Journal of Chromatography A, 1298 (2013) 132-138

Contents lists available at SciVerse ScienceDirect

Journal of Chromatography A

journal homepage: www.elsevier.com/locate/chroma

Comparative analysis of mass spectral matching-based compound
identification in gas chromatography-mass spectrometry

g )\
CrossMark

Imhoi Koo?, Seongho KimP, Xiang Zhang?*

a Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
b Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40292, USA

ARTICLE INFO ABSTRACT

Article history:

Received 7 March 2013

Received in revised form 2 May 2013
Accepted 6 May 2013

Available online 13 May 2013

Compound identification in gas chromatography-mass spectrometry (GC-MS) is usually achieved by
matching query spectra to spectra present in a reference library. Although several spectral similarity
measures have been developed and compared using a small reference library, it still remains unknown
how the relationship between the spectral similarity measure and the size of reference library affects
on the identification accuracy as well as the optimal weight factor. We used three reference libraries
to investigate the dependency of the optimal weight factor, spectral similarity measure and the size of
reference library. Our study demonstrated that the optimal weight factor depends on not only spectral
similarity measure but also the size of reference library. The mixture semi-partial correlation measure
outperforms all existing spectral similarity measures in all tested reference libraries, in spite of the com-
putational expense. Furthermore, the accuracy of compound identification using a larger reference library
in future is estimated by varying the size of reference library. Simulation study indicates that the mixture
semi-partial correlation measure will have the best performance with the increase of reference library
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in future.
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1. Introduction

Gas chromatography-mass spectrometry (GC-MS) is widely
used to analyze chemical compounds in complex samples, where
the compounds are first separated on a GC system and further
measured on a mass spectrometer that is usually equipped with
an electron ionization (EI) ion source. Compound identification in
analysis of the GC-MS data is usually achieved by matching the
experimental mass spectra to the mass spectra present in a refer-
ence library, i.e., mass spectral matching. To improve the accuracy
of compound identification, several mass spectral similarity meas-
ures have been developed, including Stein and Scott’s composite
similarity [1], Hertz similarity index [2], probability-based match-
ing system [3], normalized Euclidean distance (L,-norm) [1,4,5],
and absolute value distance (L{-norm) [1,5], Most recently, Koo
et al. introduced Fourier and wavelet transform-based composite
(DFT/DWT) measures [6], and Kim et al. proposed mixture semi-
partial and partial correlation-based measures [7].

The intensity of fragment ions in an EI MS spectrum tends to
be smaller with the increase of the m/z value. Such a tendency
reduces the contribution of large fragment ions to the spectral
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similarity score. To increase the weight of peak intensities of frag-
ment ions with large m/z values, the intensities and m/z values are
usually transformed with a set of weight factors for the compu-
tation of spectral similarity. Stein and Scott [1] suggested weight
factor (0.5, 3) for power transformation of fragment ion intensity
and m/z value, respectively. They also pointed out that weight fac-
tor (0.5, 2) was equally effective. Horai et al. reported weight factor
(0.5, 2) using the MassBank database [8]. Recently, Kim et al. sug-
gested weight factor (0.53, 1.3) using the weighted cosine similarity
as a spectral similarity measure and the main EI MS library of the
NIST/EPA/NIH Mass Spectral Library 2011 (NIST11) as the reference
library [9].

Kim et al. also compared the performance of compound identi-
fication of multiple mass spectral similarity measures, including
weighted cosine, Stein and Scott’s composite, DFT/DWT-based
composite and mixture partial/semi-partial correlation similarity
scores using a small reference library, NIST Chemistry WebBook
library (WebBook) [7]. Although they addressed that the optimal
weight factor is dependent on the mass spectral library, it still
remains unknown whether the optimal weight factor depends on
spectral similarity measure and the size of reference library.

With the rapid development of EI MS library, more similar EI
MS spectra are added to the reference library, making it more
challenging for high accuracy compound identification. The size of
reference library will continuously increase in future. It is important
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to foresee the compound identification accuracy of mass spectral
matching with the increasing size of reference library. It is still
unknown which spectral similarity measure is the best in an even
larger mass spectral database.

