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BACKGROUND: Modern artificial intelligence (AI) and
machine learning (ML) methods are now capable of
completing tasks with performance characteristics that
are comparable to those of expert human operators. As a
result, many areas throughout healthcare are incorporat-
ing these technologies, including in vitro diagnostics
and, more broadly, laboratory medicine. However, there
are limited literature reviews of the landscape, likely fu-
ture, and challenges of the application of AI/ML in lab-
oratory medicine.

CONTENT: In this review, we begin with a brief intro-
duction to AI and its subfield of ML. The ensuing sec-
tions describe ML systems that are currently in clinical
laboratory practice or are being proposed for such use in
recent literature, ML systems that use laboratory data
outside the clinical laboratory, challenges to the adop-
tion of ML, and future opportunities for ML in labora-
tory medicine.

SUMMARY: AI and ML have and will continue to influ-
ence the practice and scope of laboratory medicine dra-
matically. This has been made possible by advancements
in modern computing and the widespread digitization
of health information. These technologies are being rap-
idly developed and described, but in comparison, their
implementation thus far has been modest. To spur the
implementation of reliable and sophisticated ML-based
technologies, we need to establish best practices further
and improve our information system and communica-
tion infrastructure. The participation of the clinical lab-
oratory community is essential to ensure that laboratory
data are sufficiently available and incorporated conscien-
tiously into robust, safe, and clinically effective ML-
supported clinical diagnostics.

Introduction

In the past 10 evolution of artificial intelligence (AI)
and machine learning (ML) technologies. AI-based sys-
tems are now capable of partially or fully automating
well-defined tasks with performance metrics that are
comparable to those of expert human operators. As a re-
sult, many areas throughout the healthcare industry are
incorporating AI/ML-based technologies into amenable
workflows. Laboratory medicine and in vitro diagnostics
(IVD) are on the leading edge of this wave, as AI is in-
creasingly implemented within business intelligence
tools, instrumentation cleared by the Food and Drug
Administration, and laboratory-developed tests. In addi-
tion, much of the data generated by the clinical labora-
tory is naturally suited for AI as these data are often
structured, discrete, and high-fidelity and produced in
large volumes. Accordingly, AI and clinical decision sup-
port systems (CDSSs) often rely heavily on laboratory
data.

As the use of AI continues to increase, laboratorians
will benefit from improved AI literacy and technological
awareness so that we can become effective stewards of
the technology and laboratory data alike. To this end,
this review begins with a brief introduction to AI and
ML and then proceeds to survey the breadth of ML
approaches and relevant applications. Subsequent topics
include an overview of AI/ML-based technologies cur-
rently implemented in the clinical laboratory or having
demonstrated the potential for such use, AI-based sys-
tems outside the clinical laboratory and how they lever-
age laboratory data, barriers to the adoption of AI, and
future directions of AI and laboratory medicine.

Machine Learning Overview

In 1950, Alan Turing authored a seminal paper in the
philosophical journal Mind, wherein he proposed the
question: “Can machines think?” (1). A short time later,
McCarthy et al. assembled a group of computer scien-
tists and mathematicians for a 2-month summer re-
search workshop at Dartmouth College to collectively
pursue the formative study of a new field termed
“artificial intelligence” (2). AI encompasses a wide spec-
trum ranging from general AI, referring to the creation
of intelligent thinking machines, to narrow AI, or com-
putational algorithms, that can learn specific tasks. Early

aDepartment of Pathology and Laboratory Medicine, University of Pennsylvania,
Philadelphia, PA, USA; bDepartment of Laboratory Medicine, Cleveland Clinic, Cleveland,
OH, USA; cDepartment of Pathology, Cleveland Clinic Lerner College of Medicine, Case
Western Reserve University, Cleveland, OH, USA; dDepartment of Laboratory Medicine,
Yale University, New Haven, CT, USA.

*Address correspondence to this author at: 20 York St/PS 535, New Haven, CT 06510,
USA. E-mail thomas.durant@yale.edu.

Received March 22, 2021; accepted July 26, 2021.
DOI: 10.1093/clinchem/hvab165

VC American Association for Clinical Chemistry 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com. 1466

Clinical Chemistry 67:11 Review1466–1482 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/clinchem

/article/67/11/1466/6374790 by U
niversity of Louisville user on 05 N

ovem
ber 2021

https://orcid.org/0000-0002-7636-5191
mailto:thomas.durant@yale.edu


implementations of AI were primarily comprised of “if,
then” rules used to automate protocol-driven processes.
Such rule-based algorithms are used throughout clinical
practice today and can be classified as nonadaptive AI
(e.g., autoverification and antibiotic susceptibility
reporting cascades). ML, which later emerged as a sub-
discipline of AI, leverages techniques that are considered
adaptive in that they can learn patterns from among
data within a defined framework. The primary focus of
this review is to consider contemporary IVD and labora-
tory management technologies that leverage ML techni-
ques. While the boundaries between AI, ML, and even
traditional statistics are fuzzy, in this discussion of ML,
we broadly included algorithms in which the compo-
nents and/or the relationships between those compo-
nents were learned by a machine rather than either
hard-coded by a human or derived using simple sum-
mary statistics.

The discipline of ML can be further subcategorized
into supervised, semisupervised, and unsupervised ML.
Most contemporary applications in the clinical labora-
tory use supervised ML, which will be the primary focus
of this review. For the interested reader, further infor-
mation on basic ML definitions and concepts can be
found in recent literature (3, 4). Additional definitions
of ML vernacular, referred to in this report, can be
found in Table 1.

Supervision is synonymous with the use of training
labels (i.e., annotations) ascribed to each of the samples
within a data set. These labels are frequently assigned a
priori by a human subject matter expert. The labels
serve as the ground truth during the learning process.
The machinery that is used for rote learning of informa-
tive patterns involves a multitude of mathematical
approaches (e.g., neural networks, support vector
machines, and regression algorithms) and reviews of
these techniques are abundant in the literature.
Importantly, most of these algorithms use an error func-
tion to monitor and direct iterative refinements to the
patterns that are identified from the data. The optimiza-
tion of such an error (or loss) function is arguably the
raison d’être of ML.

In supervised ML, a data set is comprised of 2 com-
ponents: (i) raw data (input features) and (ii) labels
(training outcome). Raw data are commonly categorized
as either structured or unstructured. Structured data can
be intuitively visualized as a data set of fields and values,
such as a data table with column headers and rows that
are described by a data model. Conversely, unstructured
data such as digital images have more complex encod-
ings and require more manipulation. Training labels can
take many forms, including continuous variables (e.g.,
concentrations for a calibration curve), dichotomous
variables (e.g., benign or malignant), or categorical vari-
ables (e.g., artifact, benign, premalignant, or malignant).

