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Compound  identification  in  gas  chromatography–mass  spectrometry  (GC–MS)  is  usually  achieved  by
matching  query  spectra  to  spectra  present  in  a reference  library.  Although  several  spectral  similarity
measures  have  been  developed  and  compared  using  a small  reference  library,  it  still  remains  unknown
how the  relationship  between  the  spectral  similarity  measure  and  the  size  of  reference  library  affects
on the  identification  accuracy  as well  as  the  optimal  weight  factor.  We  used  three  reference  libraries
to investigate  the  dependency  of  the  optimal  weight  factor,  spectral  similarity  measure  and  the  size  of
reference  library.  Our  study  demonstrated  that  the optimal  weight  factor  depends  on  not  only spectral
pectral matching
ompound identification
eight factor

similarity  measure  but also  the  size  of  reference  library.  The  mixture  semi-partial  correlation  measure
outperforms  all  existing  spectral  similarity  measures  in  all  tested  reference  libraries,  in  spite  of  the  com-
putational  expense.  Furthermore,  the  accuracy  of  compound  identification  using  a  larger  reference  library
in  future  is  estimated  by varying  the  size  of  reference  library.  Simulation  study  indicates  that  the  mixture
semi-partial  correlation  measure  will  have  the  best  performance  with  the  increase  of reference  library
in future.

© 2013 Elsevier B.V. All rights reserved.
. Introduction

Gas chromatography–mass spectrometry (GC–MS) is widely
sed to analyze chemical compounds in complex samples, where
he compounds are first separated on a GC system and further

easured on a mass spectrometer that is usually equipped with
n electron ionization (EI) ion source. Compound identification in
nalysis of the GC–MS data is usually achieved by matching the
xperimental mass spectra to the mass spectra present in a refer-
nce library, i.e., mass spectral matching. To improve the accuracy
f compound identification, several mass spectral similarity meas-
res have been developed, including Stein and Scott’s composite
imilarity [1], Hertz similarity index [2], probability-based match-
ng system [3], normalized Euclidean distance (L2-norm) [1,4,5],
nd absolute value distance (L1-norm) [1,5], Most recently, Koo
t al. introduced Fourier and wavelet transform-based composite
DFT/DWT) measures [6], and Kim et al. proposed mixture semi-
artial and partial correlation-based measures [7].
The intensity of fragment ions in an EI MS  spectrum tends to
e smaller with the increase of the m/z  value. Such a tendency
educes the contribution of large fragment ions to the spectral

∗ Corresponding author. Tel.: +1 502 852 8878; fax: +1 502 852 8149.
E-mail address: xiang.zhang@louisville.edu (X. Zhang).

021-9673/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.chroma.2013.05.021
similarity score. To increase the weight of peak intensities of frag-
ment ions with large m/z values, the intensities and m/z values are
usually transformed with a set of weight factors for the compu-
tation of spectral similarity. Stein and Scott [1] suggested weight
factor (0.5, 3) for power transformation of fragment ion intensity
and m/z value, respectively. They also pointed out that weight fac-
tor (0.5, 2) was  equally effective. Horai et al. reported weight factor
(0.5, 2) using the MassBank database [8]. Recently, Kim et al. sug-
gested weight factor (0.53, 1.3) using the weighted cosine similarity
as a spectral similarity measure and the main EI MS  library of the
NIST/EPA/NIH Mass Spectral Library 2011 (NIST11) as the reference
library [9].

Kim et al. also compared the performance of compound identi-
fication of multiple mass spectral similarity measures, including
weighted cosine, Stein and Scott’s composite, DFT/DWT-based
composite and mixture partial/semi-partial correlation similarity
scores using a small reference library, NIST Chemistry WebBook
library (WebBook) [7]. Although they addressed that the optimal
weight factor is dependent on the mass spectral library, it still
remains unknown whether the optimal weight factor depends on
spectral similarity measure and the size of reference library.
With the rapid development of EI MS  library, more similar EI
MS spectra are added to the reference library, making it more
challenging for high accuracy compound identification. The size of
reference library will continuously increase in future. It is important

dx.doi.org/10.1016/j.chroma.2013.05.021
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.chroma.2013.05.021&domain=pdf
mailto:xiang.zhang@louisville.edu
dx.doi.org/10.1016/j.chroma.2013.05.021
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o foresee the compound identification accuracy of mass spectral
atching with the increasing size of reference library. It is still

nknown which spectral similarity measure is the best in an even
arger mass spectral database.

