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ABSTRACT

One of the most important and challenging “knowledge ex-
traction” tasks in bioinformatics is the reverse engineering
of genes, proteins, and metabolites networks from biolog-
ical data. Gaussian graphical models (GGMs) have been
proven to be a very powerful formalism to infer biological
networks. Standard GGM selection techniques can unfortu-
nately not be used in the “small N, large P” data setting.
Various methods to overcome this issue have been devel-
oped based on regularized estimation, partial least squares
method, and limited-order partial correlation graphs. Sev-
eral studies compared the performances among several net-
work construction algorithms, such as PLSR, SCE, and ES,
ICR and PCR, Ridge regression, Lasso and adaptive Lasso,
to see which method is the best for biological network con-
structions. Each comparison analysis resulted in that each
construction method has its own advantages as well as dis-
advantages according to different circumstances, such as the
network complexity. However, it is almost impossible to
recognize the complexity of the network before estimation.
Thus, we develop an Ensemble method which is model av-
eraging to construct a metabolic network. Our simulation
studies show that the ensemble averaging based network
construction has F1 score larger than these of other meth-
ods except only for Adaptive Lasso, reflecting its ability to
account for uncertainty of network complexity.
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1. INTRODUCTION

Construction of metabolic association networks is a crit-
ical data analysis step in systems biology. The metabolic
association network is a collection of metabolite relations
during cellular processes. A relatively smaller number of
studies have been reported for metabolic network construc-
tion. Arkin et al. [1] predicted interactions within reaction
networks over time for the glycolytic pathway. Steuer et
al. [13] examined the relationship between data generated
from networks and biochemical pathways using potato plant
metabolism. Ursem et al. [16] constructed the metabolic
networks from metabolite abundance in different tomato
genotypes. All of these studies used the Pearson’s corre-
lation coefficients to construct the metabolic networks. A
major drawback of Pearson’s correlation-based networks is
unable to distinguish between the direct and the indirect
associations. On the other hand, Gaussian graphical mod-
els (GGMs) reveal direct associations with conditional in-
dependence/dependence among variables, using partial cor-
relation coefficients that are calculated by the correlation
of two variables after removing the effect of other variables
[3]. GGMs have been employed in metabolomics for sev-
eral studies. Greenberg et al. [4] used the pseudo-inverse
method to estimate the partial correlation for the study of
the influence of enzyme evolution on Drosophila metabolic
pathway. Chan et al. [2] also constructed the metabolic net-
work to quantify metabolites present in Arabidopsis thaliana
using the first-order correlation where the effects of only one
variable are removed. Theis et al. [14] used GGMs for recon-
structing pathway reactions from human population cohort
when the size of samples (experiments) was larger than the
number of variables (metabolites).

The key idea behind GGMs is to use partial correlations
as a measure of independence of any two variables (metabo-
lite peaks). This makes it straightforward to distinguish the



direct interactions from the indirect interactions. Note that
the partial correlations are related to the inverse of the cor-
relation matrix and the missing edges indicate conditional
independence. Application of GGMs to metabolomic data
is quite challenging because the number of metabolites (P)
is usually much larger than the number of available samples
(N) (“small N, large P”), and the classical/standard GGM
theory is not valid in a small sample setting. To resolve
this difficulty, some methods have been introduced mainly
in gene expression analysis. All of these methods can be
categorized into three categories: (i) analysis with classic
GGM theory, (ii) using limited order partial correlations,
and (iii) application of regularized GGMs including partial
least squares based methods. For small N, large P data,
the methods from category (iii) are popular [8]. Several
studies compared the performances among several network
construction algorithms, such as the partial least squares
regression (PLSR), shrinkage covariance estimator (SCE),
and extrinsic similarity (ES), Independent component and
principle component regression analyses (ICR and PCR, re-
spectively), Ridge regression, Lasso and adaptive Lasso, to
see which method is the best for biological network construc-
tions [7]. All comparison studies concluded that each con-
struction method has its own advantages and disadvantages
according to different circumstances, such as the network
complexity. Therefore, it is highly demanded to account for
uncertainty of network complexity, giving an insight for an
ensemble averaging.

For the aforementioned reasons, we develop a metabolic
network construction algorithm using ensemble model aver-
aging (EMA). Using EMA has several benefits such as im-
proved performance over any single network and the lessened
risk of overfitting [6]. In particular, Madigan and Raftery[10]
demonstrated that EMA performs better average predictive
ability than using any single model in terms of a logarithmic
scoring rule.