Taken together, raw data and labels are used to train an
ML model, which can then be applied to partially or
completely automate a laboratory process (Fig. 1;
Table 1). Over the last 2 decades, ML has been applied
to an ever-expanding set of use cases. In the following
section, we will review salient examples of ML applica-
tions in the clinical laboratory, including those in clini-
cal practice or described in the emerging literature.

Applications of Machine Learning in
Laboratory Medicine

While we are currently in a resurgence of the application
of AI to healthcare, ML is ubiquitous in laboratory medi-
cine and can be easily overlooked. The most common ap-
plication of ML in the laboratory is the conversion of raw
measurement signals into analyte concentrations, typically
achieved by constructing calibration curves that model
signal-to-concentration relationships using linear regression
(5). ML also assists with data interpretation as it can distill
multivariate data into a more intuitive form. A representa-
tive and widely adopted example of this is prenatal open
neural tube and aneuploidy screening, wherein the pre-
dicted disease risk is generally estimated using a combina-
tion of regression and related discriminant analyses of
protein biomarkers (6, 7). A calculated disease risk based
on a set of laboratory results is a natural extension beyond
simply reporting the individual results of many individual
assays. Indeed, the current resurgence of ML has begun to
reveal the much broader potential for this historically ac-
cepted but underutilized practice, now leveraging larger
data sets with more variables and patients and more sophis-
ticated methods.

CLINICAL CHEMISTRY AND IMMUNOLOGY

Chemistry and Immunology laboratories are particularly
well suited for leveraging ML because they generate
large and highly structured data that can be input into
computational methods. These tools can help to trans-
late raw data (e.g., spectra, profiles) into discrete results,
review data for autoverification, and suggest clinical
interpretations of multivariate results.

For the interpretation and quality control of electro-
phoresis traces and mass spectra, laboratories generally rely
on labor-intensive procedures. Accordingly, there is grow-
ing interest in tools that can automate these processes to
improve throughput and quality (8, 9). Electrophoresis of
serum proteins is a long-standing and widely used diagnos-
tic modality for screening and monitoring of monoclonal
gammopathy-related disease (10, 11). However, result in-
terpretation or verification generally involves labor-
intensive review performed by highly trained individuals,
which makes scaling this approach to other use cases time-
and cost-prohibitive (12). To this end, there are several
published reports that describe various approaches to
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Table 1. Definitions of common machine learning vernacular.

Term Definition Example

Artificial intelligence (AI) Referring to a broad set of technolo-

gies which are capable of automated

decision making, or similarly intelli-

gent behavior, via the analysis of

data. Fundamentally, AI can be cate-

gorized as being either nonadaptive

(e.g., rule-based) or adaptive (e.g.,

machine learning).

Nonadaptive AI: Autoverification of

laboratory results

Adaptive AI: Automated classifica-

tion of leukocytes from digital im-

age of peripheral blood smear

using a trained machine learning

algorithm

Machine learning (ML) A subdiscipline of AI which leverages

mathematical functions to analyze in-

put data and, without explicit instruc-

tion, provide inferences from the

data.

See Fig. 1

ML algorithm A collection of mathematical functions

that are used for a machine learning

task.

See Fig. 1

ML model The resulting file, or artifact, created

from training an ML algorithm.

Logistic regression: vectors of

coefficients

Neural network: computational

graph with associated matrix of

weights.

Supervised ML An approach to training ML algorithms

in which the provided input data is

associated with an outcome label.

Commonly, the intent is for the

model to learn how to map input

data to the appropriate output data

(label).

A model used to classify leukocytes

may have initially been provided

digital images of individual leuko-

cytes with an associated label

(e.g., lymphocyte, monocyte, etc.).

Following algorithm training, the

model could then be shown an

image of a leukocyte without a la-

bel and infer a morphologic classi-

fication, within the scope of the

original set of training labels.

Unsupervised ML An approach to ML in which the ML al-

gorithm analyzes input data without

an associated label, to infer patterns,

structure, or clusters within the data

set.

Principal component analysis (i.e.,

dimensionality reduction)

T-Stochastic Neighbor Embedding

(tSNE)

Continued
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automating gel or capillary electrophoresis pattern interpre-
tation, mostly using artificial neural networks (12–15).
While these techniques currently demonstrate suboptimal
specificity and are not yet widely adopted in clinical prac-
tice, integrating them within commercially available elec-
trophoresis platforms as interpretation support tools would
likely dramatically improve the efficiency and consistency
of these evaluations.

For the analysis of mass spectra, ML approaches can
support the translation of spectra into concentrations and
quality review by enabling or increasing autoverification.
Commercial products have recently become available for
automated peak quantitation and quality analysis that have
been shown to improve workflows (16, 17). ASCENT
(Indigo BioAutomation) uses an exponentially modified
Gaussian model to estimate peak areas and has shown
good performance even in the setting of low-concentration
analytes and modest signal-to-noise ratios (17). ML
approaches have also been proposed for the automated and
more sensitive quality review of spectrometry data and dis-
crete results of general chemistries (8, 9).

Downstream of result generation, ML-based deci-
sion support tools show considerable promise in assist-
ing pathologists’ interpretation of complex multianalyte
data. At the most basic level, ML approaches can help

to jointly interpret discrete laboratory results with con-
crete relationships, like thyroid-stimulating hormone
and free thyroxine (18). Extending further, ML can sup-
port and potentially improve upon manual interpreta-
tion for larger multianalyte panels such as steroid and
amino acid profiles (12, 19–21).

Clinical chemistry laboratories also generate digital
images (i.e., unstructured data), which given the recent
advancements in computer vision, are highly conducive to
semiautomated analysis. Urine sediment analysis is a labor-
intensive process in which sedimentary particles are identi-
fied and quantitated by a skilled medical laboratory scien-
tist. With ML, this analysis can be automated using one of
the many highly performant image classification techni-
ques that are currently available. Currently, there are many
commercial products that offer digital imaging and subse-
quent classification of urine sedimentary particles, which
can be presented to the end-user for review and verification
(22–26). However, as these tools are young, manual review
of pathological samples is still generally recommended
(26). In immunology, ML-based image analysis is com-
monly combined with immunofluorescent assays for the
detection and classification of antineutrophil cytoplasmic
antibodies (27, 28). While there are currently only a few
instances of digital imaging in the clinical chemistry

Term Definition Example

Semisupervised ML An approach that uses a combination

of supervised and unsupervised ML.

This approach is commonly

employed when there is a large

amount of training data, with a lim-

ited amount of labeled data.

Photographs of person A, taken on a

smartphone, may be initially col-

lated into a separate “person A

album.” This may be done initially

without end-user input (unsuper-

vised). The photo application may

then prompt the user to provide

explicit labeling (supervised) of

photos the unsupervised algo-

rithm was unsure of, to better clas-

sify pictures of person A.

Underfitting A model that fails to learn the inherent

structure of the data provided to it

during training.