The objectives of this study are first to compare the performance
f the literature reported spectral similarity measures using the
IST11 library and investigate the dependence among the optimal
eight factor, spectral similarity measure and the size of reference

ibrary. We  further estimate the performance of existing spectral
imilarity measures in a larger reference library to be developed in
uture.

. Materials and methods

.1. NIST EI mass spectral databases

The latest version of NIST/EPA/NIH Mass Spectral Library 2011
ontains two EI mass spectral libraries, the main EI MS  library
NIST11) and the replicate EI MS  spectra. The main library and
he replicate EI MS  spectra have 212,961 and 30,932 mass spectra,
espectively. The main EI MS  library of NIST/EPA/NIH Mass Spectral
ibrary 2005 (NIST05) has 163,198 mass spectra. The NIST Chem-
stry WebBook library (WebBook) extracted on November 28, 2011
onsists of 23,721 mass spectra.

In this study, the replicate EI MS  spectra of the NIST/EPA/NIH
ass Spectral Library 2011 are used as a query spectral library,
hile the WebBook, NIST05 and NIST11 are used as reference

ibrary, respectively. The query spectral library has 30,932 mass
pectra for 19,788 unique compounds. To ensure that all com-
ounds given the query spectra are present in each of the three
eference libraries, the replicate library is filtered as follows: the
nterception of the three reference libraries is first calculated based
n compound CAS (Chemical Abstracts Service) registry numbers;
ny compound in the replicate library that does not have a cor-
esponding CAS number in the interception of the three reference
ibraries is removed from the replicate library. This results in a set of
ltered query spectra with 23,001 mass spectra for 13,154 unique
ompounds. Only 43 mass spectra in the NIST11 reference library
ave fragment ion m/z values larger than 1000 and therefore, the

ragment ions with m/z  > 1000 in the reference library are further
emoved to minimize computation burden.

.2. Weighted cosine similarity

Let us consider the two spectral signals X = (x1, x2, . . .,  xn) and
 = (y1, y2, . . .,  yn), which are the query and reference mass spectra,
espectively. In order to calculate the spectral similarity of these
wo mass spectra, one of the simple mathematical ways is to use
osine correlation formula defined as follows:

C (X, Y) = X ◦ Y

||X|| · ||Y || (1)

here the inner product X ◦ Y = ∑n
i=1xi · yi and the norm ||X|| =∑n

i=1xi
2)

1/2
. Stein and Scott demonstrated the importance of

eight for intensity and m/z value [1]. The weighted spectra X, Y
re considered as follows:

XW = (x1
a · m1

b, . . . , xn
a · mn

b) and
YW = (y1
a · m1

b, . . . , yn
a · mn

b) (2)

here mi, i = 1, . . .,  n is m/z value of the ith fragment ion, and
, b are the weight factors for peak intensity and m/z value,
 1298 (2013) 132– 138 133

respectively. The weighted cosine similarity SWC(X, Y) is then
defined as follows:

SWC(X, Y) = SC (XW , YW ) = XW ◦ YW

||XW || · ||YW || (3)

2.3. Stein and Scott’s composite similarity

Stein and Scott firstly defined a ratio of peak pair SR as follows
[1]:

SR(X, Y) = 1
NX∧Y

X∧Y∑
i

(
yi

yi−1
· xi−1

xi

)n

(4)

where n = −1 or 1 if the term in parentheses is less than or greater
than unity, respectively, xi, yi are all non-zero intensities having
common m/z value, and the value NX∧Y is the number of non-zero
peaks in both the reference and the query spectra. The composite
similarity is then calculated by

SSS(X, Y) = NX · SWC(X, Y) + NX∧Y · SR(X, Y)
NX + NX∧Y

(5)

where NX is the number of non-zero peak intensities existing in the
query spectra. As for a part of weighted cosine similarity, they set
weight factor to (a, b) = (0.5, 3).