The objectives of this study are first to compare the performance
of the literature reported spectral similarity measures using the
NIST11 library and investigate the dependence among the optimal
weight factor, spectral similarity measure and the size of reference
library. We further estimate the performance of existing spectral
similarity measures in a larger reference library to be developed in
future.

2. Materials and methods
2.1. NIST EI mass spectral databases

The latest version of NIST/EPA/NIH Mass Spectral Library 2011
contains two EI mass spectral libraries, the main EI MS library
(NIST11) and the replicate EI MS spectra. The main library and
the replicate EI MS spectra have 212,961 and 30,932 mass spectra,
respectively. The main EI MS library of NIST/EPA/NIH Mass Spectral
Library 2005 (NIST05) has 163,198 mass spectra. The NIST Chem-
istry WebBook library (WebBook) extracted on November 28, 2011
consists of 23,721 mass spectra.

In this study, the replicate EI MS spectra of the NIST/EPA/NIH
Mass Spectral Library 2011 are used as a query spectral library,
while the WebBook, NISTO5 and NIST11 are used as reference
library, respectively. The query spectral library has 30,932 mass
spectra for 19,788 unique compounds. To ensure that all com-
pounds given the query spectra are present in each of the three
reference libraries, the replicate library is filtered as follows: the
interception of the three reference libraries is first calculated based
on compound CAS (Chemical Abstracts Service) registry numbers;
any compound in the replicate library that does not have a cor-
responding CAS number in the interception of the three reference
libraries is removed from the replicate library. This results in a set of
filtered query spectra with 23,001 mass spectra for 13,154 unique
compounds. Only 43 mass spectra in the NIST11 reference library
have fragment ion m/z values larger than 1000 and therefore, the
fragment ions with m/z>1000 in the reference library are further
removed to minimize computation burden.

2.2. Weighted cosine similarity

Let us consider the two spectral signals X=(x1, x5, ..., X;) and
Y=(y1,¥2, ..., yn), which are the query and reference mass spectra,
respectively. In order to calculate the spectral similarity of these
two mass spectra, one of the simple mathematical ways is to use
cosine correlation formula defined as follows:

XoY

S Y) = X

(1)

where the inner product XoY = Z?:]xi -y; and the norm ||X|| =

(E?:]x,-z)llz. Stein and Scott demonstrated the importance of
weight for intensity and m/z value [1]. The weighted spectra X, Y
are considered as follows:

XY = (x:%-m?, ..., xp® myP) and

YW:(y]a'mlb5"'5yna'mnb) (2)

where m;, i=1, ..., n is m/z value of the ith fragment ion, and
a, b are the weight factors for peak intensity and m/z value,

respectively. The weighted cosine similarity Swc(X, Y) is then
defined as follows:
XWoyw

SweX, Y) =Sc(xW, YWy = ———— 3
wc(X, Y) = Sc( ) XV VW] 3)

2.3. Stein and Scott’s composite similarity

Stein and Scott firstly defined a ratio of peak pair Sk as follows

[1]:

1 XAY y X n
Sp(X, Y) = ( L "*1) 4
RX.Y) NXAYZ Yicr X “)

i

where n=—1 or 1 if the term in parentheses is less than or greater
than unity, respectively, x;, y; are all non-zero intensities having
common m/z value, and the value Nx.y is the number of non-zero
peaks in both the reference and the query spectra. The composite
similarity is then calculated by

X, Y)+ Nx,y - Sp(X, Y)

Nx - S
Ses(x, ¥) = M el TV T
A

(5)

where Ny is the number of non-zero peak intensities existing in the
query spectra. As for a part of weighted cosine similarity, they set
weight factor to (a, b)=(0.5, 3).

