
Compute Spearman Correlation Coefficient with Matlab/CUDA

Seongho Kim
Bioinformatics & Biostatistics Department

University of Louisville
Louisville, Kentucky 40292

USA
s0kim023@louisville.edu

Ming Ouyang⋆

Computer Engineering &
Computer Science Department

University of Louisville
Louisville, Kentucky 40292

ming.ouyang@louisville.edu

Xiang Zhang
Chemistry Department

University of Louisville
Louisville, Kentucky 40292

USA
x0zhan17@louisville.edu

Abstract— Given a data matrix where the rows are entities and the
columns are features, researchers often want to compute thepairwise
distances among the entities. Some common choices of distances are
Euclidean distance, Manhattan distance, Chebyshev distance, and
Canberra distance. Pearson and Spearman correlation coefficients,
with a range from−1 to 1, can be used to define a distance:1 minus
the coefficient. Matlab is widely used in science and engineering
fields for technical computing, and it provides a function inits
statistics toolbox to calculate the pairwise distances, which takes a
long time when the data matrix is large. Graphics processingunits
have become powerful co-processors to the CPUs. Nvidia GPUscan
be programmed by the CUDA language. The present work studies
CUDA implementation of Spearman correlation coefficient that can
be called from Matlab to speed up the computation of pairwise
distances. Speedups from7.1 to 28.9 folds are achieved.

Keywords— Pairwise distance, Matlab, GPU, CUDA, Spearman
correlation coefficient

I. I NTRODUCTION

Many fields of science and engineering collect and analyze
data in a matrix form. Each row in the matrix represents an
entity, and each column represents a feature. In bioinformatics,
for example, the entities may be messenger RNAs, proteins,
peptides, or metabolites, and the features are biological sam-
ples; the numbers in the matrix are the abundances of the
entities in the samples. In text mining, as another example,
the entities may be texts, and the features are words; the
numbers in the matrix are the word frequencies in the texts.
A basic operation in data analysis is to calculate the distance
between two entities; a typical distance metric is the Euclidean
distance. Very often, when given a data matrix, researchers
want to obtain all the pairwise distances among the entities.
Let A be then × m data matrix. The pairwise distances of
entities inA can be stored in ann × n matrix P = [Pij],
wherePij is the distance between the entities of thei-th and
j-th rows ofA. HenceforthP is called the distance matrix. If
the distance between two entities can be calculated inO(m)
time, which applies to most of the commonly used distances,
the (sequential) time to computeP under the random access
machine model isO(n2m). The present work focuses on the
parallel computation ofP using graphics processing units
(GPU).

⋆ Corresponding author, partially supported by US FAA Grant 11-G-010

GPUs on commodity video cards were originally designed
towards the needs of the 3-D gaming industry for high-
performance, real-time graphics. Software development on
them used languages such as OpenGL shading language
and Direct3D high-level shader language. In 2006, Nvidia
Corporation released a new generation of GPUs designed for
general purpose computation. These G80 GPUs provide up to
128 stream processors and support 12,288 active threads. This
architecture facilitates efficient general purpose computing on
GPUs (GPGPUs). In 2007, Nvidia released an extended C
language for GPU programming called CUDA [1], short for
Compute Unified Device Architecture. Using CUDA, innova-
tive data-parallel algorithms can be implemented in general
computing terms to solve many important, non-graphics ap-
plications, such as database searching and sorting, medical
imaging, protein folding, and fluid dynamics simulation. The
latest Nvidia GPU architecture is called Fermi. Released in
2010, Fermi incorporates many essential features that used
to be found only in CPUs, such as L1 and L2 caches
and hardware error checking and correction. A Fermi device
may have up to 512 stream processors, and it brings high
performance computing to a desktop environment.