A model that demonstrates subopti-

mal performance on the training

data set.

Overfitting A model that learns the inherent struc-

ture of the training data set so well,

that when it is confronted with new

data, that was not well represented

in the training data set, performance

is consequently poor.

A model that demonstrates optimal

performance on the training data

set, but suboptimally on the test

data set, may be suffering from

overfitting.
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laboratory, there are many potential opportunities (e.g.,
sample tube imaging on automated preprocessing units)
for which automated analysis by ML tools will likely be
essential.

There are also many emerging laboratory testing
approaches for which sophisticated and rapid computa-
tional tools are foundational. For instance, there is consid-
erable interest in bringing mass spectrometry into the
operating room for real-time biochemical profiling of surgi-
cal tissue samples (29, 30). In recent proof-of-concept
applications, tissue-based samples (e.g., gas-phase ionic spe-
cies or water droplet) are collected by a handheld surgical
device and input to a mass spectrometer via a tube con-
duit. The resulting mass spectra are then analyzed in real
time to enable rapid, in situ biochemical profiling. While
this emerging IVD technology remains in the development

stages, current approaches incorporate ML methods to dis-
tinguish between benign and malignant tissue spectra.
Recent publications have described this approach for the
identification of malignancies of various tissue types, in-
cluding ovarian, thyroid, and lung (29, 31).

HEMATOPATHOLOGY

While ML has seen many forms of progress in recent
years, one of the primordial advances, with respect to
the current ML resurgence, was in the context of digital
image analysis (32). In 2012, Krizhevsky et al. success-
fully integrated convolutional neural networks within a
deep neural network, which resulted in a significant im-
provement in automated image classification perfor-
mance relative to the state-of-the-art predicate method
(32, 33). Subsequently, the computer vision field saw

Table 2. Representative examples of how machine learning applications are being applied in laboratory medicine using
structured and unstructured data.

Raw data Label ML algorithm Clinical purpose

Structured data

Basic demographic and

clinical information, and

CBC/differential results

PBFC results classified as

negative or positive

DT or GLM Predict PBFC results as

negative or positive,

proposed as an ap-

proach to triage PBFC

utilization

Urine steroid metabo-

lites quantified by

GCMS and demo-

graphic data

Normal or abnormal; if ab-

normal, then classify by

disease category.

RF, WSRF, or XGBT Map data to comment

templates to generate

semi- or fully automated

interpretive comments

Unstructured data

Bounding-box coordi-

nates and cropped

images of individual in-

testinal protozoa, yeast,

and PBCs

Species-level classification

(e.g., Giardia duodenalis

cyst, Blastocystis sp., etc.)

Deep CNN Detection and classifica-

tion of potential intesti-

nal protozoa, yeast, or

PBCs. Classifications

reviewed by user prior

to result verification.

Images of leukocytes

from Romanowsky

stained peripheral

blood smears

Leukocyte differential; 17-

cell types

ANN Automatically classify leu-

kocytes, subject to ex-

pert human operator

review prior to result

release

Abbreviations: ANN ¼ artificial neural network; AANN ¼ auto-associative neural network; DT ¼ decision tree; GLM ¼ generalized linear model; PBC ¼ peripheral blood cell;
PBFC ¼ peripheral blood flow cytometry; RF ¼ random forest; WSRF ¼ weighted-subspace random forest; XGBT ¼ extreme gradient boosted tree.
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widespread adoption and expansion of this approach,
which has led to highly performant image classification
algorithms (34). Not surprisingly, there has been sub-
stantial interest in the adoption of image classification
technologies in medical specialties such as radiology and
anatomic pathology, where the collection of digital
images continues to accelerate (35–37). Laboratory
medicine will similarly be image-rich, particularly in the
context of hematopathology.

Hematopathology as a specialty puts significant consid-
eration on the visual interpretation of patterns, such as the
morphologic characterization of cells (38, 39). Accordingly,
there is a long history of researchers and manufacturers com-
bining digital imaging and computer vision technologies to
automate some facets of the hematopathology workflow
with efforts dating back as far as the 1970s. For example,
Bacus et al. used digital imaging and feature engineering to
model erythrocyte morphology classification based on

cellular features (e.g., size and spicularity) (40). Since this
time, there have been successful reports of automated classi-
fication of peripheral blood cells using a variety of modern
ML technologies. Core lab commercial applications have
been available since the early 2000s and, more recently, an
increasing number of point-of-care devices (38, 39, 41–44).

One widely adopted, Food and Drug Administration
(FDA)-cleared image analysis system enabled by ML is the
Cellavision DM96 (45). The Cellavision system uses a static
(i.e., locked weights) artificial neural network–based ap-
proach to precharacterize leukocytes and erythrocytes for an
automated differential count and morphologic analysis, re-
spectively. Like other image classification systems in the lab-
oratory, substantial equivalence for this analyzer was
established in the setting where a certified laboratory tech-
nologist was required to verify or modify suggested classifica-
tions for each cell prior to result release (45). Despite the
need for expert review, there are numerous reports that

Fig. 1. Infographic of supervised machine learning using generalizable examples of structured and unstructured input data. (A)
Structured data: predicting a dichotomous variable (i.e., “sepsis” vs. “no sepsis”), using a collection of annotated analytes (ana-
lyte-A, analyte-B, . . . , analyte-E). The structured data can be analyzed by a machine learning algorithm, such as those denoted
above the red line. The output of the machine learning algorithm would include a predicted probability for each possible class.
The top-predicted class could then be compared to the original input label to assess model performance. (B) Unstructured data:
predicting a categorical variable (i.e., erythrocyte morphology), using a 70 � 70 � 3 [height � width � 3-color channel (red/
blue/green)] image of an erythrocyte. Images are unstructured matrices of numbers that typically range from either 0 to 1 or 0
to 255. These data can be analyzed by a machine learning algorithm, such as those denoted below the red line. The output of
the machine learning algorithm would include a predicted probability for each class, which would collectively sum to 1. The
top-predicted class could then be compared to the original input label to assess model performance.
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detail high classification accuracy and good correlation with
manual differential counts (46, 47). More recently, there are
emerging applications that do not require expert operator re-
view, particularly for point-of-care testing. Some examples
include the HemoScreenTM (PixCell Medical) and the Sight
OLOVR (Sight Diagnostics), both of which offer a 5-part cell
differential using ML-based image analysis but without the
requirement for expert operator review (48).

Malaria diagnosis by digital imaging of peripheral
blood has received significant attention from interna-
tional research communities (49). A recent review by
Poostchi et al. offers a thorough overview of this topic
and nicely organizes the considerable heterogeneity
across published studies (49). These tests face particu-
larly daunting challenges, such as conducting multipla-
nar focusing, handling noisy interfering objects (e.g.,
parasite-like inclusions), and enumerating objects of in-
terest at high magnification from a digital microscopic
image in the setting of overlapping cells (50). Recent
reports are now pursuing approaches that use deep
learning that may be able to overcome some of these dif-
ficulties (50–52). However, general performance
remains suboptimal, and it is likely that more progress
will be needed before we see widespread clinical imple-
mentation of these tools (49).

