Compute Spearman Correlation Coefficient with Matlab/CUDA

Seongho Kim Ming Ouyand Xiang Zhang
Bioinformatics & Biostatistics Department Computer Engineering & Chemistry Department
University of Louisville Computer Science Department University of Louisville
Louisville, Kentucky 40292 University of Louisville Louisville, Kentucky 40292
USA Louisville, Kentucky 40292 USA
sOki mMD23@ oui svi l | e. edu m ng. ouyang@ oui svil l e. edu x0zhanl7@ oui svill e. edu

Abstract— Given a data matrix where the rows are entities and the GPUs on commodity video cards were originally designed
columns are features, researchers often want to computpaimise towards the needs of the 3-D gaming industry for high-
distances among the entities. Some common choices of aistane performance, real-time graphics. Software development on
Euclidean distance, Manhattan distance, Chebyshev distaand ' ! .

Canberra distance. Pearson and Spearman correlation ooeffis, them 9390‘ Ianguages such as OpenGL shading Iang_u_age
with a range from—1 to 1, can be used to define a distandeminus and Direct3D high-level shader language. In 2006, Nvidia
the coefficient. Matlab is widely used in science and enginge Corporation released a new generation of GPUs designed for
fields for technical computing, and it provides a functionits general purpose computation. These G80 GPUs provide up to
statistics toolbox to calculate the pairwise distancesjcivhiakes a 128 stream processors and support 12,288 active threaigs. Th

long time when the data matrix is large. Graphics processings . o . .
have become powerful co-processors to the CPUs. Nvidia GRUS architecture facilitates efficient general purpose commgubn

be programmed by the CUDA language. The present work stud@®Us (GPGPUs). In 2007, Nvidia released an extended C
CUDA implementation of Spearman correlation coefficiemtt ttan language for GPU programming called CUDA [1], short for

be called from Matlab to speed up the computation of pairwissompute Unified Device Architecture. Using CUDA, innova-
d'S}t(anceSaSp?Dequr’.s fr‘(?lt to 28'?\/|f°t'|dz argPaJh'g‘begA S tive data-parallel algorithms can be implemented in gdnera
corrm,\tli(gnscgefﬁgi\glnste istance, MVatlab, ' : IC’earma'&omputing terms to solve many important, non-graphics ap-
plications, such as database searching and sorting, nhedica

imaging, protein folding, and fluid dynamics simulation.eTh
latest Nvidia GPU architecture is called Fermi. Released in

Many fields of science and engineering collect and analy2810, Fermi incorporates many essential features that used
data in a matrix form. Each row in the matrix represents 48 be found only in CPUs, such as L1 and L2 caches
entity, and each column represents a feature. In bioinfoesya and hardware error checking and correction. A Fermi device
for example, the entities may be messenger RNAs, proteifi®dy have up to 512 stream processors, and it brings high
peptides, or metabolites, and the features are biologarat s Performance computing to a desktop environment.
ples; the numbers in the matrix are the abundances of th&concerning the distance between two entities, a number
entities in the samples. In text mining, as another exampf, metrics are commonly used, including Euclidean distance
the entities may be texts, and the features are words; fflee L* norm), Manhattan distance (tié norm), Chebyshev
numbers in the matrix are the word frequencies in the texgéistance (theL> norm), and Canberra distance [2]. Pearson
A basic operation in data analysis is to calculate the digtarcorrelation coefficient,p, and Spearman’s rank correlation
between two entities; a typical distance metric is the Eieelh Coefficient have a range from1 to 1; they can be used
distance. Very often, when given a data matrix, researché®s define a distancel — p. Definitions of these metrics
want to obtain all the pairwise distances among the entitig€ given in Section Il. Previously we have described the
Let A be then x m data matrix. The pairwise distances of5PU computation of the distance matrix using most of these
entities in A can be stored in am x n matrix P = [P;;], Metrics except Spearman rank correlation coefficient {], [
where P;; is the distance between the entities of thé and [5], under the assumption that and m are multiples of
j-th rows of A. HenceforthP is called the distance matrix. If Sixteen. The number sixteen comes from fitting an algorichmi
the distance between two entities can be calculate@(im) design to the Nvidia GPU architecture. Other researchers ha
time, which applies to most of the commonly used distancedtempted to extend the computation to arbitraryand m
the (sequential) time to compuf@ under the random accesgfor Euclidean distance [6]. However, the proposed extensio
machine model i€)(n?m). The present work focuses on théalils to observe a general guideline of GPU algorithm design
parallel computation ofP using graphics processing unitdhe avoidance of divergent execution, and thus their result
(GPU). are sub-optimal. In [5], we proposed a framework for GPU