2. METHODS

2.1 Single network construction

Let X = (zi;) € R™*? be a data matrix with p metabo-
lites (variables) and n experimental sample size, x; a col-
umn vector as (Z;1, - - ,xip)T, and the sample mean vector
T = % Z?zl x;, where x;; is the ith observation on the jth
random variable and p < n. The sample variance-covariance
matrix is p X p matrix defined by
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Then a partial correlation coefficient p;;,i,5 =1,--- ,p, is
defined from an inverse variance-covariance matrix S~! =
(0:;) as follows [17]:
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Once all the partial correlation coefficients are estimated,
statistical testing should be carried out over each of the
estimated partial correlation coefficients to find significant
associations. Then, the association network is constructed
using the edges with the significant partial correlation coef-
ficients. However, the statistical procedure to identify sig-

nificant partial correlations involves a multiple comparison
problem since many hypotheses are tested simultaneously.
To overcome this difficulty, false discovery rate (FDR) con-
trol is used in network construction.

Schafer and Strimmer [12] proposed shrinkage covariance
estimator (SCE) to estimate the partial correlation when
the variance-covariance matrix S is singular. Under singu-
larity of covariance matrix, an alternative method is to trade
off the unbiased sample covariance S and low dimensional
shrinkage target matrix T; S = sT'4(1—s)S,where s € (0, 1]
is shrinkage intensity. The optimal value of the tuning pa-
rameter s is analytically determined and estimated from the
data. For a more detailed description, refer to Schafer and
Strimmer [12].

Principle component regression (PCR) and partial least
squares regression (PLSR) [11] circumvent high-dimensional
problem by decomposing a data matrix X into orthogonal
scores T and loadings P, X = TPT + Xg, and regressing de-
pendent variable Y on the first r important columns of the
scores T' , where Xg is the remains of decomposition. The
differences between PCR and PLSR are as follows: PLSR
uses both dependent and independent variables to reduce
data dimension, while PCR uses only independent variables,
and PCR/PLSR finds orthogonal features based on the nor-
mality assumption.

Ridge regression is a shrinkage method which imposes a
penalty on the size of regression coefficients. The ridge co-
efficients minimize a penalized residual sum of squares,
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where A > 0, which is a complexity parameter and controls
the amount of shrinkage. A larger value of A\ results in a
great amount of shrinkage. The coefficients are shrunk to-
ward zero (and each other) [5].

The Lasso (Least Absolute Shrinkage and Selection Oper-
ator), which was first proposed by [15], is a shrinkage method
like ridge, but it has subtle and important differences from
the ridge regression. The Lasso is a penalized least squares
procedure that minimizes residual sum of squares subject to
the non-differentiable constraint expressed in terms of the
L1 norm of the coefficients [9]. That is, the Lasso estimator
is given by
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This L1 norm constraint makes the solutions nonlinear in
the y;, resulting in no analytical solution different from ridge
regression.

The adaptive lass was proposed as a means for fitting
models sparser than Lasso. The advantages of the Adap-
tive Lasso are that given the pilot estimates, such as the
univariate regression coefficients, its objective function be-
comes convex in parameters and that it recovers the true
model under more general conditions than does the lass if
the pilot estimates are v/N consistent.

2.2 Ensemble network construction

Gaussian Graphical model (GGM)-based methods have
been widely used in genomics to infer biological networks.
However, the performance of various GGM-based methods



for the construction of metabolic association networks re-
mains unknown in metabolomics. For this reason, the per-
formance of PCR, ICR, SCE, PLSR, and ES methods in con-
structing metabolic association networks was compared by
estimating partial correlation coefficient matrices when the
number of variables was larger than the sample size in our
previous study [7]. The previous study demonstrated that
PCR and ICR discover more significant edges and perform
better than PLSR and SCE, when the discovered edges are
evaluated using KEGG pathway. These results suggest that
the metabolic network is more complex than the genomic
network and therefore, PCR and ICR have the advantage
over PLSR and SCE in constructing the metabolic associa-
tion networks. Overall, this study showed that the network
complexity seems to play a more important role in the rel-
ative performances among different construction methods,
as mentioned before. However, the network complexity can-
not be inferred until network construction. Therefore, we
propose an ensemble averaging approach to deal with the
uncertainty of the network complexity. To this end, we
use the aforementioned six methods to incorporate the en-
semble averaging method: SCE (1st method), PCR (2nd
method), PLSR (3rd method), Lasso (4th method), Adap-
tive Lasso (5th method), and Ridge regression (6th method).
In other words, we take the average of each association over
the six partial correlations estimated. That is, for each jth
association p(j), we estimated the six partial correlations
(p1(4), p2(4), -~ ps(4)), where py(j) is the estimated par-
tial correlation of the jth association by the kth method.
Then the average association of the kth pair of two metabo-
lites (peaks) was obtained by
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where wy, = %, ng = ijl pr(j), and J is the total

number of edges. Then we apply the false discovery rate
(FDR) for each p(j), j = 1,---,J, to find the significant
edges.