2.4. Discrete Fourier- and wavelet-transform composite similarity

Discrete Fourier transform (DFT) converts an original spectral
signal X = (x1, . . .,  xn) into a new signal XF = (x1

F, . . .,  xn
F) as follows

[10]:

xk
F =

n∑
d=1

xdexp
(

−2�i

n
kd

)
, k = 1, . . . , n (6)

where the notation i is the imaginary unit and exp(− (2�i/n)kd)
is a primitive nth root of unity. By Euler’s formula,
exp(i�) = cos � + isin �, the original equation becomes

xk
F =

n∑
d=1

xd cos
(
− 2�

n kd
)

+ i

n∑
d=1

xd sin
(
− 2�

n kd
)

, k = 1, . . . , n (7)

We  have a new transformed signal XFR consisting of real part of xk
F

as follows:

XFR = (x1
FR, . . . , xn

FR) (8)

with

xk
FR = Re(xk

F ) =
n∑

d=1

x · cos
(
− 2�

n kd
)

(9)

where a function Re(·) is the real part of imaginary number or func-
tion

The discrete wavelet transform of a signal X = (x1, . . .,  xn) is calcu-
lated by passing it through a low-pass filter g and a high-pass filter
h, resulting in two  subsets of signals: approximations and details
[11]. The coefficients of approximations and details are defined as
follows:

xk
WA =

n∑
d=1

xdg[2k − (d − 1)] (10)
xk
WD =

n∑
d=1

xdh[2k − (d − 1)] (11)
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Table 1
The optimal weight factors and identification accuracy of different mass spectral
similarity measures.

Method WebBook NIST05 NIST11

WC Weight factor (0.55, 1.3) (0.53, 1.1) (0.51, 1.1)
Accuracy 0.845 0.824 0.801

SS  Weight factor (0.4, 1.2) (0.3, 0.9) (0.3, 0.9)
Accuracy 0.834 0.805 0.785

DFT Weight factor (0.49, 1.5) (0.45, 1.5) (0.49, 2)
Accuracy 0.833 0.812 0.785

DWT  Weight factor (0.47, 2) (0.49, 1.4) (0.49, 1.4)
Accuracy 0.836 0.815 0.789
34 I. Koo et al. / J. Chroma

here g and h are the low-pass filter and the high-pass filter, respec-
ively. This study used Daubechies’ scaling functions with an order
f 4 as for low-pass filters [11]. Then the approximation and detail
WTs of an original signal X are as follows, respectively:

WA = (x1
WA, . . . , xn

WA) and XWD = (x1
WD, . . . , xn

WD) (12)

The DFT with real and DWT  with detail composite similarity are
efined as follows [6]:

DFT(X, Y) = NX · SWC(X, Y) + NX∧Y · SC (XFR, YFR)
NX + NX∧Y

(13)

nd

DWT(X, Y) = NX · SWC(X, Y) + NX∧Y · SC (XWD, YWD)
NX + NX∧Y

(14)

.5. Mixture semi-partial composite similarity

The mixture semi-partial correlation �X(Y|Z) between X and Y
ith controlling variables Z = {Z1, ..., Zn} is the correlation between

he random variable X and residuals RY|Z of Y on Z, and is repre-
ented by

X(Y |Z) = Cor(X, RY |Z) = Cov(X, RY |Z)√
Var(X) · Var(RY |Z)

(15)

here the residuals RY|Z of Y on Z is the difference between
bserved and estimated output data, and is calculated from the lin-
ar regression of Y on Z corresponding to an ordinary least square

olution w∗
y = (ZTZ)

−1
ZTY of linear system as follows:

Y |Z = Y − Zw∗
y = Y − Z(ZTZ)

−1
ZTY (16)

Suppose that X is a query mass spectrum and Y = {Y1, Y2, ..., YN}
s a set of N mass spectra in the reference library. The semi-partial
orrelation between X and Yi given Y (i) is calculated by