computation of distance matrices that allows arbitrargnd
* Corresponding author, partially supported by US FAA GralGk010 m and avoids the pitfall of divergent execution. The framédwor

I. INTRODUCTION

is general enough for all distance metrics considered ihere Let the function avgX) be the sample mean df, and let
Matlab is a platform for technical computing. It is widelythe function stdX') be the sample standard deviation &t

used in science and engineering fields. There is a functiBearson correlation coefficiert, is defined as follows.

in _|ts_ Stat_|st|cs Toolboxcalleo_l pdi st that caICl_JIates the 13N /X — avg X) Y, — avgY)

pairwise distances. However, it may take a long time when the(X V) = Z < > <) :

data matrix is large. Another Matlab toolbox call@drallel m—1:= std.X) st(Y)

Computing Toolboxprovides mechanisms to utilize multi-)] (4) .

cores in a computer or multi-computers in a cluster for paral A distance may be defined based on Pearson correlation

computing. Some Matlab functions have already been rewrg@efficient:1 —p. As noted in [4], a sequential computation of

ten to take advantage of parallel computing, but this is ngtmay use three separate and sequentially exeduedoops:

the case fopdi st . That is, regardless how much Computingne loop to calculate avg) and avgY’), followed by another

hardware one may havpdi st is still computed by a single 100P to calculate stdX) and stdY’), and followed by the

CPU core. In addition to using multiple CPU cores, the Parallother loop to calculatp(X, Y’). However, this straightforward

Computing Toolbox provides mechanisms to use Nvidia GP@gProach will incur many cache misses and page faults with

for parallel computation directly from Matlab. The preserf’odern memory management systems if the data matrix is

work develops GPU/CUDA code and the associated Matl#9€- After simple algebraic manipulation, one can coraput

script that compute the pairwise distances as defined with® in @ different way as the followings. First, compute

minus the Spearman rank correlation coefficient. Three idvid m

GPUs are used: Tesla C1060, Tesla C2050, and Tesla M2090. sumX) = Y X, (5)

Depending on the sizes of data matrices, using Tesla C1060 i=1

achieves7.1 to 15.9 folds of speedup over Matlapdi st ; u
Tesla C2050 achieve8.7 to 25.4 folgs; and Teslg M2090 sumx®) = _ZXZ'Q’ ©6)
achieves).5 to 28.9 folds. ol

Section Il contains literature review, descriptions ofaalg sumXy) = ZXiyi- 7)
rithms, and CUDA and Matlab code. Section Il contains i1

computational results. Section IV contains conclusion arédlmilarly sunfy) and suniy’2) are also obtained. These

discussion. five quantities sufX), sumY’), sum(X?), sumY?), and
II. METHODS sumXY’), can be computed by using oher loop, and thus
. a lot of cache misses and page faults can be avoided. After
A. Metrics that, it is trivial to compute avg¥), avgY’), and
Let X andY be two vectors in then-dimensional space, 5
and letp be a real number greater than or equal to 1. THe std(X) = \/SU'T(X) —m-avgX) -avgX) ®)
distance betweeX andY is defined as follows. m—1

