up

Risk of alert fatigue, false

positives

Provider

education

Test information Promotes appropriate use May be ignored

Practice guidelines Promotes appropriate use May be ignored

Provider feedback Provides quantitative insight into or-

dering habits; enables targeted

education

May be ignored
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similar names, both of which disrupt clinical workflows
and lead to incorrect orders (30). These sources of
ambiguity can be resolved by assigning tests names that
are clear, descriptive, and distinct. In addition, many
CPOEs allow frequently used tests to be collected in
facility- or provider-specific preference lists for conve-
nience, but this can exacerbate inappropriate orders if
the wrong tests are inadvertently added. For example,
one study found that simply removing 25-hydroxyvita-
min D from non-specialist preference lists decreased the
rate of inappropriate orders from 44% to 30% over a
6-month period (31). Similarly, the order in which tests
appear in search results can have a significant impact on
test utilization, as shown by a study demonstrating that
switching the default order of 1,25-dihydroxyvitamin D
and 25-hydroxyvitamin D reduced 1,25-dihydroxyvita-
min D test volume by 90% (32). In general, optimizing
how orders are presented to users is a powerful (and
underused) approach for improving test utilization.

CDS tools designed to assist with test ordering of-
ten require the collection of additional patient informa-
tion, which can be achieved by building structured data
entry into individual orders. At our institution, this
type of CDS played a critical role in our response to
the COVID-19 pandemic. The rapid emergence of

SARS-CoV-2 in early 2020 required many laboratories,
including ours, to validate multiple molecular testing
platforms (e.g., batched and random-access tests) in
parallel to accommodate massive demand in the face of
global supply constraints. Accordingly, we included a
series of multiple-choice questions in our COVID-19
RNA order to collect information about patient symp-
toms, exposures, and specific indications to route speci-
mens to the appropriate assay format (Fig. 1). This same
approach has been used to promote appropriate test
utilization in other settings. For example, requiring pro-
viders to enter a clinical risk score (4Ts) when ordering
anti-heparin/platelet factor 4 antibody tests was found
to reduce inappropriate testing for heparin-induced
thrombocytopenia from 66% to 56% (33). Likewise,
including questions about patient presentation and
risk factors in orders for Clostridium difficile nucleic
acid testing was shown to reduce overall test volume by
41% (34).

Another CDS tool that can be used to structure the
ordering process is order sets, which combine orders for
multiple tests in selectable templates based on patient
presentation (e.g., chest pain), diagnosis (e.g., heart fail-
ure), or events (e.g., hospital admission). Order sets are
a highly effective form of CDS that integrate smoothly

Fig. 1. COVID-19 RNA order template.
An order template for COVID-19 molecular testing (designed in the Epic electronic health record at our institution) collects pa-
tient information to route specimens to appropriate assay formats. At the time of the order build (May 2020), a limited number
of random-access COVID-19 tests were available and reserved for urgent indications; all other specimens were directed to
batched platforms.
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into clinical workflows to promote standardized care
and appropriate test utilization. For example, imple-
menting an order set for patients presenting to the emer-
gency department in septic shock was shown to improve
antibiotic administration and fluid resuscitation, leading
to significant decreases in mortality and length of stay
(35). In addition, a recent randomized controlled trial of
nearly 10 000 primary care patients showed that using
order sets for a variety of common indications reduced
inappropriate tests from 62% to 42% (36).
Importantly, the specific tests included in order tem-
plates—and which elements are pre-selected—are pow-
erful drivers of provider behavior, meaning that order
sets must be designed carefully to avoid amplifying
undesired practices (37).

An alternative approach to combining test orders is
to offer them via diagnostic algorithms (or cascades),
in which tests are performed in series depending on the
results at each step. As a simple example, one study de-
scribed implementing an algorithm for thyroid function
testing in which free triiodothyronine and free thyroxine
were run exclusively as reflex tests in patients with
abnormal thyroid stimulating hormone concentrations,
which led to significant reductions in inappropriate
orders for both free triiodothyronine and free thyroxine
(38). By arranging informative tests in logical sequences,
diagnostic algorithms often yield results that are easier
to interpret while promoting evidence-based utilization
and controlling costs, as opposed to the common
practice of “shotgun” testing, in which many tests are
performed simultaneously. The main limitations of
these tools are that they tend to increase turnaround
time and that providers need to be oriented to order the
algorithm instead of its component tests.