Beyond digital image analysis, other areas of ML-based
laboratory support have been described in hematopathology.
Optimizing test utilization is an area of rising interest, partic-
ularly in the context of emerging value-based reimbursement
models and stewardship strategies for labor-intensive test
methods. To this end, there are many publications that in-
vestigate the use of routine hematologic data to predict the
likelihood of more complex test result abnormalities to guide
ordering practices. As an example, Turbett et al. described a
statistically driven method of triaging testing for anaplasmo-
sis using complete blood count measurements (53). While
their approach did not formally leverage an ML framework,
this workflow is amenable to ML modeling and has been
described elsewhere in published conference proceedings
(54). Similarly, Zhang et al. investigated the use of decision
trees and regression models to identify peripheral blood flow
cytometry specimens, which were more likely to be abnor-
mal. Using this approach, a generalized linear model
achieved 100% sensitivity and 54% specificity (area under
the curve¼ 0.919) (55).

Lastly, multiparameter flow cytometry is a partially
structured, high-dimensional data set, which by those 2
criteria is inherently well suited as an input for ML
modeling. Consequently, it has received increasing at-
tention in ML-based literature over recent years (56–
58). Recently, Gaidano et al. describe a decision tree
model to classify B-cell non-Hodgkin lymphoma with
an overall accuracy of 92.68% (59). Similarly, Ng et al.
demonstrated the use of a random forest classifier that
could be used to screen out negative cases with 100%

sensitivity (60). Conference proceedings have described
the use of neural network–based approaches to decision
support tools for multiparameter flow cytometry inter-
pretation (61, 62). Unsupervised clustering and dimen-
sionality reduction techniques are increasingly applied
to flow cytometry data, addressing some of the potential
ambiguity of manual gating, which impacts numerical
data, and is of particular relevance to investigative proj-
ects (63). However, to date, these approaches have had
limited impact on clinical practice where multidimen-
sional data are generally interpreted by inspection of bi-
variate plots. Dimensionality reduction can be
combined with ML classifiers, which may be collectively
leveraged to assist in diagnostic interpretation (64). A
persistent challenge is that clinical use often relies on
recognition of subtle change to variable expression pat-
terns, as well as understanding nuances of the specific
instrumentation and reagents being used which are
aspects not readily characterized by automated cluster-
ing methods. While there is great potential for leverag-
ing ML-based technologies to analyze multiparameter
flow cytometry data, efficient and clinically focused
applications that incorporate ML remain limited at this
time.

CLINICAL MICROBIOLOGY

Clinical microbiology is historically a manually intensive
section of the clinical laboratory. In recent years, how-
ever, there has been increasing interest in employing au-
tomated workflows to improve efficiency and help to
mitigate the ongoing nationwide shortage of medical
laboratory scientists (65–67). With this shift in practice,
there are opportunities for the integration of ML-based
tools in these new workflows.

BACTERIOLOGY CULTURES

Total laboratory automation systems that enable
culture-based microbiology testing are generally com-
prised of three main components: an inoculation unit,
an incubation system, and a high-resolution imaging
system. Digital plate imaging offers many advantages by
creating a retrievable record of bacterial growth, allow-
ing remote plate reading, and enhancing visual inspec-
tion using various lighting conditions (68). In addition,
opportunities to employ ML to aid in analyzing these
complex images, which have traditionally been inter-
preted manually, are also emerging. A convergence of
maturing technologies including back-end automation
of bacteriology cultures (digital imaging of petri plates
using Kiestra or WaspLAB), affordable storage of large
digital image files, and affordable computational power
are creating these opportunities. Computer algorithms
are currently being developed and employed as decision
support tools for bacteriology culture interpretation
(69–71). It is reasonable and feasible for software to
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interpret at least some Petri plate image results, such as
“no growth” bacterial cultures, and to autoverify these
interpretations without human intervention, although
this is not yet practiced in laboratory medicine.

In addition to automated interpretation of tradi-
tional growth media, more advanced interpretations of
bacterial cultures are likely to be the next step in devel-
opment and clinical implementation. The Accelerate
PhenoVR (Accelerated Diagnostics) is a recently FDA-
cleared IVD device that uses digital dark-field micros-
copy images of single-cell bacterial cell growth in the
presence of varying concentrations of antimicrobial
agents to determine minimum inhibitory concentrations
(MIC) and susceptibility interpretations. This device
relies on a hierarchical system that combines multivari-
ate logarithmic regression and computer vision (72).
Using this approach, the Accelerate PhenoVR system can
provide rapid (e.g., hours) phenotypic MICs using di-
rect samples from positive blood culture bottles. While
further research is needed to evaluate its impact on pa-
tient care, it remains a timely example of ML-based
tools being used in concert with unique, culture-based
technology.

MICROSCOPIC ANALYSIS OF PRIMARY SPECIMENS

Beginning with Leeuwenhoek, microbiology’s corner-
stone has been the visual examination of primary sam-
ples. In clinical microbiology, these analyses include
microscopic evaluation for bacteria (e.g., Gram stain),
fungi, acid-fast bacilli including mycobacteria, ova and
parasite exam, and blood parasites (e.g., apicomplexa).
These microscopic analyses are used for screening or to
achieve a definitive clinical diagnosis. Inherent strengths
of ML tools align well with many image analysis use
cases in clinical microbiology. These use cases include
rare-event detection (e.g., acid-fast bacilli) and segmen-
tation/classification (e.g., Nugent-scored Gram stain).
ML tools have demonstrated utility in early studies for
these applications: Nugent score Gram stain interpreta-
tion for bacterial vaginosis diagnosis (73), classification
of bacteria in positive blood cultures (74), mycobacteria
detection in sputa (75–77), ova and parasite detection
and classification from stool samples (78), and blood
parasite detection and quantification (79–81).

In clinical microbiology practice, classification algo-
rithms can be tuned based on the desired role in clinical
practice. Generally, rare event detection algorithms
(e.g., acid-fast bacilli detection) are most useful when
weighted toward high sensitivity at the expense of spe-
cificity, wherein the machine can screen an image for
suspect events and a human expert can make the final
decision as to whether the rare event is artifact or mi-
crobe. Similarly, high-sensitivity algorithms could be
used to screen and autoverify no-growth urine cultures
by analyzing nutrient agar Petri dishes. The utility of

these tools is to improve the efficiency of the time
employed by the expert medical laboratory scientist
reviewing the specimen and to potentially improve the
sensitivity or reproducibility of the test (78, 82).