Similarly, stdY’) is also obtained. Then Pearson correlation

m 1/p
LP(X,Y) = (Z 1X; — mp) ' 1) coefficient is calculated as:
i=1 sumXY) —m-avgX) -avg(Y)

X,)Y)= 9
Manhattan distance i5!, and Euclidean distance I$. When " : (m —1) - stdX) - stdY') ©
p approaches infinity, Equation (1) can be written as To calculate Spearman’s rank correlation coefficient oftiie
m vectorsX andY, the values in each vector are replaced with
L¥(X,Y) = I?ijXi - Yi, () their ranks (within the vector), from to m; if two or more

_ . .. values are identical, their ranks are the average of what the
which is also known as Chebyshev distance. Canberra destanc ' . . .
2] is defined as follows. ranks would otherW|se_ be. That is, if there is a two-way tie,

and the ranks of the tied values would band i + 1, then
ca =X - Y their ranks are bothi + (i + 1))/2. The Spearman’s rank
L d(X’ Y)= Zm (3 correlation coefficient is the Pearson correlation coeffiti
i=1 ’ calculated from the vectors of ranks. Since ranks are needed

Canberra distance is often used for data that are near #eeting of the values within a vector must be performed,
origin, and has a special consideration when btandY are which takesO(mlogm) time. Thus it takesO(n?mlogm)
at the origin. From the point of view of data analysis, if twdime to calculate the pairwise distance matrix when Spearma
coincident points are not at the origin, their Canberraagisé correlation is used. For all the other metrics, the compurtat
is zero, and thus the distance from the origin to the origin tane is O(n?m).
zero. However, by definition, zero divided by zero is one, and For reasons that will be explained in Section II-C, a large
thus the distance from the origin to the origin shouldrbe matrix is often partitioned intol6 x 16 submatrices to be

processed by blocks aof6 x 16 CUDA threads. This tiling 1050 | €2050 | M2090

Compute capability 1.3 2.0 2.0

strategy needs to handle the cases wheand m are not # of multiprocessors 30 14 16

multiples of 16. One straightforward solution is to ugef # of Cfiretslr;?r fmultlprocessor 2?10 5428 53122
. . ota Of cores

statements in CUDA code to handle the special case when Core clock, MHz 602 575 650

a block of threads hangs over the boundary of the matrix. | peak single precision GFLOP$ 933 | 1,288 | 1,331

However, the overhanging threads will follow a divergent | Peak d°“?<'i.3reéi§i°” GFLOPs 748 531,5 625
execution p_)ath from the thread_s tha_t are within the boundary RAM bandwidth, GB/s 102 124 177
of the matrix. Divergent execution will slow down the ovéral Power consumption, watts | 188 238 225
computation [5]. A second strategy is, whenor m are not

multiples of 16, the data matrix are padded to avoid using Table 1. Key features of three Nvidia Tesla cards.

i f statements and divergent execution. kéandm’ be the
smallest multiples ofi6 that are greater than or equal o

andm, respectively: the highest (averaged) rank. Still, the values of their sank
will change the subsequent calculation of Pearson coioalat
n = VL + 15J .16, (10) coefficient. Thus, the ranks of the padded values must bé rese
16 to zeros. In short, to calculate Spearman correlation using
;| m+15 CUDA, the data matrix must be padded with the maximum
m = - 16. (11)
16 floating point value; after sorting and ranking the valuethm