Finally, some of the most common CDS interven-
tions are alerts, which display relevant patient informa-
tion in response to specific user actions. Alerts can be
either interruptive (e.g., pop-up windows) or non-
interruptive (e.g., appear in a sidebar), and interruptive
alerts can be further subdivided into those that can be
overridden (soft stops) and those that cannot (hard
stops). In general, hard stops are more effective than soft
stops at reducing inappropriate orders, but they risk
delaying appropriate care if implemented incorrectly
(22, 39). In the context of ordering tests, alerts are
frequently used to reduce duplicate orders and promote
appropriate utilization (40, 41). For example, an alert
conditioned on patient hemoglobin concentrations
>7.0 g/dL was shown to durably reduce unnecessary
red blood cell transfusions by 25% over a 2-year period
(42). Similarly, an alert triggered by an international
normalized ratio below 1.7 was shown to reduce inap-
propriate plasma transfusions by 5% (43).

By design, interruptive alerts disrupt clinical work-
flows, which makes them particularly useful for

addressing issues that impact patient safety, such as pre-
scribing medications that are contraindicated due to al-
lergies or drug–drug interactions. However, multiple
studies have shown that the effectiveness of alerts decays
rapidly as providers encounter repeated notifications,
and the impact of “alert fatigue” has to be weighed care-
fully in the decision to deploy specific CDS interven-
tions (44, 45). In our experience, interruptive alerts
almost always impair the user experience and dilute the
impact of other interventions while failing to achieve
their goals, because the user is either too busy to process
the information, disagrees with the recommendation, or
is not the person making the decision (46). Accordingly,
we work to limit the use of interruptive alerts to rare sit-
uations in which orders are clearly inadvertent mistakes,
and we resist the impulse to substitute alerts for broader
educational initiatives.

DATA REVIEW

Another major application of CDS is ensuring that test
results are presented to providers in formats that are easy
to access and interpret. For individual tests, this means
preparing reports that are clear and complete. However,
clinical decision-making almost always requires pro-
viders to integrate results from multiple tests collected at
different time points, and tools that automate this pro-
cess are valuable. For example, flowsheets are dynamic
tables that aggregate test results and other clinical data
as they are reported, which allows providers to evaluate
trends in multiple variables over time. By default, flow-
sheets organize results into informative groups (e.g., by
laboratory section or disease process), but they also allow
users to customize the tests that are shown as well as the
time range. In addition, flowsheets often use color or
special characters (e.g., exclamation points) to highlight
abnormal or critical values, and most platforms support
both tabular and graphical displays.

Similar to flowsheets, dashboards summarize infor-
mation from multiple patients via an array of interactive
tables and graphs presented on a single page. For clinical
care, dashboards are often used to follow the status of
groups of patients in acute settings, such as emergency
departments and intensive care units (47, 48).
Dashboards can also be used to track metrics related to
hospital operations, including census, length of stay,
and readmissions (49, 50). In addition, dashboards can
be used to monitor data immediately relevant to clinical
laboratories, such as local patterns of antimicrobial resis-
tance, blood bank inventories, and workflow manage-
ment (51–54). In general, there is significant interest in
using modern data visualization to generate intuitive
summaries of healthcare data that can be used to im-
prove both patient care and hospital processes (48, 55).
However, efforts to study the impact of these tools have
not yielded clear results—primarily due to their novelty,
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lack of standardization, and lack of consensus as to how
their utility should be measured—and further research
is needed to establish how they can best be used
(56, 57).

In addition to the role of alerts in placing orders
(described above), they also contribute to data review by
notifying clinicians of important results. For example,
some institutions use automated alerts to report critical
values (58–61). Similarly, automated notifications have
been shown to improve rates of follow-up for abnormal
test results that are reported after patients have been
discharged or that are obtained in ambulatory settings,
although the effectiveness of contemporary systems is
relatively understudied (62, 63). Finally, the interpretive
comments included in individual reports can be another
powerful form of CDS. These can include rules-based
structured comments as well as patient-specific reports
prepared by laboratory experts (i.e., diagnostic manage-
ment teams) (64, 65).