X(Yi |Y (i)) = Cor(X, R
Yi |Y (i) ) (17)

here a set Y (i) = Y \ {Yi} = {Y1, . . .,  Yi−1, Yi+1, . . .,  YN} and \ denotes
he set minus operator. Note that X, Yi and Y (i) in the previous
quations have the identical roles as X, Y and Z, respectively. Given
he rank k, the semi-partial correlation is defined by

s,k,c(X, Y) = �
X(Yi |Y (i,k)) = Cor(X, R

Yi |Y (i,k) ) (18)

here Y (i,k) = {Yj ∈ Y (i)|Rank(SWC(X, Yj)) ≤ k} and Rank(SWC(X, Yj))
s the rank of the similarity score SWC(X, Yj) in descending order.
hen the mixture semi-partial correlation is defined by [7]

SP(X, Y) = (1 − w) · SWC (X, Y) + w · Ss,k,c(X, Y) (19)

here w is a coefficient ranging from 0 to 1 (w is set as 0.1 in this
tudy based on [7]).

.6. Performance measure

The performance of each mass spectral similarity measure for
ompound identification is evaluated as follows:

ccuracy = number of mass spectra identified correctly
number of queried spectra

(20)

f a spectrum in reference library having the largest mass spectral
imilarity score is considered as the identification result of a query
ass spectrum, a correct identification refers that the query spec-

rum and the spectrum from the reference library have the same

AS registry number. In case that the top k ranked mass spectral
imilarity scores are considered, an identification is considered as

 correct identification as long as one of the top k ranked reference
pectra has the same CAS number as the query spectrum.
SP  Weight factor (0.55, 0.1) (0.57, 1.4) (0.57, 1.4)
Accuracy 0.848 0.829 0.806

3. Results and discussion

We  evaluated the performance of compound identification
methods, including weighted cosine (WC), Stein and Scott’s com-
posite (SS), discrete Fourier- and wavelet-transforms composite
(DFT and DWT), and mixture semi-partial similarities (SP). To find
the optimal weight factor w = (a, b) of power transformation for
peak intensity and m/z value, we  considered {0.1, 0.2, 0.3, 0.4, 0.45,
0.47, 0.49, 0.51, 0.53, 0.55, 0.57, 0.59, 0.61, 0.65, 0.7, 0.8, 0.9, 1, 2, 3}
as intensity weight factors and {0.1, 0.5, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4,
1.5, 2, 3, 4, 5} as m/z weight factors, respectively. The optimal weight
factor is a pair of peak intensity and m/z weight factors that pro-
vides the best accuracy for compound identification. A total of 280
pairs of weight factors (20 intensity factors and 14 m/z  factors) were
tested. Our previous study showed that the optimal weight factor
for WC  similarity and the SP similarity is w = (0.53, 1.3). Therefore,
a dense interval was  used near the optimal values, while a sparse
interval was used in the other region.

3.1. Optimal weight factors

Table 1 lists the optimal weight factor and the corresponding
identification accuracy obtained for each combination of spectral
similarity measure and reference library. It can be see that the value
of optimal weight factor is dependent on both the reference library
and the method of mass spectral similarity measure. In case of WC,
the optimal weight factors discovered in this work for NIST11 are
not identical to any literature reported values, but these discovered
weight factors are within the top 10% of the weight factors (i.e.,
0.5 ≤ a ≤ 0.55 and 1.1 ≤ b ≤ 1.4) discovered by Kim et al. [9], which
used the same spectral database NIST11 as the reference library.
It should be noted that the query library of this study is different
from that of Kim et al. [9]. That is, the query library spectra used
in this study was extracted from NIST11 replicate library and was
filtered to fit to all three reference libraries, i.e., WebBook, NIST05
and NIST11 libraries, while those query spectra used by Kim et al. [9]
were extracted from NIST08 spectral database. The optimal weight
factors of WC measure are mostly within the range of 0.5 ≤ a ≤ 0.55
and 1.1 ≤ b ≤ 1.4, while the other spectral similarity measures tend
to be outside these ranges. The optimal weight factors for SS, DFT,
and DWT  found in this study are very different from their values
reported in the original literatures [1,6], which used the weight
factor (0.5, 3). This was caused most likely by the difference of the
mass spectral library. Another possibility for the difference is that
the optimal weight factor can be biased on input query spectra,
although NIST replicate library is the best possible data set on hand

for performance evaluation.