An n’ x m’ matrix may be created, where the upper feft m padded vector, the ranks of the padded values must be reset

submatrix is the same as the original matrix, and the extiy Z8Tos:
stripes on the right and the bottom are filled with zeros. Th
divergence-free CUDA code may be executed on this m/’ eé] GPU and CUDA
matrix. This padding strategy works well for all tfi& metrics, Nvidia has released several generations of CUDA-capable
because the extra zeros do not change the distances. TG&&J devices, which are characterized by their Compute Capa-
the distance matrix calculated from the padded data matrixhility. The Matlab Parallel Computing Toolbox can work with
identical to the distance matrix calculated from the ordin GPU cards of Compute Capability 1.3 or higher. There are
data matrix. Padding also works well for Canberra distantleree such GPU cards in our labs: Tesla C1060, Tesla C2050,
if one adapts the convention that the distance from the origind Tesla M2090. Some of their key features are listed in
to the origin is zero. However, if the mathematical defimitioTable 1. The computation in the present work is conducted
of zero divided zero being one is used, care must be takervtish single precision floating point operations.
returnm instead ofm’ for the distance from the origin to the Nvidia has a programming guide to CUDA [1], which is
origin. an extension of C. Briefly, the Single Program Multiple Data
To use the padding strategy for Pearson correlation coésPMD) code is written in a GPUWernel function, which
ficient, a slight modification is needed. Léf’ and Y’ be contains the code that will be executed by the GPU processor
two vectors of lengthm’ such thatX/ is equal toX;, for cores. CUDA supports a large number of threads. The threads
i=1,...,m,and X/ is equal to zero fok = m+1,...,m’; are organized intblocks and the blocks are further organized
the same relation holds betweé&fi and Y. Using Equation into agrid. A block can be one-, two-, and three-dimensional,
(9), the p(X’,Y") calculated withm' substituted form will and it may contain 512 threads for Compute Capability 1.3
generally be different fronp(X,Y"). The required modifica- and lower, and 1,024 threads for Compute Capability 2.0 and
tion is as follows. To calculate syd’), sumY”’), sum(X’?), higher. A grid can be one-, two-, and three-dimensional with
sum(Y’?), and suniX’Y”), the summations go fromtom’ in up to (2!6 — 1) blocks in each dimension. Thus a kernel may
order to avoid divergent CUDA thread execution. However, toe invoked with up tq2'6 —1) x (216 —1) x (216 —1) x 1024
calculate avgX'’), avgY’), std X’), stdY”’), andp(X’,Y”), threads in one execution configuration. Each block of thsead
the original value ofn should still be used. is executed on a multiprocessor. The threads within a block
In general, padding with zeros would not work for Spearmaare dispatched to the processors in groups of 32, called a
rank correlation coefficient because it changes the rankiseof warp. A limitation is that all cores in one multiprocessor
values originally in the vector, unless all values are lésmt must execute the same instruction or a “No Operation.” When
zero. The most suitable value for padding for Spearman catinere is ani f statement, and when some threads within a
relation is the maximum floating point number representablearp follow thei f branch while the other threads in the
by the system. In Matlab, the functioreal nax returns such warp follow the el se branch, the execution of the two
a value. In C and thus CUDA [1], the value is the constamtranches are serialized. This divergent execution slowedo
FLT_MAX defined in the header filél oat . h. Thus, after the computation. When developing parallel algorithms Fazr t
sorting, the padded maximum floating point values will alGPU/CUDA platform, divergent execution should be avoided
stay on the high (right) end of the vector, and they receiwes reduced. This is the reason why the padding strategy was