A recent and representative example of high-
sensitivity algorithms was recently examined in the con-
text of enteric parasite diagnostics. Mathison et al. de-
scribed their clinical validation of convolutional neural
network–based software, developed as a decision sup-
port tool to detect and classify intestinal protozoa found
within digital images of trichrome-stained fecal speci-
mens (78). The method presented in this report
achieved high concordance with manual microscopic re-
view and demonstrated superior sensitivity relative to
the predicate method, as shown with serial dilution
experiments. Similarly, Smith et al. described the appli-
cation of convolutional neural networks to the interpre-
tation of blood culture Gram stains, demonstrating
sensitivity above 90% for Gram-positive cocci in clusters
and chains and Gram-negative rods (74). These works
demonstrate that ML-based technologies can achieve
high-performance metrics and, in conjunction with ex-
pert review, can be helpful in a clinical microbiology set-
ting. As digital imaging of microscopic analysis expands
in microbiology, we are likely to see more applications
such as these (5, 82–84).

INTERPRETATION OF MICROBIAL SEQUENCING DATA AND PCR

Next-generation sequencing (NGS) and real-time PCR
interpretation can both benefit from computer-aided in-
terpretation. Algorithms can be used in place of cycle
thresholds for quantifying the initial target of a PCR as-
say (85). Whole-genome sequencing data may one day
be used in place of phenotypic test results for predicting
clinical efficacy of antibiotics (86), and early work has
demonstrated that machines can predict antimicrobial
resistance and susceptibility in certain instances (87–
90). Relying on ML algorithms to interpret real-time
PCR and to predict phenotypes or taxonomic identities
using trained software instead of mechanistic decision
trees could change how clinical microbiology is prac-
ticed. Nontargeted sequencing techniques, such as shot-
gun metagenomics, may rely on these techniques and
offer important potential to enhance pathogen discov-
ery, strain typing, and resistance prediction from clinical
samples (91).

MOLECULAR DIAGNOSTICS

The development of high-throughput and high-
multiplexity nucleic acid technologies has transformed
the field of molecular diagnostics. These methods have
been enabled in part by advances in ML. For example,
at their core, many NGS methods analyze thousands of
images of millions of microscopic clusters of labeled nu-
cleic acids (92). These tools generate massive amounts
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of data, necessitating robust pipelines for big data man-
agement that would be impossible for humans to inter-
pret alone (93, 94). In addition, massive multiplexity
requires sophisticated approaches to identify analytically
valid results and interpretations amidst the sea of data
(93). As previously discussed, ML is well suited for
assisting in the analysis of large, well-structured data.
Over the last decade, publications involving genomics
and ML abound (94).

Modern NGS assays generate high-dimensional,
structured data sets that can provide highly useful diagnos-
tic and prognostic insights. However, given the size and
complexity of these data sets, analysis of NGS data sets is
labor-intensive and time-consuming. Accordingly, many
software products use ML to streamline various aspects of
the NGS data analysis pipeline. Like other areas of ML ap-
plication, this technology can be used to make human
interpretations more efficient or to provide new diagnostic
capacity. These platforms can assist with variant calls, cura-
tion, and clinical interpretations (95, 96). These
approaches may provide particular benefit in the annota-
tion of variants of uncertain significance identified in the
clinical setting. Early methods that relied on similarity of
sequence or structure often had limited performance to
predict clinical impact (97, 98), but newer methods are be-
ing developed to provide interpretations from functional
analysis (99) to clinical impact (100). ML techniques have
also been used to generate more complex interpretive
results from broad genomic assays (e.g., generating poly-
genic risk scores for complex diseases), which are now
available via both clinician-ordered and direct-to-consumer
pathways (95, 101–103).

While molecular diagnostics in laboratory medicine
predominantly interrogate nucleic acid sequences and
the concentration of specific molecules, similar methods
can be applied to other kinds of biological variation.
These -omics–oriented tests can encompass studies in-
cluding epigenomics, transcriptomics, proteomics,
metabolomics, and microbiomics (104). These tests of-
ten include an ML component in the processing or
analysis of the raw data being generated, often at a large
scale. However, as a new clinical diagnostic area, the
ability to combine multiple sets of -omics data (i.e.,
multiomics) and integrate high-fidelity phenotypic data
represents a challenging yet promising, data-driven di-
rection for molecular diagnostics. Much research is
aimed at identifying clinically useful biomarkers using 1
or more testing modality (105–107). With the cost of
these assays rapidly decreasing, our ability to identify
meaningful information from such complex data is ever-
improving. While the breadth of multiomic diagnostic
testing strategies is beyond the scope of this review, they
collectively represent the rapidly growing next frontier
for ML and laboratory medicine (108).

GENERAL LABORATORY MEDICINE PRACTICE

The total testing process is a commonly referenced
framework used for evaluating laboratory testing from
quality assurance and quality control standpoints. Errors
in the preanalytical phase of testing are thought to ac-
count for the highest frequency of laboratory errors but
are challenging to prevent as many of the relevant pro-
cesses are often beyond laboratory oversight (109). To
this end, there are several recent publications that inves-
tigate the utility of ML techniques for identifying prea-
nalytical errors. Recent and representative examples
include the use of optical character recognition to iden-
tify mislabeled samples (110), the detection of spuri-
ously increased glucose results due to intravenous fluid
contamination(111), and logistic regression and support
vector machines to detect “wrong blood in tube” errors
(112). Both approaches demonstrated how a combina-
tion of commonly available laboratory results can be uti-
lized for preanalytical quality assurance purposes. While
such approaches are not yet widely adopted, they are
representative of potentially value-added components,
which may be integrated with commercially available
laboratory information systems or middleware.

Regarding the analytic phase, intermittent testing of
quality control material is the gold standard for evaluating
analytic methods for instability (113). Moving averages are
an alternative approach for identifying method drifts or
shifts whereby the mean of consecutive patients’ results are
compared to control limits established for a specific patient
population (114). This approach could identify problems
in between the testing of external quality control samples,
which can be as infrequent as daily. However, choosing
the parameters of a moving averages protocol to maximize
sensitivity and minimize false alarms is challenging. To this
end, Ng et al. described an ML-based approach to detect
systematic error among patient results using a simulated
annealing model to optimize moving average protocols
(e.g., control and truncation limits) and were able to im-
plement these protocols in their production environment
(115). Similarly, as part of quality assurance in the analytic
phase, result verification processes aim to identify test
errors prior to result release, which is commonly imple-
mented using a rule-based system (i.e., nonadaptive AI) to
accept or reject results. Demirci et al. recently described an
adaptive, ML-based approach using artificial neural net-
works to develop a model that could be used for autoverifi-
cation purposes. The model was found to be 91%
sensitive and 100% specific as compared to result verifica-
tion decisions by 7 clinical chemists (116).