The weight factor of m/z value of each method has a wider range
than the intensity weight factor (Figs. S-1–S-5 in Supplementary
Information), which is similar to the observation by Kim et al. [9].
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Fig. 1. Contour plot of compound identification accuracy calculated using the WC
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imilarity measure and NIST11 as reference library. The four points in the plot show
he  minimum and the maximum of weight factors for intensity and m/z, respectively,
or identification accuracy of 79.9%.

or example, considering elevation label at identification accuracy
f 79.9% in the WC similarity measure with NIST11 as reference
ibrary, Fig. 1 displays the locations of four pairs of intensity and

/z weight factors (0.59, 2.09), (0.68, 1.20), (0.53, 0.57) and (0.45,
.00) clockwise. The up-and-down (the dimension of m/z weight
actor) distance is 1.52, while the distance from side to side (the
imension of intensity weight factor) is 0.2. This indicates that
he compound identification accuracy is more sensitive to inten-
ity weight factor than the m/z weight factor as discussed by Kim
t al. [9]. Interestingly, the identification accuracy of SP measure is
lmost independent on the weight factor of m/z in all three refer-
nce libraries (the contours of Fig. S-5). This is because all weighted
ass spectra have the exactly same weight factor of m/z  regardless

f intensities so that the common effect of m/z  weight factor is
emoved by the SP measure.

.2. Performance of different spectral similarity measures

Fig. S-6 in Supplementary Information (as well as Table 1)
epicts the performance of each spectral similarity measure at its
ptimal weight factor. The SP method outperforms other spec-
ral similarity measures in all three reference libraries, with an
dentification accuracy of 84.8%, 82.9%, and 80.6% corresponding
o WebBook, NIST05 and NIST11, respectively. Fig. S-6 also shows
hat the accuracy of compound identification decreases with the
ncrease of library size. The average accuracy of all spectral similar-
ty measures decreases by 2.2% and 2.4% when the size of reference
ibrary is increased from WebBook to NIST05 and from NIST05 to
IST11, respectively. Interestingly, the accuracy of SS improved in

he literature [7] by about 3%, but the SS method with the optimal
eight factor found in this study also improves the accuracy by

bout 1.7% against literature [7]. The total improvement of the SS
ethod between weight factors (0.5, 3) and (0.4, 1.2) using Web-

ook library as the reference library is 5.1% and its performance is
he same as DFT.

.3. Effect of the size of reference library
To investigate the trend of compound identification accuracy
orresponding to the size of reference library, a total of 100
airs of subset query spectra and subset reference spectra were
 1298 (2013) 132– 138 135

randomly generated from the replicate query library and the
NIST11 reference library, respectively, subjected to that all com-
pounds in each sub-query library (subset query spectra) present in
the corresponding sub-reference library (subset reference spectra).
Each sub-query library has 2000 spectra. For each sub-query library,
five sub-reference libraries were created with 25,000, 50,000,
100,000, 150,000 and 200,000 compounds in each library, respec-
tively.

To get the statistics of the compound identification accuracy
on the randomly generated pair of sub-query library and sub-
reference library, a total of 100 sampling pairs of sub-query library
and corresponding sub-reference library were created. The mean
and standard deviation of compound identification accuracy were
then calculated based on the 100 sampling pairs. Fig. S-7 in Sup-
plementary Information depicts the error bar plot of mean and
standard deviation of the 100 random sampling. It can be seen that
the identification accuracy of using all five spectral similarity meas-
ures decreases with the increase of the size of reference library,
and these spectral similarity measures provides different mean of
identification accuracy when the same reference library is used.