developed in [5]. Additionally, high performance is actgdv with the data in the shared memory.
by having many blocks of threads so that the utilization bf al Each row of the data matrix is sorted by a block of threads,
the multiprocessors is kept high. and thus the number of blocks in the grid of the execution
The GPU device providesegistersand local memoryfor configuration isn. If m is not a power of 2, the matrix is
each thread, ashared memoryor each block, and @lobal padded with extra columns so that, after padding, the number
memoryfor the entire grid of blocks of threads. Although allof columns,m/, is the smallest power of 2 that is equal to
threads execute the same GPU kernel function, a threadoisgreater thanm. The number for padding is the largest
aware of its own identity through its block and thread indjcefloating point number representable in the system. The numbe
and thus a thread can be assigned a specific portion of the d#ftahreads in a block isn’/2. For Nvidia GPU Compute
on which it can perform computation. The shared memofyapability 1.3 and lower, a block may have up to 512 threads,
for a block of threads is fast, yet it is limited in size. Onand thusm can be up to 1,024, which is adequate for most
strategy to attain high performance is for the threads in tloé the tasks in data analysis. For Compute Capability 2.0 and
same block to collaborate on loading data that they all nebdjher, a block may have up to 1,024 threads, and thian
from the global memory to the shared memory. The shared up to 2,048.
memory is further partitioned into banks. The threads in th@.2. Assigning ranks
same block may access different banks simultaneously, yet ammediately after sorting, in the same CUDA kernel func-
memory bank conflict will serialize the threads involved imion, the ranks are assigned according to the sorted vettor i
the conflict. Thus another strategy for high performanceis the shared memory, and they are written to the global memory.
avoid shared memory bank conflicts as much as possible. Bonumber receives the rank+ 1 if its position is: (between
Compute Capability 1.3 and lower, there is 16KB of share@landm’ — 1) in the sorted list. This is straightforward, except
memory. For Compute Capability 2.0 and higher, there isthat when there are ties, the ranks of the tied numbers must
total of 64KB of RAM for shared memory and L1 cachebe replaced with the average of their ranks.
which can be configured either as 16KB shared memory plusThere does not seem to be an efficient way to detect the
48KB L1 cache, or as 48KB shared memory plus 16KB L[eft and right boundaries of a sequence of tied values. The

cache. There is also 768KB L2 cache. parallel scan algorithm [10] requires the operation of the
) scan to be associative, which is not true for the transitions
C. Implementation between non-tied and tied values. Thus a simple strategy is

The input data is an x m matrix, wheren is the number of implemented as follows. Each thread examines a number in
entities andn is the number of features. There are three stefige sorted list. If the number is less than its right (larger)
to calculate the pairwise distance matrix where the digtanoumber and equal to its left (smaller) number, it is looking
is based on Spearman rank correlation coefficient. The figstthe right boundary of a sequence of tied values. Then this
step is to sort each row of the matrix. The second step isttread will move sequentially to the left till it reaches the
assign ranks to the features in each row, and to calculate tef boundary of the tied values, and it calculates the ayeera
average ranks if there are ties. The third step is to cakulaink and assigns it to all the tied values. The CUDA code
the Pearson correlation coefficient based on the ranks. iidte fhas several f statements, and a lot of divergent execution is
and second steps are combined in one CUDA kernel functisasulted. Obviously this simple implementation is verywslo
and the third step is in another kernel. if there are many tied values. However, if the underlyingadat
C.1. Sorting distribution is continuous, the probability of ties is vesyall,

A number of classical sorting algorithms have been adaptedd thus the computation penalty seldom arises.
to the GPU platform, such as odd-even merge sort [7],If m is not a power of 2, the matrix is padded before
bitonic sort [7], quicksort [8], radix sort [9], and mergethe CUDA kernel function is executed. Then the elements
sort [9]. Most of these studies focused on sorting a veiy positions fromm to m’ — 1 are the largest floating point
long array. In the present work, the number of featurespumber representable in the system. These values stayiin the
m, is expected to be from a few dozens to a few humwn places after sorting, and they receive the (same, awdjag
dreds in data analysis, whereas the number of vectorslasgest rank. However, their high rank values will affect
be sorted,n, is expected to be from thousands to tens dfie subsequent calculation of Pearson correlation cosffici
thousands. Under these assumptions, the most suitablegsorThus, their ranks are all reset to zero. Finally, the values o
algorithm for the present work is odd-even merge sort [7]anks are written to the GPU global memory to be used by
[9] as implemented in the CUDA SDK. Specifically, thehe next CUDA kernel execution.
kernel functionoddEvenMer geSort Shar ed in the file C.3. Calculating correlation
oddEvenMer geSort . cu is slightly modified so that ranks The input matrixi n is n x m of n entities andn features.
can be assigned after sorting. The input matrix is stored Tie values of the features are the ranks as described in the
the global memory of the GPU. The numbers in each vectprevious section. Let us assume that the matrix has been
are read into the shared memory, and the sorting is perforntided so that. is a multiple of 16, and m is a power