Bordering between analytical and postanalytical,
abnormal result flagging remains a critical aspect of lab-
oratory services and a major driver of clinical decision-
making (117, 118). Determination of clinically mean-
ingful reference intervals is challenging, particularly
when considering subpopulations of community testing
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cohorts (e.g., sex- or age-specific reference intervals) and
poorly standardized assays. Several methods have been
developed to leverage in-practice clinical data for defin-
ing or refining reference intervals (119–121). Poole
et al. describe an unsupervised ML approach to identify-
ing clinical diagnoses associated with extreme results
and then excluding patients with these diagnoses from
reference interval calculation, as typically seen with the a
posteriori approach (121). Such approaches show great
potential for ensuring reference intervals used are most
appropriate for local patient populations. Indeed, as lab-
oratory software continues to expand in functionality,
these examples demonstrate the potential of leveraging
data generated as part of routine clinical practice to im-
prove that clinical practice by using ML methods. One
final example of ML applications in general laboratory
practice is resource stewardship, including blood bank-
ing and transfusion, wherein predictive analytics can
guide the prospective utilization of blood products
(122).

Laboratory Data and Machine Learning
Outside of the Laboratory

Laboratory data are a critical component of the diagnos-
tic process. From chronic disease to acute infection, al-
most all clinical decision-making will leverage the results
of a laboratory test to guide the diagnosis, treatment, or
prediction of the outcome of disease. Within the clinical
laboratory, basic mathematical calculations, rule-based
engines, and ML-based tools are all routinely used. But
additional applications of these data exist in tools devel-
oped external to the clinical laboratory, spanning from
real-time clinical predictive models to health system
business intelligence.

The interest in leveraging ML to drive electronic
health record (EHR)-based tools, such as CDSSs, is an
area of increasing interest (123). CDSSs create the links
between data, algorithm, and end-user to be able to de-
liver information at the point of care and allow for
changes in clinical decision-making. Like other applica-
tions of AI and ML, CDSSs can range from rule-based
triggers through black-box ML. The goal of these sys-
tems is to provide the user with suggested clinical path-
ways or interventions based on the existing, high-
dimensional data within the clinical record. Clinical lab-
oratory data are often a key component of clinical pre-
dictive models and CDSSs, as these data are often
structured and are typically available as soon as a test re-
sult is verified, unlike manually entered data, such as
flow sheet and clinical notes, which may not be finalized
until the end of a provider’s shift. The goals of applying
more advanced ML-based approaches to CDSS include
the reduction of alert fatigue by providing more appro-
priate alerts at more precise times, by leveraging and

distilling more EHR data as compared to manually de-
veloped rule-based approaches. Such models have been
commonly implemented to identify and provide treat-
ment guidance, including for detecting acute kidney in-
jury (124–126) and oncology treatment
recommendation (127), as well as to predict clinical out-
comes, including acute deterioration (128, 129) and
postoperative outcomes (130, 131).

Within the laboratory, calculations and predictive
models, regardless of how basic they are, are regulated by
the Centers for Medicare and Medicaid Services via accred-
itation by deemed organizations such as the College of
American Pathologists. For example, the College of
American Pathologists provides validation and documenta-
tion requirements for calculations of the international nor-
malized ratio and estimated glomerular filtration rate, as
well as for the validation of autoverification rules. Outside
of the laboratory, the regulation of AI and CDSS is less
clear and is an area of active discussion and evolving guid-
ance from the FDA (132–135). While laboratory data pro-
vide a rich, structured data set to drive these algorithms,
active integration of laboratorians in the development, im-
plementation, and management of these tools is critical as
common laboratory decisions, such as the deployment of a
new assay or changing a reference interval, could have
unintended consequences on both rule-based and AI-
driven CDSSs. In addition to the data and algorithmic va-
lidity of these approaches, it is also crucial to assess the im-
pact of such tools on the relevant clinical outcomes. Even
in situations when experts would expect an ML-triggered
intervention would be likely to improve clinical outcomes
and very unlikely to cause harm, recent studies have found
that this may not always be the case (136).

Key Barriers

While the potential for the application of ML in labora-
tory medicine is massive, the progress to date has been
modest. This gap is due to a combination of many fac-
tors, including the complexity of pathophysiology, risks
of automation, limited access to data and tools, and in-
adequate data quality.

THE COMPLEXITY OF PATHOPHYSIOLOGY

A fundamental challenge is that medicine is compli-
cated. Laboratory tests provide snapshots of bits of de-
scriptive information. However, there are many ways in
which normal physiology can be disrupted, and within
each pathology, there is considerable between-patient
variability. Whether ML models can be built with suffi-
cient sophistication to achieve the desired clinical per-
formance for complex problems, such as screening for
asymptomatic disease, remains an open question.
Additional testing comes at higher costs and runs the
risk of false-positive findings and overmedicalization.
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Thus, when considering whether to implement ML for
a particular clinical use case, we need to understand the
full implementation context and evaluate ML
approaches as we would any other clinical practice or
laboratory test by performing analytical validations and
verifying or establishing clinical effectiveness (137).

RISKS OF IMPLEMENTING ML IN PRACTICE

The decision to implement a new process in clinical
practice requires a comprehensive assessment of risks
and benefits. There is considerable uncertainty and po-
tential risk in adopting any innovative technology, in-
cluding ML for clinical care. Because of the novelty of
some ML approaches, the guidelines and regulations for
developing, assessing, and monitoring ML tools are un-
der active development. This lack of best practices has
allowed premature or poor applications of ML in clinical
practice and contributed to the overall slow implemen-
tation of useful tools (136, 138, 139).

One way of mitigating the risks of implementing
ML is for models to make recommendations to labora-
torians or providers rather than automatically determin-
ing clinical actions. A step in this direction that can
mitigate risk while enabling more automation is to use
ML models that are interpretable whenever possible.
Interpretability is an enigmatic and heterogeneously de-
fined concept. As specified in the FDA’s draft guidance
for clinical decision support (September 2019), one for-
mulation is whether the end-user can “independently re-
view the basis for [a model’s] recommendations.” An
example of this concept is that for imaging models, it is
easier to validate models, verify individual results, and
monitor performance of a model that can highlight spe-
cific fields of relevance to the model’s prediction, such
as red blood cells suspicious for a parasite (Fig. 2). Such
a model is not fully interpretable because we cannot un-
derstand the model’s thinking, but it is considerably
more interpretable than a completely black-box model.
Ideally, if the model’s user can understand precisely why
an ML model is calling a cell, or patient, positive or neg-
ative, they can develop trust in the model and, when ap-
propriate, second-guess a model’s prediction.