Student’s t-test was performed to assess the statistical signifi-
cance of the mean difference of the identification accuracy obtained
from these five spectral similarity measures. The null hypothesis
of t-test is that the means of compound identification accuracy of
two  spectral similarity measures are the same if the same refer-
ence library is used. To each of the five sub-reference libraries, the
100 sub-query libraries generate 100 identification accuracy val-
ues for each of the five spectral similarity measures. A t-test was
performed on two  sets of the 100 identification accuracy values,
generated by two  spectral similarity measures. A p-value of the t-
test indicates the statistical significance of the difference between
the mean values of the two sets of 100 accuracy values. Table 2 sum-
marizes the p-values of all t-tests. It can be seen that the compound
identification accuracy of the five spectral similarity measures are
statistically different from each other at 95% of confidence level,
except the identification accuracy between SP and WC  in case of
reference library containing 25,000 and 50,000 compounds, and
DFT and DWT  in all five reference libraries. The non-significant
mean difference between SP and WC is mostly likely caused by
the small size of the reference library, while the non-significant
difference between DFT and DWT  may  be induced by the use of
frequency information for compound identification. It is interest-
ing to note that the p-value decreases with the increase of the size
of the reference library. That is, the difference of average identifica-
tion accuracy between spectral similarity measures becomes more
statistically significant when a larger reference database is used.

By comparing the results displayed in Fig. S-7 and Table 2, we
can conclude that the compound identification accuracy of spectral
similarity measures in descending order is SP > WC  > DWT,  DFT  > SS.
This agrees with the simulation results using the entire NIST repli-
cate library as query library and WebBook, NIST05 and NIST11 as
the three reference libraries (Fig. S-6 and Table 1). Table 1 shows
that SS has a slightly better performance than DFT when the Web-
Book is used as reference library, and SS has the same identification
accuracy as DFT in case that the NIST11 is used as the reference
library. Fig. S-7 shows that DFT has a much improved mean value
of identification accuracy than SS across all sub-reference libraries.
The average mean difference between SS and DFT is greater than
1.15%. Such a simulated result depicted in Fig. S-7 actually agrees
with the results listed in Table 1 because the error bars in Fig. S-7
show that there is a certain degree of overlap in identification accu-
racy between the five spectral similarity measures when the same

reference library is used. It is possible the SS may  have an equal
or even better performance than DFT, as demonstrated in Table 1.
Such a performance difference is caused by the query spectra and
the reference spectra.
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Table  2
The p-values of student’s t-tests for purpose of assessing the statistical significance of identification accuracy difference obtained using the six spectral similarity measures.
The  null hypothesis of each test is that mean values of identification accuracies of two mass spectral similarity measures are the same if the same reference library is used.
The  two sets of 100 identification accuracies in a t-test are the identification accuracy of 100 sub-query libraries and a corresponding sub-reference library.

Reference size Similarity measure SS DFT DWT  SP

25,000

WC 1.01E−17 3.93E−03 8.20E−04 0.1029
SS  1.06E−09 3.35E−08 1.25E−24
DFT  0.5964 3.65E−06
DWT  4.08E−07

50,000

WC  6.54E−23 5.48E−04 3.22E−04 0.0575
SS  2.45E−11 1.10E−10 3.38E−31
DFT 0.8613 8.40E−08
DWT  4.23E−08

100,000

WC  1.33E−30 3.35E−06 1.46E−05 0.0143
SS  1.22E−12 9.91E−15 3.81E−41
DFT  0.6443 4.44E−12
DWT  2.24E−11

150,000

WC  2.22E−32 3.35E−07 1.83E−05 0.0085
SS  8.64E−12 1.17E−15 1.40E−44
DFT  0.3253 4.79E−14
DWT  8.70E−12

WC  9.19E−36 5.72E−08 9.95E−06 0.0046
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200,000
SS  

DFT  

DWT  

To predict the identification accuracy of each spectral similarity
easure on a large reference library in future, the compound iden-

ification accuracy and size of reference library is fitted by linear
egression with the second order polynomial as follows:

 = ˇ0 + ˇ1n + ˇ2n2 + ε (21)

here n is the number of reference library and regression
oefficients ˇi, i = 0, 1, 2 are estimated by ordinary least square
ethod. Fig. 2 depicts the results of regression. As expected,

he accuracy of each spectral similarity measure decreases with
ncrease of the reference library size. The SP method has the best
ccuracy in the large reference library in future (dotted lines in
ig. 2). Interestingly, since the slop of SP method is smaller, the

ifference of compound identification accuracy between SP and
he other spectral similarity measures at 250,000 reference library
ize becomes larger than that in the 200,000 reference size. For
xample, with increase of the size of reference library from 50,000,

ig. 2. Accuracy of compound identification by random sampling. The solid lines
tand for results of 100 time random sampling. The dash lines represent the
redicted identification accuracy of each spectral similarity measure using large
eference library to be developed in future.
9.23E−12 7.27E−18 1.28E−51
0.1877 4.89E−16

3.08E−13

100,000, 150,000 to 200,000, the identification accuracy differ-
ence between SP (the best spectral similarity measure) and WC
(the second best spectral similarity measure) is 0.23%, 0.31%, 0.37%
and 0.43%, respectively. For the future reference library contain-
ing EI MS  spectra of 220,000, 240,000 and 250,000 compounds, the
estimated accuracy differences are 0.46%, 0.48% and 0.49%, respec-
tively. For this reason, we predict that the proposed SP measure
should have the best performance in the future.

Fig. 3 shows the compound identification accuracy when the
true compound has one of the top ranked spectral similarity scores,
where NIST11 is used as the reference library. Compared with find-
ing the true compounds using the best spectral similarity score,
the identification accuracy is increased, on average, 10.9%, 14.8%,
17.4%, and 19.1% when the top 2, 3, 5, and 10 ranked compounds

are considered, respectively. It, however, should be noted that the
accuracy of mass spectral matching levels off at 98.5% when the
top 10 matches are considered, indicating there is a limitation of
compound identification accuracy using mass spectrum only. The

Fig. 3. Accuracy of compound identification. An identification result is considered as
correct if the correct reference spectrum is one of the multiple top ranked reference
spectra.
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eason is that the EI MS  spectrum just contains partial information
f molecular structure. Therefore, the other compound informa-
ion such as retention index is needed for high accuracy compound
dentification [12–14].

A significant challenge of using the retention index to aid com-
ound identification is the incompleteness of existing retention

ndex database. The NIST11 retention index database has 73,379
ovats retention index values for only 19,970 compounds, and
11,778 linear retention index values for 49,374 compounds. Even
hough retention index is normalized retention time for the pur-
ose of minimizing the effects of experimental conditions on the
agnitude of retention index, it is still affected by several exper-

mental conditions, including column stationary phase, elution
ode, etc. [14]. This worsens the situation of the incompleteness

f the current retention index database, and makes it challenging
o use the retention index acquired under different experimental
onditions for retention index matching. Another challenge is the
ccuracy of the existing retention index values in the database. For
xample, compound sabinene has a total of 87 literature reported
inear retention index values on the non-polar column with a span
f 955–992 retention index units in the NIST11 retention index
atabase (mean = 966, standard deviation = 6.4), while compound
itronellyl acetate have 46 retention index values with a span of
330–1347 retention index units (mean = 1336, standard devia-
ion = 3.5). These indicate the variation of retention index from its

ean value is compound dependent in the current retention index
atabase. This makes it challenging to find an optimal retention

ndex deviation window for a compound that has just one or a few
umber of retention index values in the retention index database.

 large retention index deviation window reduces the effective-
ess of retention index matching, while a small retention index
eviation window increases the chance of filtering a true identi-
cation. Furthermore, the retention index information is currently
sed to filter the identification results after mass spectral matching.

n this analysis strategy, the mass spectral matching and the reten-
ion index matching are treated as two separate analysis steps. It is
ecessary to investigate how to effectively use the retention index

nformation for compound identification. For example, applying
etention index filtering before the mass spectral matching can
educe the mass spectral matching space, i.e., a small size of ref-
rence library is used for identification. Therefore, an improved
dentification can be expected by using such a small reference
ibrary. Another approach of simultaneously evaluating the close-
ess of the mass spectrum and the retention index may  further

mprove the identification accuracy.
As the size of query and reference library increases, the burden

f computation is rapidly increased as shown in Fig. 4. All calcu-
ations are performed on an Intel Core i7-3960X CPU @ 3.30 GHz

ith 16 GB main memory and all similarity scores are calculated
n Matlab R2010b (The Mathworks, Natick, MA). WC  is the most
fficient method while the SP method is the most expensive one.
he SS method is very sensitive on the size of reference library. The
ther methods are more expensive than WC  because they all are
omposite/mixture models based on the WC.