PROVIDER EDUCATION

CDS can also be used to provide clinicians with general
information about how to use individual tests effec-
tively, including collection requirements, turnaround
time, and practice guidelines. Within EHR environ-
ments, these details can be displayed as part of test
orders, presented as alerts, or made available through
links to internal or external references (66).
Importantly, educational initiatives that occur outside of
EHRs (via e-mail, informational posters, or structured
didactics) also play a significant role in many CDS inter-
ventions. With respect to practice guidelines, most
specialty societies publish evidence-based recommenda-
tions for diagnosing and monitoring specific conditions.
The Choosing Wisely campaign is an ongoing project
led by the American Board of Internal Medicine and
Consumer Reports that focuses specifically on resource
utilization and recruits specialist societies to identify
overused tests in their fields (5, 67). Choosing Wisely
launched in 2012 with 5 recommendations each from
9 professional societies based in the United States,
and it has since grown into an international campaign
with nearly 700 recommendations from over 80
organizations.

One class of educational interventions that has re-
ceived significant attention is embedding price informa-
tion in ordering interfaces to improve cost awareness.
For example, one study showed that displaying
Medicare allowable fees alongside diagnostic laboratory
tests at a tertiary care hospital decreased test utilization
by approximately 9% over a 6-month period (68).
As summarized by 2 systematic reviews, the majority of
published studies report that cost display is associated
with modest reductions in test volume (69, 70).
However, nearly all of the studies included in these

reviews examined relatively short post-intervention peri-
ods (6 months or less). In contrast, a more recent multi-
center randomized controlled trial found that presenting
cost data had no impact on clinician ordering behavior
when followed over the course of a full year (71).
Additional work is therefore needed to determine if cost
display leads to durable changes in test utilization. In
general, the quality of evidence used to guide CDS im-
plementation would be enhanced by reporting the im-
pact of interventions over longer periods of time.

A complementary approach to general education
initiatives to improve test utilization is to offer providers
summaries of their ordering behavior at regular intervals,
which is known as audit and feedback. For example, a
randomized controlled trial of 85 primary care practices
showed that combining educational messages targeting 9
tests with quarterly feedback on practice-level test utiliza-
tion reduced order volumes by 10% to 15% (72).
Similarly, a study of 200 predominantly general practice
physicians found that providing individual clinicians with
summaries of their test volume compared to their peers
decreased tests per visits by approximately 8% over the
course of 2 years (73). In general, studies suggest that au-
dit and feedback approaches yield modest but durable
reductions in test orders, although their reported impact
has been variable across care settings (74).

Emerging CDS Applications

In general, the dynamic CDS interventions described
above evaluate relatively simple relationships among
small numbers of variables to determine when to fire
and what information to display. In contrast, the in-
creasing amount of data captured by EHRs, combined
with advances in computer algorithms and hardware,
are enabling CDS tools to recognize more complex
situations and perform more sophisticated tasks. The
technology driving these applications can be broadly
described as machine learning—a collection of compu-
tational and statistical methods that automate the
discovery of patterns in data. Recently, 2 classes of
machine learning models in particular, deep neural net-
works (or deep learning) and methods based on decision
trees, have demonstrated dramatic improvements in
predictive performance across multiple healthcare disci-
plines, with some studies reporting accuracy comparable
to human experts (75, 76). Importantly, while several
prominent studies have described successful applications
of machine learning in radiology and histopathology,
compelling use cases are not limited to image analysis
(77–79). Clinical applications of machine learning have
been reviewed in detail previously, but we provide the
following examples to illustrate some of the opportuni-
ties and challenges related to the use of machine learning
for CDS (80, 81).
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One of the most active areas of research in
healthcare-related machine learning is the development
of early warning systems—tools that monitor EHR data
continuously to estimate the risk of a range of clinically
significant events. For example, a recent systematic
review identified over 100 machine learning models that
have been developed to predict the onset of sepsis in
hospitalized patients (82). One of the most widely
implemented sepsis prediction models is a proprietary
tool developed by the EHR vendor Epic (Epic Systems
Corporation), which uses penalized logistic regression to
estimate the probability of sepsis from patient demo-
graphics, vital signs, laboratory data, procedures, and
comorbidities (83). If the predicted risk exceeds a set
threshold, an alert is triggered and presents an appropri-
ate order set (e.g., intravenous fluids, blood cultures,
antibiotics, lactate) if evaluation and treatment for sepsis
are clinically indicated.