2.3 Peformancecriteria

The true positive (TP) is the number of elements whose
true value and predicted outcome are positive, the false neg-
ative (FN) is the number of elements whose true value is
positive but predicted outcome is negative, and the false
positive (FP) is the number of elements whose true value
is negative but predicted outcome is positive. The perfor-
mances of all methods were then evaluated using the follow-
ing four criteria:

e The true positive rate (TPR): TPR is the proportion

of the actual positives which are correctly predicted:
_ _ TP
TPR=7p1Fn-

e The positive predictive value (PPV): PPV is the pro-
portion of subjects with positive output results which
are correctly predicted: PPV = %PFP.

e F'1 score: It is a measure of accuracy, which is the

: . _ 2TPR-PPV
harmonic average of TPR and PPV: F1 = S50

Note that since the true edges of simulated data are known,
we could calculate the above measures directly.

Figure 1: The true network structure. The number
of nodes (metabolites) and the network density are
20 and 15 %, respectively.

3. RESULTS

A comparison was performed to deal with the uncertainty
of the network complexity using the proposed ensemble av-
eraging approach to compare with the six single network
construction methods. To do this, we simulated the true
network structure using the R package igraph with the num-
ber of nodes (metabolites) of 20 and the network density of
15%. The simulated true network structure is depicted in
Figure 1. Then using this true network structure, we gen-
erated 50 simulated data and then applied to the six single
network construction methods as well as the proposed en-
semble averaging method. After that, as mentioned before,
the performance of each method was evaluated by TPR,
PPV, and F1 score.

Table 1 displays the TPRs and PPVs of each method us-
ing the 50 simulated data. Lasso performs the best among

Table 1: Ensemble network construction with SCE,
PCR, PLSR, Lasso, Adaptive Lasso, and Ridge re-
gression using simulated data. The number of nodes
(metabolites), the sample size, and the network den-
sity are 20, 50, and 15%, respectively. The mean and
standard deviation (SD) of true positive rate (TPR)
and positive predictive value (PPV) are calculated
after 50 simulations.
Method TPR PPV
Mean SD Mean SD
SCE 0.4886 0.1144 0.8290 0.1057
PCR 0.4807 0.1261 0.6748 0.1306
PLSR 0.5464 0.1227 0.6892 0.1237
Lasso 0.6871 0.0818 0.5792 0.0921
Alasso 0.5293 0.0897 0.8548 0.0980
Ridge 0.5207 0.1043 0.7530 0.1188
Ensemble 0.6000 0.1258 0.6855 0.1160




Table 2: Ensemble network construction with SCE,
PCR, PLSR, Lasso, Adaptive Lasso, and Ridge re-
gression using simulated data. The number of nodes
(metabolites), the sample size, and the network den-
sity are 20, 50, and 15%, respectively. The mean and
standard deviation (SD) of F1 socres are calculated
after 50 simulations.

Method Mean SD Method Mean SD
SCE 0.6015 0.0904 PCR 0.5443 0.0941
PLSR 0.5936 0.0755 Lasso 0.6219 0.0595
Alasso 0.6472 0.0747 Ridge 0.6049 0.0759
Ensemble 0.6259 0.0910

the seven methods in terms of TPR, while Adaptive lasso
(Alasso) achieves the best performance in terms of PPV.
On the other hand, the proposed ensemble method has the
second largest TPR but the third smallest PPV. In gen-
eral, the performance of ensemble method is ranked middle
among the seven methods.

The empirical means and standard deviations (SDs) of F1
scores are displayed for each method in Table 2. Interest-
ingly, the ensemble averaging based network construction
has F1 score larger than these of other methods except only
for Adaptive Lasso, reflecting its ability to account for un-
certainty of network complexity.

4. CONCLUSIONS

We propose an ensemble network construction using the
six existing methods. As mentioned before, the performance
of the network construction algorithm is highly depending on
the network complexity. It is almost impossible to recognize
the complexity of the network before estimation, however.
In addition, it is not always guaranteed that the method
should be performed better for other circumstances even
though it worked well with a certain circumstance. There-
fore, ignoring uncertainty of network complexity can impair
the predictive performance and lead to false statements of
the associations. Thus, we proposed ensemble model aver-
aging to account for uncertainty of network complexity. As
shown in the simulation study that the network complexity
is highly related to the construction method, we took care
of the network complexity uncertainty by averaging the as-
sociations estimated by several construction methods. Our
simulation studies show that the ensemble averaging based
network construction has F1 score larger than these of other
methods except only for Adaptive Lasso, reflecting its ability
to account for uncertainty of network complexity.
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