2.4. Discrete Fourier- and wavelet-transform composite similarity

Discrete Fourier transform (DFT) converts an original spectral
signal X=(x1, ..., X;) into a new signal XF =(x;F, .. ., x,F) as follows

[10]:
- 27
xf = Zxdexp (—de) , k=1,...,n (6)
d=1
where the notation i is the imaginary unit and exp(— (2mi/n)kd)
is a primitive nth root of wunity. By Euler’'s formula,
exp(i¢) = cos ¢ +isin ¢, the original equation becomes
n n
xF = Zxd cos (—Zrkd) + ind sin (-Zkd), k=1,....n(7)
d=1 d=1

We have a new transformed signal X'R consisting of real part of x;*
as follows:

X = (xR, ... %, ™) (8)
with
n
xR = Re(x,F) = Zx -cos (-2 kd) 9)
d=1

where a function Re(-) is the real part of imaginary number or func-
tion

The discrete wavelet transform of a signal X=(x1, . . ., X, ) is calcu-
lated by passing it through a low-pass filter g and a high-pass filter
h, resulting in two subsets of signals: approximations and details
[11]. The coefficients of approximations and details are defined as
follows:

n

0 =3 wggl2k —(d - 1)) (10)
d=1

X0 = “xqhl2k — (d - 1)] (11)
d=1
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where gand h are the low-pass filter and the high-pass filter, respec-
tively. This study used Daubechies’ scaling functions with an order
of 4 as for low-pass filters [11]. Then the approximation and detail
DWTs of an original signal X are as follows, respectively:

XA = (x;WA, . xa"A) and XWP = ("D, ..., x,"P) (12)

The DFT with real and DWT with detail composite similarity are
defined as follows [6]:

Nx - Swc(X, Y) + Nx,y - Sc(XTR, YFR)

S X, Y)= 13
prr(X, Y) Ny + Ny.y (13)
and
) , WD yWD
Sowr(X. Y) = Nx - Swc(X, Y) + Nxay - Sc(X™2, Y1) (14)

Nx + Nxny

2.5. Mixture semi-partial composite similarity

The mixture semi-partial correlation pxyjz between X and Y
with controlling variables Z= {Z1, ..., Z,} is the correlation between
the random variable X and residuals Ryjz of Y on Z, and is repre-
sented by

COI/(X, Ry|z)

(15)
Var(X) - Var(Ryz)

Pxeviz) = Cor(X, Ryjz) =

where the residuals Ryjz of Y on Z is the difference between
observed and estimated output data, and is calculated from the lin-
ear regression of Y on Z corresponding to an ordinary least square

solution wj = (Z'Z)"'Z"Y of linear system as follows:

Ryz=Y-2Zw; =Y -2(Z'z) 'Z'Y (16)

Suppose that X is a query mass spectrum and Y ={Yq, Y, .., Yn}
is a set of N mass spectra in the reference library. The semi-partial
correlation between X and Y; given Y is calculated by

= Cor(X,R 17)

Px vyt yy®)

where aset Y= Y\ {Y;}={Y;,...,Yi_1,Yu1,..., Yy} and \ denotes
the set minus operator. Note that X, ¥; and Y in the previous
equations have the identical roles as X, Y and Z, respectively. Given
the rank k, the semi-partial correlation is defined by

SS,k,C(Xv Y) = px(y”y(i,k)) = COr(X, Ryi‘y(i,k)) (]8)

where YK ={Y;e YO[Rank(Swc(X, ¥;)) <k} and Rank(Swc(X, Y;))
is the rank of the similarity score Syc(X, Y;) in descending order.
Then the mixture semi-partial correlation is defined by [7]

Ssp(X, Y) = (1 =w) - Swe(X, Y) + W Ss (X, Y) (19)

where w is a coefficient ranging from 0 to 1 (w is set as 0.1 in this
study based on [7]).