Similar tools have been developed to predict the
risk of acute kidney injury. For example, investigators
from the University of Chicago developed a model
based on decision trees to estimate the probability of
inpatients developing stage 2 acute kidney injury and/or
receiving kidney replacement therapy within 48 hours
using approximately 60 clinical variables, including
demographics, vital signs, laboratory data, and nursing
assessments (84). In a prospective multicenter validation
study, this model achieved areas under the receiver oper-
ating characteristic curve (ROC AUCs) of 0.85 to 0.86
for predicting acute kidney injury and 0.95 to 0.96 for
predicting the need for renal replacement therapy (85).
In a separate study, a group from DeepMind
(DeepMind Technologies) and University College
London developed a deep learning model incorporating
620 000 variables to predict the risk of acute kidney in-
jury (any stage) within 48 hours and achieved an ROC
AUC of 0.92 in a retrospective cohort (86).

As these studies suggest, machine learning enables
rich representations of patient data that can be used to
estimate the risk of clinical deterioration and—poten-
tially—alert providers with sufficient notice to pursue
meaningful interventions. Nevertheless, implementing
these tools in practice presents several challenges, many
of which are general challenges for CDS. First, many of
the input variables used by CDS tools are assigned dif-
ferent names at different institutions or at different sites
within institutions, and these need to be harmonized to
be accessible and interpretable for both humans and
machines (e.g., by adopting standards such as Logical
Observation Identifiers Names and Codes, or LOINC)
(87). Similarly, EHRs need to implement standardized
data structures and information exchange protocols,
namely those maintained by Health Level 7
International (HL7), to support programmatic access
and interoperability. Notably, early HL7 standards,

including Clinical Document Architecture, were
organized around medical documentation and lacked
flexibility (88). More recently, HL7 developed Fast
Healthcare Interoperability Resources, which is based
on a more granular data model and optimized for web
applications (89).

In addition to building the required data infrastruc-
ture, deploying machine learning applications clinically
requires careful consideration of model stability—i.e.,
the degree to which performance varies across institu-
tions and/or over time. For example, one recent study
performed an external validation of the Epic sepsis tool
and found that the model achieved an ROC AUC of
0.63, which was significantly lower than the perfor-
mance reported by the vendor (ROC AUC 0.76 to
0.83) (83). The authors attribute this discrepancy in
part to differences in the case definition of sepsis, but
the results suggest that institutions may need to perform
local calibration and validation of machine learning
tools prior to launch (as they do for any other diagnostic
test). More generally, this study highlights the need for
independent prospective validation studies for clinical
prediction models, including those that are proprietary.
Finally, even after machine learning tools are launched,
continued monitoring is required, as the performance of
models is often influenced by factors that change over
time, such as available treatments, laboratory tests, pa-
tient demographics, and provider behavior (90).

Effective CDS Implementation

GENERAL GUIDELINES

Given the breadth and complexity of available CDS
tools, several sets of guidelines have emerged to promote
successful implementation. For example, “The Five
Rights of CDS” is a classic framework, which states that
sustainable CDS provides 1) the right information, 2) to
the right person, 3) in the right CDS intervention for-
mat, 4) through the right channel, 5) at the right time
in the workflow (91). Similarly, a group from Brigham
and Women’s Hospital in Boston, Massachusetts sum-
marized their institutional experience with the “Ten
Commandments for Effective CDS,” which emphasizes
the importance of minimizing disruptions to clinical
workflows as well as monitoring the impact of interven-
tions (92). More recently, an international collaboration
developed a CDS checklist organized around context,
content, system, and implementation domains (93).
Finally, multiple systematic reviews have sought to iden-
tify factors associated with successful CDS (94–97).
These studies have generally supported the guidelines
described above, highlighting the importance of tools
that are aligned with clinical workflows, provide action-
able recommendations, and present information at the
time of decision-making.
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Our own experience has reinforced that CDS tools
are most effective when deployed as part of broader
quality improvement initiatives focused on defined
goals. In this context, CDS is a continuous process simi-
lar to the Plan-Do-Study-Act model that was originally
developed for industrial manufacturing and has since
been widely adopted in healthcare (98–100). Building
on this analogy, the life cycle of CDS tools consists of 4
phases—design, launch, evaluate, and maintain (Fig. 2).
By identifying tasks required for implementation as well
as maintenance, this framework promotes the develop-
ment of CDS interventions that are both effective and
durable.