UPCOMING REGULATORY FRAMEWORK

AI- and ML-based software that can continuously learn
presents a novel challenge for existing premarket ap-
proval pathways by the FDA. While the FDA has
cleared AI/ML-based software in the past, until recently,
these applications have only leveraged algorithms that
are locked and are not continuously updating via analy-
sis of newly acquired data (133). Due to the locked na-
ture of these models, the output, or answer, will be the
same for a given set of input data throughout the life
span of the product. Accordingly, novel regulatory
frameworks are needed for algorithms designed to

continuously analyze new data, learn, and behave adap-
tively. To this end, in recent years, the FDA has incre-
mentally progressed toward the development of a formal
regulatory framework for the approval and oversight of
AI/ML-based software (i.e., Software as a Medical
Device), with particular focus on how to manage their
adaptive nature. Principal components of this newly
proposed framework include predetermined change
control plans, which specify “what” aspects of the algo-
rithm will change and “how” the manufacturer will ef-
fectuate that change. In addition, the FDA will seek to
ensure good ML practices are used in product develop-
ment and oversight of ML algorithms, promote trans-
parency regarding device function, minimize algorithm
bias and optimize robustness, and monitor real-world
performance. Similarly, the FDA has also issued draft
guidance on the separate but related topic of CDSSs,
which, in some instances, may also be classified as
Software as a Medical Device (140).

As medical devices leveraging AI/ML continue to
proliferate in the clinical laboratory and EHR, under-
standing pre- and postmarket approval pathways will be
essential. It remains unclear whether the initial valida-
tion and ongoing monitoring of ML algorithms would
be the responsibility of the vendor, end-user, or a com-
bination thereof. Concepts outlined in draft regulatory
guidance, regarding good ML practice and methods for
algorithm validation, are generally analogous to good
laboratory medicine practice. Validation and monitoring
of algorithms will reduce the risk of bias, overfitting,
and performance degradation over time and, much like
a laboratory test, can limit the impact of such issues on
patient care and outcomes (4, 134, 141). Furthering
ML education in laboratory medicine will likely assist
laboratory professionals in understanding the funda-
mental purpose of why AI/ML technologies require
close monitoring, thereby improving the adoption and
implementation of these practices. Lastly, validation and
monitoring ML algorithms will likely come with diffi-
culties in collating the necessary data and presenting it
to end-users for efficient review.

LIMITED ACCESS TO DATA AND TOOLS

Training models to grasp medical complexity requires a
lot of data. The magnitude of information needed often
necessitates learning from data collected as part of clini-
cal practice. Unfortunately, these data exist in silos, and
there are many obstacles to aggregating said data.

Clinical data are siloed in part because of concern
for patient privacy and ambiguity regarding who owns
patients’ data. The use of patient data for research
requires explicit consent or a waiver of consent because
of the risk of reidentification and unauthorized access to
sensitive data (142, 143). While the potential long-term
benefits to the practice of medicine are substantial, the

Review

1476 Clinical Chemistry 67:11 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/clinchem

/article/67/11/1466/6374790 by U
niversity of Louisville user on 05 N

ovem
ber 2021



concern for the individual has been held as paramount.
Movements toward more broadly consenting patients
for research are now empowering patients to decide
whether to share their data and contribute to these
efforts (144).

The usefulness of patients’ data has also made such
data a valuable commodity that health systems have
been reticent to share. However, this has been changing
rapidly as health systems and patient groups are making
data available in federated research networks (145–147),
contributing to health information exchanges (148),
publishing deidentified data sets for proof-of-concept re-
search (149), and sharing data with interested compa-
nies. In addition, within clinical practice, EHR
applications have begun enabling sharing of data be-
tween different health systems.

A related challenge to data access and aggregation is
limited interoperability, which refers to the inconsis-
tency of the processes and practices for transmitting data
between devices and software applications (150, 151).
There are specifications for how to transmit laboratory
data between devices, such as an instrument and the lab-
oratory information system (152). However, the specifi-
cations that are in common use are so broad that
enormous effort is needed to program each interface,
and substantial amounts of information can be lost be-
tween the instrument and the EHR. As a result, aggre-
gating data across clinical practices requires enormous
harmonization efforts. To harmonize data, each aggrega-
tion effort invests inordinate time in the formulation of
and mapping to a common data model with standard
vocabularies (153). However, to our knowledge, none
of these aggregation efforts contain the metadata needed
to sufficiently interpret and harmonize laboratory test
results, likely due to the complexity of the data, poor ac-
cess to the pertinent metadata, and limited participation
from and engagement with clinical laboratory experts.

Improvement to the interoperability of laboratory
data is possible as there are new and evolving specifications.
The Fast Healthcare Interoperability Resources specifica-
tion is richer, more detailed, and built atop computer in-
dustry standard conventions (154). More detailed and
precise specifications have also been developed specifically
for communication within clinical laboratories, published
as the Laboratory Analytical Workflows by the IVD
Industry Connective Consortium and the Integrating the
Healthcare Enterprise and further codified in Clinical and
Laboratory Standards Institute AUTO16. These specifica-
tions spell out how to transmit critical information regard-
ing laboratory test results, such as the unique device
identifiers that precisely label a test result’s performing in-
strument and method. These achievements bring the po-
tential to considerably streamline laboratory data exchange
but have been minimally adopted thus far. If laboratory
community members were more engaged in and advocat-
ing for interoperability, it could catalyze the implementa-
tion of these new standards.

These same barriers also exist within individual
clinical laboratories. Our information systems and inter-
faces are not designed to flexibly enable the implementa-
tion of new computational tools. Poor interoperability
between devices and information systems makes it ex-
tremely challenging to access data or to connect external
tools that use ML. Moreover, our information systems’
rigidity severely limits their ability to implement more
sophisticated computational methods internally. There
is progress being made on these fronts, but it has been
glacial. This slow pace is likely due to a combination of
factors, including the absence of coordinated demand
from the clinical laboratory community, immense iner-
tia to change, limited competition among information

Fig. 2. Visual example of explainable AI using integrated
gradients (IG). Original peripheral blood smear was created
and imaged on a DI-60 Integrated Slide Processing System
(Cellavision AB) using a 100�-objective and a 0.5� mag-
nifier for an effective magnification of 50�. Images are
70 � 70 (height � width) with 3-channel RGB, and a reso-
lution of 5 pixels per micron. The top row represents a nor-
mal cell, which was classified by an ML model as normal
(i.e., true negative). The bottom row represents an erythro-
cyte with a Babesia spp inclusion and was classified by a
ML model as a parasite (i.e., true positive). The IG method
highlights pixels in each image that appeared to most
heavily influence the model prediction. Highlighted pixels
are then pseudocolored using an intensity scale (e.g.,
greater influence on class prediction ¼ brighter) and sub-
sequently overlaid on the original image (right-most
column).
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system vendors, and the misalignment of incentives
across various stakeholders.