__global __ void gpuPearson(float *in, int n,

int mPrinme, int m float *out){
__shared__ float Xs[Bl ockSize][Bl ockSize];
__shared__ float Ys[Bl ockSize][Bl ockSize];

}'16 nt bx = bl ockldx.x, by = bl ockldx.y;

nt tx = threadldx.x, ty = threadldx.y;

nt xBegin = bx * Bl ockSize * nPrine;

nt yBegin = by * Bl ockSize * nPrine;

nt yEnd = yBegin + nPrine - 1;

nt x, y, k, outldx;

float sunX, sum¥, sunX2, sun¥2, sunXY;

float avgX, avgyY, varX, varyY, cov, rho;

in (nxm)

A 4

16*by

\ 4

16*bx

16

16*bx sumX = sunY = sunX2 = sun¥2 = sunXY = 0.0;
f or (y=yBegi n, x=xBegi n; y<=yEnd;
y+=Bl ockSi ze, x+=Bl ockSi ze) {
Ys[ty][tx] = in[y + tysnPrime + tx];
¥ Xs[tx][ty] = in[x + ty*nPrime + tx];
__syncthreads();
#pragma unrol |
for (k=0; k<Bl ockSi ze; k++) {
l6*by —r———-—-=-~-~-4—F-——-——-~—----- sunX += Xs[k][tx];
sun¥Y += Ys[ty][k];
sunX2 += Xs[k][tx] * Xs[k][tx];
sunY2 += Ys[ty][k] * Ys[ty][K];
sunXY += Xs[k][tx] * Ys[ty][Kk];

out (nxn)

I

1 1

I

1 1 }

P! __syncthreads();

o }

N avgX = sumX/ m

1 avgY = sun¥/ m

o var X = (sunmX2- avgxX+avgX*m/ (m1);
o varY = (sumy2-avgY+ravgY+m/(m1);

cov = (sunXY-avgXtavgY*m/(m1);
rho = cov/sqrtf(varX+vary);

Fig. 1. Each block (of 16 by 16 threads) computes one sub-matrix of out | dx = by*Bl ockSi zexn + ty*n +
the distance matrixut , and the threads work on one pair of aligned bx*Bl ockSi ze + tx;
sub-matrices of the data matrixa at a time. out[outldx] = rho;

}

of 2. The output matrixout is n x n of pairwise Pearson Fig. 2. The CUDA kernel function for Pearson correlation coeffitien
correlation coefficients. Figure 1 illustrates the idea loé¢ t that assumes the matrices are padded.

CUDA algorithm. In CUDA, each thread has its block and

thread indices. A two-dimensional grid and two-dimensiona

blocks are used, and thus each thread has four indices: di n8 bl ock(16, 16);
int bx = blockldx.x, by = blockldx.y; din8 grid((n+15)/16, (n+15)/16);
int tx = threadldx.x, ty = threadldx.y; Figure 2 contains the CUDA kernel function for Pearson

Each thread will calculate one entry ofit . Let us assume correlation coefficient. Notice that the CUDA kernel fuicti
that a thread needs to calculate the entry indexedikj) in gpuPear son in Figure 2 needs two parameters for the
the matrixout wherei is 16«by andj is 16+ bx; that is, number of columns of the input matrix: the parameter i ne
botht x andty are zero. Rowl6+*by of the matrixi n is for the dimensionn’ after padding, and the parametarfor

first copied to shared memory for fast access. While the coffie original dimensiom.