2.6. Performance measure

The performance of each mass spectral similarity measure for
compound identification is evaluated as follows:

number of mass spectra identified correctly

Accuracy = -
y number of queried spectra

(20)

If a spectrum in reference library having the largest mass spectral
similarity score is considered as the identification result of a query
mass spectrum, a correct identification refers that the query spec-
trum and the spectrum from the reference library have the same
CAS registry number. In case that the top k ranked mass spectral
similarity scores are considered, an identification is considered as
a correct identification as long as one of the top k ranked reference
spectra has the same CAS number as the query spectrum.

Table 1
The optimal weight factors and identification accuracy of different mass spectral
similarity measures.

Method WebBook NISTO5 NIST11

wC Weight factor (0.55,1.3) (0.53,1.1) (0.51,1.1)
Accuracy 0.845 0.824 0.801

SS Weight factor (04,1.2) (0.3,0.9) (0.3,0.9)
Accuracy 0.834 0.805 0.785

DFT Weight factor (0.49, 1.5) (0.45,1.5) (0.49, 2)
Accuracy 0.833 0.812 0.785

DWT Weight factor (0.47,2) (0.49,1.4) (0.49,1.4)
Accuracy 0.836 0.815 0.789

SP Weight factor (0.55,0.1) (0.57,1.4) (0.57,1.4)
Accuracy 0.848 0.829 0.806

3. Results and discussion

We evaluated the performance of compound identification
methods, including weighted cosine (WC), Stein and Scott’s com-
posite (SS), discrete Fourier- and wavelet-transforms composite
(DFT and DWT), and mixture semi-partial similarities (SP). To find
the optimal weight factor w = (a, b) of power transformation for
peak intensity and m/z value, we considered {0.1, 0.2, 0.3, 0.4, 0.45,
0.47,0.49,0.51,0.53,0.55,0.57,0.59,0.61, 0.65,0.7,0.8,0.9, 1, 2, 3}
as intensity weight factorsand {0.1,0.5,0.8,0.9,1.0,1.1,1.2,1.3, 1.4,
1.5,2,3,4,5} asm/zweight factors, respectively. The optimal weight
factor is a pair of peak intensity and m/z weight factors that pro-
vides the best accuracy for compound identification. A total of 280
pairs of weight factors (20 intensity factors and 14 m/z factors) were
tested. Our previous study showed that the optimal weight factor
for WC similarity and the SP similarity is w=(0.53, 1.3). Therefore,
a dense interval was used near the optimal values, while a sparse
interval was used in the other region.

3.1. Optimal weight factors

Table 1 lists the optimal weight factor and the corresponding
identification accuracy obtained for each combination of spectral
similarity measure and reference library. It can be see that the value
of optimal weight factor is dependent on both the reference library
and the method of mass spectral similarity measure. In case of WC,
the optimal weight factors discovered in this work for NIST11 are
not identical to any literature reported values, but these discovered
weight factors are within the top 10% of the weight factors (i.e.,
0.5<a<0.55 and 1.1 <b < 1.4) discovered by Kim et al. [9], which
used the same spectral database NIST11 as the reference library.
It should be noted that the query library of this study is different
from that of Kim et al. [9]. That is, the query library spectra used
in this study was extracted from NIST11 replicate library and was
filtered to fit to all three reference libraries, i.e., WebBook, NIST05
and NIST11 libraries, while those query spectra used by Kimetal. [9]
were extracted from NISTO8 spectral database. The optimal weight
factors of WC measure are mostly within the range of 0.5 <a <0.55
and 1.1 < b < 1.4, while the other spectral similarity measures tend
to be outside these ranges. The optimal weight factors for SS, DFT,
and DWT found in this study are very different from their values
reported in the original literatures [1,6], which used the weight
factor (0.5, 3). This was caused most likely by the difference of the
mass spectral library. Another possibility for the difference is that
the optimal weight factor can be biased on input query spectra,
although NIST replicate library is the best possible data set on hand
for performance evaluation.