POOR DATA QUALITY AND AI ETHICS

Beyond the challenges of accessing big data, the quality
of the available data has also been a substantial barrier to
progress. Even if we had interoperable devices and com-
plete metadata, the limited standardization and harmo-
nization of laboratory tests add considerable complexity
to learning ML models that can generalize across clinical
practices. In addition, as clinical data are not collected
for the purpose of secondary research, the data include
considerable bias, including the consequences of inequi-
ties of care associated with patients’ race (155). This
bias can manifest as differential data missingness or can
surreptitiously affect predictors or outcomes. Naı̈ve ML
approaches to learning predictive models that do not ac-
count for the data ascertainment schema or inappropri-
ately make use of biased surrogate outcomes risk
maintaining or exacerbating these biases (156). The eth-
ical use of ML requires conscientious consideration of
the clinical use case how the ML application will affect
diverse patients. The importance of such efforts is illus-
trated by the controversy of the inclusion of race in the
calculation of estimated glomerular filtration rate (157).
Race was included in the estimated glomerular filtration
rate prediction model because it improved predictive
performance in the available training data, but its inclu-
sion reinforces race-based medicine, only modestly
improves performance, and likely exacerbates underlying
inequities in the care of patients with chronic kidney
disease (158).

Future Directions and Opportunities

Medical device manufacturers are actively exploring
diagnostic approaches that are newly feasible with AI.
We can likely expect the further expansion of IVD tech-
nologies into important and potentially unanticipated
directions. A salient and recent example is how the
Accelerate PhenoVR is used to provide rapid antimicrobial
susceptibility test results from real-time digital image
analysis of bacterial cell growth. Similarly, Chen et al.
recently described the application of AI to quantify pro-
tein biomarkers within a microbubbling digital assay
format using bright-field smartphone microscopy (159).
Further, researchers are continuing to investigate
whether AI can enable measurements of nontraditional
analytes such as those found in the analysis of breath,
the pupillary light reflex, or vocal patterns (160–162).
While the latter examples may fall beyond the scope of
traditional laboratory medicine, it remains an open
question how such tests would fit into existing point-of-
care management strategies and regulatory structures.

Computational pathology is an emerging field that
incorporates AI and extends beyond digital pathology
and whole-slide imaging. Computational pathology is a
pathologist-led diagnostic approach involving the inte-
gration and analysis of raw clinical data, including mul-
tiple data sources (e.g., laboratory information system,
EHR, imaging, etc.) (163). Luo et al. recently published
a straightforward example of this that involved the com-
bination of patient demographic information and rou-
tinely available laboratory measurements to predict
disease or future laboratory results. They demonstrated
high accuracy with their method and highlighted the
potential value of multianalyte analyses (164). While
the results of preliminary efforts in computational pa-
thology are promising, there are a multitude of chal-
lenges to be considered when using real-world data.
One of the major challenges confronted when deploying
prediction models in production environments is the
sparsity of data. Researchers have investigated technical
solutions to ameliorate the issues associated with sparse
matrices, and ML-based methods to impute missing
data have shown promise in improving the accuracy of
laboratory data-based predictions (165). Further pro-
gression of computational pathology will undoubtedly
require the close coordination between computational
specialists, pathologists, and clinicians to ensure high-
quality and clinical useful results.

As discussed in previous sections, there are many
open questions regarding the best practices and regula-
tory frameworks for ML in clinical practice. Research on
ML has demonstrated repeatedly that the technology is
susceptible to many kinds of errors such as overfitting.
This may limit the generalizability of a model to future
data and result in unexpected deviations from previous
apparent performance. These types of errors intuitively
resemble the random and systematic error we observe
with IVD assays. Although the precise error mechanisms
are different, much can be learned from well-established
clinical laboratory frameworks for ensuring quality.
Laboratory practices of quality control and quality assur-
ance are excellent correlates for appropriate postdeploy-
ment monitoring of ML models in production
environments. While such monitoring is not yet re-
quired, draft guidance on these issues from the FDA
and other regulatory bodies suggests that mandates in
this area are forthcoming. However, delineations of re-
sponsibility for such provisions remain to be defined
(134). Furthermore, ML-driven approaches can main-
tain or exacerbate healthcare disparities due to biases
present in the data or within existing care delivery sys-
tems. It is critical that best practices and regulatory
frameworks consider how to evaluate for and mitigate
these effects.

Beyond the technically oriented future of AI, sociali-
zation of AI technology with laboratorians and clinicians is
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an area of active discussion among professional organiza-
tions and researchers. A recent survey of laboratory profes-
sionals indicated that a quarter of respondents were
concerned about potential job loss and quality issues with
AI implementation. In addition, 72% of respondents were
unsure or indicated they have never been in contact with
an AI application in their daily activities. These results may
suggest that, as the presence of AI continues to increase in
the laboratory, there will be a need to promote education
on technological awareness, ML literacy, and the scope
and purpose of AI among laboratorians (166). Historically,
computer science and AI have progressed much faster than
clinical medicine. While there is a perceived benefit of
implementing newly developed AI technologies in real
time as they emerge, there remains a need to resolve the
discrepant pace of the 2 fields and emphasize the need for
evidence-based implementations of AI/ML-based models
(167). Lastly, as many of the models being implemented,
both in and outside the laboratory, rely on data generated
by the laboratory, laboratorians are uniquely qualified to
be stewards of these technologies, which offers a potential
area of growth opportunity for the profession (168).

Finally, additional opportunities exist for business
intelligence applications in laboratory medicine, particu-
larly in how the clinical laboratory demonstrates value to
healthcare delivery organizations amidst shifting reim-
bursement paradigms. While laboratory services have his-
torically been reimbursed in a fee-for-service structure,
value-driven healthcare initiatives are poised to change
the utilization and management of laboratory resources.
Recently, the Laboratory 2.0 concept has been intro-
duced to encourage the application of laboratory practice
principles and the analysis of laboratory data to optimize
clinical care practices traditionally outside of the labora-
tory’s domain (169). While there are limited examples of
business intelligence platforms assisting in laboratory
management in this regard, this is an area of big potential
and where we are likely to see expansion soon.

AI and ML have and will continue to dramatically
alter the way in which laboratory data are analyzed and

drive clinical care decisions. The ongoing development
of more sophisticated ML methods, coupled with
emerging laboratory measurement technologies, should
lead to further improvements in clinical efficiency and
patient outcomes. It is paramount that these approaches
be rigorously designed, evaluated, and monitored to en-
sure quality, achieve effectiveness, and minimize harm.
Laboratorians have an important role to play in the de-
velopment and stewardship of ML in laboratory medi-
cine to enable us to realize the full potential of data-
driven healthcare.

Nonstandard Abbreviations: AI, artificial intelligence; ML, machine
learning; IVD, in vitro diagnostics; CDSS, clinical decision support
system; FDA, Food and Drug Administration; MIC, minimum inhibi-
tory concentrations; NGS, next-generation sequencing; EHR, elec-
tronic health record.
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