of row 16+ by is in shared memory, those threads that afe.4. Interface between Matlab and CUDA

responsible for entrie&,j + 1), (i,5 + 2),...,(i,j + 15) of The input data matrix is generated in Matlab using a
the matrixout can all use the same copy for fast memorpseudorandom number generator. The padding of the matrix
access. Similarly, after row of the matrixi n is copied to for GPU/CUDA processing is carried out with the Matlab
shared memory, the threads that are responsible for entffigsction padar r ay. Then the Parallel Computing Toolbox
(i,7),(i+1,4),...,(i+15,4) can use the same copy. Thus its used to establish the connection between Matlab and the
is advantageous to haué x 16 square blocks of threads thatGPU device. The functiogpuAr r ay is used to copy the data
share the data in the shared memory. The blocks are organigeatrix from the CPU RAM to the GPU global memory. Of
into a grid. particular interests is that Matlab uses column-majoiesjerof

. . . pdi st M2090 C2050 C1060

a matrix while the CUDA kernels in the present W(_)rk use row — — e T tme T tatio T Tme T tatio T Time T ratio

major. Thus the Matlab functionr anspose is applied to the [3000 | 200 I39| 015 95 [016 | 88| 019 74

. P 3000 600 3.84 0.27 14.2 | 0.31 12.4 0.46 8.4

data matrix before it is passed to the CUDA kerne!. After the 3000 | 1000 | 672 | 027 | 246 | 031 | 218 | 046 | 146

CUDA kernel execution, the Matlab functigrat her is used 2888 égg 1;.32 8'33 12,3 (1),?2 13,; (1),;2 ;é

to copy the pairwise distance matrix from the GPU gl_obal 6000 | 1000 | 2650 | o096 | 276 | 111 | 238 | 171 | 155

memory to the CPU RAM. For the purpose of comparison, 9000 | 200 | 11.16| 115| 97 | 124| 9.0 | 154 | 73

. . . P . 9000 600 35.52 2.09 17.0 | 2.45 14.5 3.79 9.4

the Matlab functiorpdi st in the Statistics Toolbox is u;ed 0000 | 1000 | 5008 | 200 | 283 | 244 | 243 | 377 | 157

to calculate Spearman correlation of the same data matnix. T| gggg ggg ég.gg égg 12.2 ‘21.52 13; g.éi ;g

computation time is measured by using the Matlab functions;5ooo | 1000 | 10451 | 366 | 286 | 427 | 245 | 665 | 157

ti c andt oc. 15000 | 200 33.13| 3.04| 109 | 3.39 98 | 4.21 7.9

15000 | 600 | 9812 | 581 | 169 | 663 | 148 | 1033 | 95

15000 | 1000 | 16277 | 573 | 284 | 6.67 | 24.4 | 1031 | 15.8

Il. RESULTS 18000 | 200 | 47.30 | 453 | 105 | 488 | 97| 606 | 78

. . . 18000 600 141.00 8.13 17.4 14.80 9.5

The computational experiments are conducted on a LinUXigooo | 1000 | 23467 | s18 | 287 1481 | 158

machine with a 3.4 GHz AMD Phenom Il X4 965 processot), giggg ggg 122-23 ﬁii 12-2 2%3%; g-g

16 GB RAM, and a solid state boot drive. Four GPU Cardf,zj_ooo 1000 319:71 11:06 28:9 20:09]_5._9

C870, C1060, C2050, and M2090, are installed directly on the

motherboard, although C870 is not used in the present wdidble 2. Performance comparisons of Matlgidi st and GPU

because its Compute Capability 1.0 is below what is requir@({?ﬁl'?eﬁj1 t?ggecgg;f?ggtri\?ggﬁg Er?]‘igwli;?t ‘ij;sg’l%eng;atfliﬁ?;;gpfhf
by Matlab. For the dimensions of the data matrices, the eal eedup folds of GPU over CPU. '
of n are 3,000, 6,000, 9,000, 12,000, 15,000, 18,000, and