The weight factor of m/z value of each method has a wider range
than the intensity weight factor (Figs. S-1-S-5 in Supplementary
Information), which is similar to the observation by Kim et al. [9].
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Fig. 1. Contour plot of compound identification accuracy calculated using the WC
similarity measure and NIST11 as reference library. The four points in the plot show
the minimum and the maximum of weight factors for intensity and m/z, respectively,
for identification accuracy of 79.9%.

For example, considering elevation label at identification accuracy
of 79.9% in the WC similarity measure with NIST11 as reference
library, Fig. 1 displays the locations of four pairs of intensity and
m/z weight factors (0.59, 2.09), (0.68, 1.20), (0.53, 0.57) and (0.45,
1.00) clockwise. The up-and-down (the dimension of m/z weight
factor) distance is 1.52, while the distance from side to side (the
dimension of intensity weight factor) is 0.2. This indicates that
the compound identification accuracy is more sensitive to inten-
sity weight factor than the m/z weight factor as discussed by Kim
et al. [9]. Interestingly, the identification accuracy of SP measure is
almost independent on the weight factor of m/z in all three refer-
ence libraries (the contours of Fig. S-5). This is because all weighted
mass spectra have the exactly same weight factor of m/z regardless
of intensities so that the common effect of m/z weight factor is
removed by the SP measure.

3.2. Performance of different spectral similarity measures

Fig. S-6 in Supplementary Information (as well as Table 1)
depicts the performance of each spectral similarity measure at its
optimal weight factor. The SP method outperforms other spec-
tral similarity measures in all three reference libraries, with an
identification accuracy of 84.8%, 82.9%, and 80.6% corresponding
to WebBook, NIST05 and NIST11, respectively. Fig. S-6 also shows
that the accuracy of compound identification decreases with the
increase of library size. The average accuracy of all spectral similar-
ity measures decreases by 2.2% and 2.4% when the size of reference
library is increased from WebBook to NISTO5 and from NISTO5 to
NIST11, respectively. Interestingly, the accuracy of SS improved in
the literature [7] by about 3%, but the SS method with the optimal
weight factor found in this study also improves the accuracy by
about 1.7% against literature [7]. The total improvement of the SS
method between weight factors (0.5, 3) and (0.4, 1.2) using Web-
Book library as the reference library is 5.1% and its performance is
the same as DFT.

3.3. Effect of the size of reference library
To investigate the trend of compound identification accuracy

corresponding to the size of reference library, a total of 100
pairs of subset query spectra and subset reference spectra were

randomly generated from the replicate query library and the
NIST11 reference library, respectively, subjected to that all com-
pounds in each sub-query library (subset query spectra) present in
the corresponding sub-reference library (subset reference spectra).
Each sub-query library has 2000 spectra. For each sub-query library,
five sub-reference libraries were created with 25,000, 50,000,
100,000, 150,000 and 200,000 compounds in each library, respec-
tively.

To get the statistics of the compound identification accuracy
on the randomly generated pair of sub-query library and sub-
reference library, a total of 100 sampling pairs of sub-query library
and corresponding sub-reference library were created. The mean
and standard deviation of compound identification accuracy were
then calculated based on the 100 sampling pairs. Fig. S-7 in Sup-
plementary Information depicts the error bar plot of mean and
standard deviation of the 100 random sampling. It can be seen that
the identification accuracy of using all five spectral similarity meas-
ures decreases with the increase of the size of reference library,
and these spectral similarity measures provides different mean of
identification accuracy when the same reference library is used.