DESIGN

Effective CDS begins by identifying a specific problem
and investigating its causes. Common examples related
to test utilization include ordering tests that are not in-
dicated, ordering tests at inappropriate frequencies, and
failing to order related tests required to interpret results.
Determining the drivers of these behaviors often entails
working with providers to understand how tests are
used in practice, including the clinical questions they
are meant to answer, how orders are placed, who places
them, and how results are reviewed. Another key step in
the design phase is to engage stakeholders (e.g., clini-
cians, laboratory professionals, information technology
specialists, and institutional representatives) to establish
a governance structure over the clinical and technical
elements of the project (101). Notably, in addition to
directing individual projects, governance plays a key role

in prioritizing problems to address (e.g., based on pro-
vider input, risk of patient harm, system-level goals, or
threats to reimbursement). Governance structures vary
significantly with respect to size, composition, and orga-
nizational style and can be tailored to meet the needs of
individual institutions. Nevertheless, given their subject
matter expertise, we find that CDS interventions are
more likely to succeed when laboratorians play a central
role in both the design and implementation of new ini-
tiatives. Ultimately, once specific problems are defined,
stakeholders work together to develop appropriate
interventions and define the metrics by which they will
be evaluated.

A recent survey of chief medical information offi-
cers in the Unites States reported that 93% of respond-
ents experienced CDS malfunctions at their institutions,
and a follow-up study found that CDS failures were
often due to errors in design (102, 103). For example,
one randomized controlled trial showed that reminders
to order laboratory tests based on patient medications
(e.g., checking potassium in patients on angiotensin-
converting enzyme inhibitors) had no effect on test utili-
zation (104). However, the baseline compliance ranged
from 94% to 98%, suggesting that the intervention did
not address a genuine problem in the study population.
In settings with lower baseline compliance, similar stud-
ies have shown that embedding testing guidelines in
medication orders also had no impact on test utiliza-
tion—most likely because this intervention format does
not build the recommended action into the workflow
(105, 106). Another study illustrating the importance of

Fig. 2. The life cycle of effective clinical decision support.
The phases of deploying effective clinical decision support interventions are: design, launch, evaluate, and maintain (adapted
from the Plan-Do-Study-Act cycle) (98).
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CDS design described an attempt to reduce serum mag-
nesium testing by developing a common order template
for magnesium, calcium, and phosphate that displayed
recent results as well as practice guidelines (107).
However, by presenting these tests together, this inter-
vention prompted many providers to order all three,
which led to a 2- to 3-fold increase in test volume (the
opposite of the intended effect).

LAUNCH

The launch phase of CDS entails moving tools into pro-
duction and initiating data collection to monitor their
performance. Errors that impact the launch phase are
typically technical issues related to application builds.
For example, one case report described an alert remind-
ing providers to prescribe beta blockers for patients
admitted for myocardial infarction prior to discharge
(108). The developer of this alert assumed that medica-
tions with combined alpha and beta blocker activity
(e.g., carvedilol) would be classified as belonging to both
classes, however, these were coded as belonging to a
third category. As a result, one patient who was already
taking carvedilol was discharged with an additional
prescription for atenolol, which led to an episode of
bradycardia and hypotension. Strategies to avoid these
types of errors include close coordination between devel-
opers and subject matter experts during the build phase
and extensive testing prior to launch. In general, CDS
applications are built, tested, and launched in separate
environments to prevent tools in development from
impacting patient care—although another source of
errors during the launch phase is inadvertently moving
interventions into production before they are fully built
(102). Once interventions are moved to a live environ-
ment, they should initially be run silently (not visible to
users) for a sufficient period of time (days to weeks) to
evaluate their performance as an additional quality
control measure prior to full activation (109).