21,000, and the values of. are 200, 600, and 1,000. The

data matrices are filled with pseudorandom numbers betweginetimes, the matrix with 600 columns may need more
zero and one. Table 2 contains the experimental results. ke than that of 1,000 columns because the former has

time unit is seconds. Each computation is repeated thr@stimyore padded values, which create divergent computation in
and the average time is reported. The GPU time includes Qculating the ranks.

data transfer time between CPU and GPU RAM. When using
C1060 and for matrices of siz&8000 x 600 or larger, Matlab
gave an error message that the GPU device was out of memory.
This is bizarre because the memory usage is well below the
3GB of C1060; perhaps Matlab takes away some GPU RANF!
in an undocumented manner. Overall, Tesla C1060 achieves
7.1to0 15.9 folds of speedup over Matlgidi st ; Tesla C2050 [3l
achieves’.7 to 24.4 folds; and Tesla M2090 achievéss to

28.9 folds.

REFERENCES

Nvidia, NVIDIA CUDA C Programming Guide, Version 4.0 Nvidia
Corporation, 2011.

G. N. Lance and W. T. Williams, “Computer programs for riaiehical
polythetic classification (similarity analyses)lhe Computer Journal
vol. 9, no. 1, pp. 60-64, 1966.

D. Chang, N. Jones, D. Li, M. Ouyang, and R. Ragade, “Cdmpu
pairwise Euclidean distances of data points with GPUsPrioceedings
of the IASTED International Symposium on Computationaldgy and
Bioinformatics 2008, pp. 278-283.

D. Chang, A. Desoky, M. Ouyang, and E. Rouchka, “Compuivgise
Manhattan distance and Pearson correlation coefficientatd goints
with GPU,” in Proceedings of the 10th ACIS International Conference

[4]
IV. CONCLUSION AND DISCUSSION

Previously we described the GPU computation of the dis-
tance matrix [3], [4], under the assumption thaandm are
multiples of sixteen. In [5], we relaxed the requirementhsat t
n andm can take arbitrary values. In the present work, we

extend the CUDA computation to Spearman rank correlatiolf!

coefficient, for which we need to sort the values in each of the
vectors, and calculate the ranks of the values. If thereiade t

values, their average ranks must be calculated. Furthermot’]
the CUDA computation is integrated to Matlab, which is apg;

popular platform in science and engineering fields for tézdin
computing. Depending on the GPU devices used and sizes
the data matrices, the CUDA computatior¥is to 28.9 times
faster than the Matlab functigpdi st . This provides a lot of

speedup for routine computations by scientists and engineé!©!

In Table 2, for matrices with the same number of rows
but 600 or 1,000 columns, the GPU computation times have

(5]

on Software Engineering, Artificial Intelligences, Netkiog and Par-
allel/Distributed Computing2009, pp. 501-506.

S. Kim and M. Ouyang, “Compute distance matrices with GPb
Proceedings of the 3rd Annual International Conference alvahces
in Distributed & Parallel Computing2012, p. in press.

Q. Li, V. Kecman, and R. Salman, “A chunking method for Egdean
distance matrix calculation on large dataset using muRld in Pro-
ceedings of the 9th International Conference on Machineriiag and
Applications 2010, pp. 208 —213.

P. Kipfer and R. Westermann, “Improved GPU sorting,"GiPU Gems
2, M. Pharr, Ed. Addison-Wesley, 2005, pp. 733-746.

D. Cederman and P. Tsigas, “GPU-Quicksort: A practicaicisort
algorithm for graphics processors]: Exp. Algorithmicsvol. 14, pp.

I 4:1.4-4:1.24, 2010.

N. Satish, M. Harris, and M. Garland, “Designing effidiesorting algo-
rithms for manycore GPUs,” ifProceedings of the IEEE International
Symposium on Parallel & Distributed Processirgp09, pp. 1-10.

G. E. Blelloch, “Prefix sums and their applications,”989

similar values. This is because both matrices are padded to

have 1,024 columns before passing to the CUDA kernels.