Student’s t-test was performed to assess the statistical signifi-
cance of the mean difference of the identification accuracy obtained
from these five spectral similarity measures. The null hypothesis
of t-test is that the means of compound identification accuracy of
two spectral similarity measures are the same if the same refer-
ence library is used. To each of the five sub-reference libraries, the
100 sub-query libraries generate 100 identification accuracy val-
ues for each of the five spectral similarity measures. A t-test was
performed on two sets of the 100 identification accuracy values,
generated by two spectral similarity measures. A p-value of the t-
test indicates the statistical significance of the difference between
the mean values of the two sets of 100 accuracy values. Table 2 sum-
marizes the p-values of all t-tests. It can be seen that the compound
identification accuracy of the five spectral similarity measures are
statistically different from each other at 95% of confidence level,
except the identification accuracy between SP and WC in case of
reference library containing 25,000 and 50,000 compounds, and
DFT and DWT in all five reference libraries. The non-significant
mean difference between SP and WC is mostly likely caused by
the small size of the reference library, while the non-significant
difference between DFT and DWT may be induced by the use of
frequency information for compound identification. It is interest-
ing to note that the p-value decreases with the increase of the size
of the reference library. That is, the difference of average identifica-
tion accuracy between spectral similarity measures becomes more
statistically significant when a larger reference database is used.

By comparing the results displayed in Fig. S-7 and Table 2, we
can conclude that the compound identification accuracy of spectral
similarity measures in descending order is SP > WC > DWT, DFT > SS.
This agrees with the simulation results using the entire NIST repli-
cate library as query library and WebBook, NIST05 and NIST11 as
the three reference libraries (Fig. S-6 and Table 1). Table 1 shows
that SS has a slightly better performance than DFT when the Web-
Book is used as reference library, and SS has the same identification
accuracy as DFT in case that the NIST11 is used as the reference
library. Fig. S-7 shows that DFT has a much improved mean value
of identification accuracy than SS across all sub-reference libraries.
The average mean difference between SS and DFT is greater than
1.15%. Such a simulated result depicted in Fig. S-7 actually agrees
with the results listed in Table 1 because the error bars in Fig. S-7
show that there is a certain degree of overlap in identification accu-
racy between the five spectral similarity measures when the same
reference library is used. It is possible the SS may have an equal
or even better performance than DFT, as demonstrated in Table 1.
Such a performance difference is caused by the query spectra and
the reference spectra.
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Table 2

The p-values of student’s t-tests for purpose of assessing the statistical significance of identification accuracy difference obtained using the six spectral similarity measures.
The null hypothesis of each test is that mean values of identification accuracies of two mass spectral similarity measures are the same if the same reference library is used.
The two sets of 100 identification accuracies in a t-test are the identification accuracy of 100 sub-query libraries and a corresponding sub-reference library.

Reference size Similarity measure SS DFT DWT SP
wc 1.01E-17 3.93E-03 8.20E-04 0.1029
ss 1.06E-09 3.35E-08 1.25E-24
25,000 DFT 0.5964 3.65E-06
DWT 4.08E—07
wc 6.54E-23 5.48E-04 322E-04 0.0575
ss 2.45E-11 1.10E-10 3.38E-31
50,000 DFT 0.8613 8.40E-08
DWT 423E-08
wc 1.33E-30 3.35E-06 1.46E—05 0.0143
ss 1.22E-12 9.91E-15 3.81E-41
100,000 DFT 0.6443 4.44E-12
DWT 224E-11
e 222E-32 3.35E-07 1.83E-05 0.0085
ss 8.64E—12 117E-15 1.40E—44
150,000 DFT 03253 479E-14
DWT 8.70E—12
wc 9.19E-36 5.72E-08 9.95E-06 0.0046
ss 9.23E-12 7.27E-18 1.28E-51
200,000 DFT 0.1877 4.89E—16
DWT 3.08E-13

To predict the identification accuracy of each spectral similarity
measure on a large reference library in future, the compound iden-
tification accuracy and size of reference library is fitted by linear
regression with the second order polynomial as follows:

y=PBo+Bin+pan?+¢ (21)

where n is the number of reference library and regression
coefficients B;, i=0, 1, 2 are estimated by ordinary least square
method. Fig. 2 depicts the results of regression. As expected,
the accuracy of each spectral similarity measure decreases with
increase of the reference library size. The SP method has the best
accuracy in the large reference library in future (dotted lines in
Fig. 2). Interestingly, since the slop of SP method is smaller, the
difference of compound identification accuracy between SP and
the other spectral similarity measures at 250,000 reference library
size becomes larger than that in the 200,000 reference size. For
example, with increase of the size of reference library from 50,000,
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Fig. 2. Accuracy of compound identification by random sampling. The solid lines
stand for results of 100 time random sampling. The dash lines represent the
predicted identification accuracy of each spectral similarity measure using large
reference library to be developed in future.