EVALUATE

After CDS interventions launch, an initial assessment is
needed to determine if they function as intended.
Typical evaluation metrics include the number of times
alerts fire, how often they are overridden, and changes
in test volume. In addition, user feedback plays an im-
portant role in understanding how interventions impact
clinical workflows and are perceived by providers. A
common reason for CDS failure is provider nonaccep-
tance, which can be driven by multiple factors (110).
In particular, providers may not trust CDS recommen-
dations because the system lacks transparency (especially
in the case of difficult to interpret “black box” models)
or presents inaccurate information (111). For example,
a recent study described an alert for medication dosing
based on renal function that fired inappropriately in

almost 90% of cases (over 37 000 times in one year),
leading to a 100% override rate (112). Another impor-
tant factor contributing to provider nonacceptance is
alert fatigue—i.e., presenting too many alerts leads to
most being ignored. One study reported that individual
primary care providers received a median of over 5000
best practice advisories and medication alerts per year,
approximately 85% of which were ignored (45).
Strategies to address provider nonacceptance include en-
gaging clinicians early in the design process, minimizing
the use of interruptive alerts, and responding effectively
to user feedback. In addition, 2 recent studies focusing
specifically on CDS for test utilization found that
features including provider role, department, clinical
setting, and length of stay were predictive of provider
nonacceptance, which could be used to develop more
targeted interventions in the future (46, 113).

MAINTAIN

Given that EHRs, test menus, and practice guidelines
are updated frequently, ensuring that CDS interventions
function correctly over time requires ongoing monitor-
ing. For example, one case report described an alert to
prescribe aspirin for patients presenting with myocardial
infarction, which was triggered by a troponin concentra-
tion >0.5 ng/mL (108). When this intervention
launched, undetectable troponin was reported as
0.01 ng/mL, but this changed to <0.01 ng/mL with an
instrument upgrade several years later. Unfortunately,
the original CDS build interpreted the “<0.01” charac-
ter string as a large number, leading to alerts firing for
every patient with undetectable troponin. Another study
described a reminder to monitor thyroid stimulating
hormone concentrations in patients prescribed amiodar-
one, which failed after an internal code for amiodarone
had been changed (102). As opposed to a dramatic in-
crease in alert volume, this error led to a gradual de-
crease in notifications that went unrecognized for over 3
years. As these cases illustrate, CDS interventions need
to be periodically retested, especially after updates to
software and databases, which often accompany new in-
strumentation. In addition, several studies have shown
that monitoring trends in firing rates over time can be
an effective method for detecting CDS malfunctions
(102, 114). This approach has been used to identify
CDS errors due to software updates, changes in internal
data structures (e.g., test and medication codes), bugs in
CDS builds, and failures to activate seasonal alerts.
Notably, multiple groups have reported that detecting
anomalies in CDS firing rates can be automated (109,
115). Finally, maintaining CDS tools requires a process
for updating the knowledge base as new tests become
available and practice guidelines evolve. In general,
the time and resources required to maintain CDS inter-
ventions can be significant, which emphasizes the
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importance of establishing a clear governance structure
as well as institutional support early in the course of
projects.

Conclusion

CDS encompasses a flexible set of tools that, when
designed carefully, empower clinicians to use laboratory
tests more effectively and deliver higher quality patient
care. However, CDS is not an end in itself, and success-
ful implementation requires developing teams and pro-
cesses to build and maintain applications that address
clinically relevant problems. Laboratory testing is tradi-
tionally partitioned into pre-analytical, analytical, and
post-analytical phases, and, through a sustained focus
on quality, clinical laboratories have reduced analytical
errors to an estimated 5% to 10% of total errors (116,
117). By allowing clinical laboratories to directly access
the pre- and post-analytical phases of testing, CDS has
significant potential to drive further reductions in errors

going forward. Finally, as the underlying technology
continues to improve, future CDS tools will use more
complex representations of EHR data—including
contextual features related to patient history, provider
role, and clinical setting—to deliver more effective and
more personalized recommendations.

Nonstandard Abbreviations: CDS, clinical decision support; EHR,
electronic health record; ROC AUC, area under the receiver operating
characteristic curve
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