It should be noted that the computation time of a similarity
easure can be affected by many factors, including the computer

ardware, the implementation of the algorithms, and the partic-
lar values of weight factor a and b. For instance, compared with
he weight factor (0.5, 1), the computational time is increased by
0.1% if the optimal weight factor (0.51, 1.1) is used to identify
ompounds for the spectra in the replicate library from the NIST11
eference library. Therefore, the absolute values of computation

ime calculated here holds true only to the conditions used in this
tudy.

In this study, an identification is considered as a correct iden-
ification if the matched two spectra, one from the query library
Fig. 4. Computational time of each spectral similarity measure.

and the other from the reference library, have identical CAS regis-
ter numbers. Using the CAS numbers in the NIST database does not
introduce any error in assessing the correctness of an identification
result. It, however, may  introduce a certain level of variation in the
calculation of identification accuracy, in which the number of query
spectra is used (see Eq. (20)). For example, 1,2-dimethyl-cyclohexane
has a CAS number of 2207-01-4 for the cis and 6876-23-9 for
the trans, respectively. There is also an entry for cis/trans with a
CAS number of 583-57-3. These three CAS numbers were treated
as three different compounds during the calculation. We  believe
that a small portion of the compounds in the NIST database have
such complication of CAS numbers and therefore, their effects
on assessing the overall compound identification accuracy is very
limited.

The focus of this study is to compare the performance of lit-
erature reported five mass spectral similarity measures on the
accuracy of compound identification using different query and ref-
erence libraries. Compound identification accuracy can be affected
by many other factors, including experimental conditions, the
method of reducing the instrument data to mass spectra, and the
completeness of the reference spectral library. For example, the
purity of the chromatographic peaks entering the ionization source
plays a significant role in the quality of the mass spectra. To reduce
the chance of co-eluting chromatographic peaks, a comprehensive
two-dimensional gas chromatography–time-of-flight mass spec-
trometry (GC × GC–TOF MS)  can provide improved GC separation
and high quality mass spectra for compound identification. The
other experimental conditions such as the slop of temperature
gradient, the selection of column, mass spectrum acquisition fre-
quency, etc. can also contribute to the quality of mass spectra and
therefore, can significantly affect the accuracy of compound iden-
tification.

4. Conclusions

In order to investigate relationship among accuracy of com-
pound identification and reference mass spectral database,
we evaluated five literature-reported spectral similarity meas-
ures such as weighted cosine, Stein and Scott’s composite,
Fourier/wavelet transform-based composite, and the mixture
semi-partial correlation measures. The performances of those five

spectral similarity measures were studied using different refer-
ence libraries, including WebBook, NIST05 and NIST11, by varying
weight factors for intensity and m/z value. The SP spectral similar-
ity measure always outperforms other spectral similarity measures
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n all testing reference libraries, with the highest identification
ccuracy of 84.8% in WebBook and 80.6% in NIST11. Consider-
ng multiple spectra with the top-ranked spectral similarity scores
ather than the compound candidate that has the best spectral sim-
larity score, the compound identification accuracy is increased,
ut levels off at 98.5% when the top 10 matches are considered.
his indicates that there is a limitation of compound identification
ccuracy using mass spectrum only. The other compound informa-
ion such as retention index is needed for high accuracy compound
dentification.

The study of compound identification accuracy using different
pectral similarity measures and reference libraries demonstrates
hat the values of optimal weight factor for peak intensities and m/z
epend on both the spectral similarity measure and the size of ref-
rence library. With the increase of the size of reference library,
he optimal weight factor for each spectral measure varies and
he identification accuracy is decreased. By varying the size of ref-
rence library, simulation study indicates that the SP will have
he best performance in future and the computation challenge
f SP is the worst. The development of efficient version of SP to
educe computational time and have higher accuracy is left a future
ork.
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