100,000, 150,000 to 200,000, the identification accuracy differ-
ence between SP (the best spectral similarity measure) and WC
(the second best spectral similarity measure) is 0.23%, 0.31%, 0.37%
and 0.43%, respectively. For the future reference library contain-
ing EI MS spectra of 220,000, 240,000 and 250,000 compounds, the
estimated accuracy differences are 0.46%, 0.48% and 0.49%, respec-
tively. For this reason, we predict that the proposed SP measure
should have the best performance in the future.

Fig. 3 shows the compound identification accuracy when the
true compound has one of the top ranked spectral similarity scores,
where NIST11 is used as the reference library. Compared with find-
ing the true compounds using the best spectral similarity score,
the identification accuracy is increased, on average, 10.9%, 14.8%,
17.4%, and 19.1% when the top 2, 3, 5, and 10 ranked compounds
are considered, respectively. It, however, should be noted that the
accuracy of mass spectral matching levels off at 98.5% when the
top 10 matches are considered, indicating there is a limitation of
compound identification accuracy using mass spectrum only. The
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Fig. 3. Accuracy of compound identification. An identification resultis considered as
correct if the correct reference spectrum is one of the multiple top ranked reference
spectra.
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reason is that the EI MS spectrum just contains partial information
of molecular structure. Therefore, the other compound informa-
tion such as retention index is needed for high accuracy compound
identification [12-14].

A significant challenge of using the retention index to aid com-
pound identification is the incompleteness of existing retention
index database. The NIST11 retention index database has 73,379
Kovats retention index values for only 19,970 compounds, and
111,778 linear retention index values for 49,374 compounds. Even
though retention index is normalized retention time for the pur-
pose of minimizing the effects of experimental conditions on the
magnitude of retention index, it is still affected by several exper-
imental conditions, including column stationary phase, elution
mode, etc. [14]. This worsens the situation of the incompleteness
of the current retention index database, and makes it challenging
to use the retention index acquired under different experimental
conditions for retention index matching. Another challenge is the
accuracy of the existing retention index values in the database. For
example, compound sabinene has a total of 87 literature reported
linear retention index values on the non-polar column with a span
of 955-992 retention index units in the NIST11 retention index
database (mean =966, standard deviation =6.4), while compound
citronellyl acetate have 46 retention index values with a span of
1330-1347 retention index units (mean=1336, standard devia-
tion=3.5). These indicate the variation of retention index from its
mean value is compound dependent in the current retention index
database. This makes it challenging to find an optimal retention
index deviation window for a compound that has just one or a few
number of retention index values in the retention index database.
A large retention index deviation window reduces the effective-
ness of retention index matching, while a small retention index
deviation window increases the chance of filtering a true identi-
fication. Furthermore, the retention index information is currently
used to filter the identification results after mass spectral matching.
In this analysis strategy, the mass spectral matching and the reten-
tion index matching are treated as two separate analysis steps. It is
necessary to investigate how to effectively use the retention index
information for compound identification. For example, applying
retention index filtering before the mass spectral matching can
reduce the mass spectral matching space, i.e., a small size of ref-
erence library is used for identification. Therefore, an improved
identification can be expected by using such a small reference
library. Another approach of simultaneously evaluating the close-
ness of the mass spectrum and the retention index may further
improve the identification accuracy.

As the size of query and reference library increases, the burden
of computation is rapidly increased as shown in Fig. 4. All calcu-
lations are performed on an Intel Core i7-3960X CPU @ 3.30 GHz
with 16 GB main memory and all similarity scores are calculated
in Matlab R2010b (The Mathworks, Natick, MA). WC is the most
efficient method while the SP method is the most expensive one.
The SS method is very sensitive on the size of reference library. The
other methods are more expensive than WC because they all are
composite/mixture models based on the WC.

It should be noted that the computation time of a similarity
measure can be affected by many factors, including the computer
hardware, the implementation of the algorithms, and the partic-
ular values of weight factor a and b. For instance, compared with
the weight factor (0.5, 1), the computational time is increased by
30.1% if the optimal weight factor (0.51, 1.1) is used to identify
compounds for the spectra in the replicate library from the NIST11
reference library. Therefore, the absolute values of computation
time calculated here holds true only to the conditions used in this
study.

In this study, an identification is considered as a correct iden-
tification if the matched two spectra, one from the query library
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Fig. 4. Computational time of each spectral similarity measure.

and the other from the reference library, have identical CAS regis-
ter numbers. Using the CAS numbers in the NIST database does not
introduce any error in assessing the correctness of an identification
result. It, however, may introduce a certain level of variation in the
calculation of identification accuracy, in which the number of query
spectrais used (see Eq.(20)). For example, 1,2-dimethyl-cyclohexane
has a CAS number of 2207-01-4 for the cis and 6876-23-9 for
the trans, respectively. There is also an entry for cis/trans with a
CAS number of 583-57-3. These three CAS numbers were treated
as three different compounds during the calculation. We believe
that a small portion of the compounds in the NIST database have
such complication of CAS numbers and therefore, their effects
on assessing the overall compound identification accuracy is very
limited.

The focus of this study is to compare the performance of lit-
erature reported five mass spectral similarity measures on the
accuracy of compound identification using different query and ref-
erence libraries. Compound identification accuracy can be affected
by many other factors, including experimental conditions, the
method of reducing the instrument data to mass spectra, and the
completeness of the reference spectral library. For example, the
purity of the chromatographic peaks entering the ionization source
plays a significant role in the quality of the mass spectra. To reduce
the chance of co-eluting chromatographic peaks, a comprehensive
two-dimensional gas chromatography-time-of-flight mass spec-
trometry (GC x GC-TOF MS) can provide improved GC separation
and high quality mass spectra for compound identification. The
other experimental conditions such as the slop of temperature
gradient, the selection of column, mass spectrum acquisition fre-
quency, etc. can also contribute to the quality of mass spectra and
therefore, can significantly affect the accuracy of compound iden-
tification.

4. Conclusions

In order to investigate relationship among accuracy of com-
pound identification and reference mass spectral database,
we evaluated five literature-reported spectral similarity meas-
ures such as weighted cosine, Stein and Scott’s composite,
Fourier/wavelet transform-based composite, and the mixture
semi-partial correlation measures. The performances of those five
spectral similarity measures were studied using different refer-
ence libraries, including WebBook, NISTO5 and NIST11, by varying
weight factors for intensity and m/z value. The SP spectral similar-
ity measure always outperforms other spectral similarity measures
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in all testing reference libraries, with the highest identification
accuracy of 84.8% in WebBook and 80.6% in NIST11. Consider-
ing multiple spectra with the top-ranked spectral similarity scores
rather than the compound candidate that has the best spectral sim-
ilarity score, the compound identification accuracy is increased,
but levels off at 98.5% when the top 10 matches are considered.
This indicates that there is a limitation of compound identification
accuracy using mass spectrum only. The other compound informa-
tion such as retention index is needed for high accuracy compound
identification.

The study of compound identification accuracy using different
spectral similarity measures and reference libraries demonstrates
that the values of optimal weight factor for peak intensities and m/z
depend on both the spectral similarity measure and the size of ref-
erence library. With the increase of the size of reference library,
the optimal weight factor for each spectral measure varies and
the identification accuracy is decreased. By varying the size of ref-
erence library, simulation study indicates that the SP will have
the best performance in future and the computation challenge
of SP is the worst. The development of efficient version of SP to
reduce computational time and have higher accuracy is left a future
work.
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