Concerning the distance between two entities, a number
of metrics are commonly used, including Euclidean distance
(theL2 norm), Manhattan distance (theL1 norm), Chebyshev
distance (theL∞ norm), and Canberra distance [2]. Pearson
correlation coefficient,ρ, and Spearman’s rank correlation
coefficient have a range from−1 to 1; they can be used
to define a distance:1 − ρ. Definitions of these metrics
are given in Section II. Previously we have described the
GPU computation of the distance matrix using most of these
metrics except Spearman rank correlation coefficient [3], [4],
[5], under the assumption thatn and m are multiples of
sixteen. The number sixteen comes from fitting an algorithmic
design to the Nvidia GPU architecture. Other researchers have
attempted to extend the computation to arbitraryn and m
for Euclidean distance [6]. However, the proposed extension
fails to observe a general guideline of GPU algorithm design:
the avoidance of divergent execution, and thus their results
are sub-optimal. In [5], we proposed a framework for GPU
computation of distance matrices that allows arbitraryn and
m and avoids the pitfall of divergent execution. The framework

is general enough for all distance metrics considered therein.
Matlab is a platform for technical computing. It is widely

used in science and engineering fields. There is a function
in its Statistics Toolboxcalled pdist that calculates the
pairwise distances. However, it may take a long time when the
data matrix is large. Another Matlab toolbox calledParallel
Computing Toolboxprovides mechanisms to utilize multi-
cores in a computer or multi-computers in a cluster for parallel
computing. Some Matlab functions have already been rewrit-
ten to take advantage of parallel computing, but this is not
the case forpdist. That is, regardless how much computing
hardware one may have,pdist is still computed by a single
CPU core. In addition to using multiple CPU cores, the Parallel
Computing Toolbox provides mechanisms to use Nvidia GPUs
for parallel computation directly from Matlab. The present
work develops GPU/CUDA code and the associated Matlab
script that compute the pairwise distances as defined with1
minus the Spearman rank correlation coefficient. Three Nvidia
GPUs are used: Tesla C1060, Tesla C2050, and Tesla M2090.
Depending on the sizes of data matrices, using Tesla C1060
achieves7.1 to 15.9 folds of speedup over Matlabpdist;
Tesla C2050 achieves8.7 to 24.4 folds; and Tesla M2090
achieves9.5 to 28.9 folds.

Section II contains literature review, descriptions of algo-
rithms, and CUDA and Matlab code. Section III contains
computational results. Section IV contains conclusion and
discussion.

II. M ETHODS

A. Metrics

Let X andY be two vectors in them-dimensional space,
and letp be a real number greater than or equal to 1. TheLp

distance betweenX andY is defined as follows.

Lp(X,Y) =

(

m
∑

i=1

|Xi − Yi|
p

)1/p

. (1)

Manhattan distance isL1, and Euclidean distance isL2. When
p approaches infinity, Equation (1) can be written as

L∞(X,Y) =
m

max
i=1

|Xi − Yi|, (2)

which is also known as Chebyshev distance. Canberra distance
[2] is defined as follows.

Lcad(X,Y) =

m
∑

i=1

|Xi − Yi|

|Xi|+ |Yi|
. (3)

Canberra distance is often used for data that are near the
origin, and has a special consideration when bothX andY are
at the origin. From the point of view of data analysis, if two
coincident points are not at the origin, their Canberra distance
is zero, and thus the distance from the origin to the origin is
zero. However, by definition, zero divided by zero is one, and
thus the distance from the origin to the origin should bem.

Let the function avg(X) be the sample mean ofX , and let
the function std(X) be the sample standard deviation ofX .
Pearson correlation coefficient,ρ, is defined as follows.

ρ(X,Y) =
1

m− 1

m
∑

i=1

(

Xi − avg(X)

std(X)

)(

Yi − avg(Y)

std(Y)

)

.

(4)
A distance may be defined based on Pearson correlation
coefficient:1−ρ. As noted in [4], a sequential computation of
ρ may use three separate and sequentially executedfor loops:
one loop to calculate avg(X) and avg(Y), followed by another
loop to calculate std(X) and std(Y), and followed by the
other loop to calculateρ(X,Y). However, this straightforward
approach will incur many cache misses and page faults with
modern memory management systems if the data matrix is
large. After simple algebraic manipulation, one can compute
ρ in a different way as the followings. First, compute

sum(X) =

m
∑

i=1

Xi, (5)

sum(X2) =
m
∑

i=1

X2

i , (6)

sum(XY) =

m
∑

i=1

XiYi. (7)

Similarly, sum(Y) and sum(Y 2) are also obtained. These
five quantities sum(X), sum(Y), sum(X2), sum(Y 2), and
sum(XY), can be computed by using onefor loop, and thus
a lot of cache misses and page faults can be avoided. After
that, it is trivial to compute avg(X), avg(Y), and

std(X) =

√

sum(X2)−m · avg(X) · avg(X)

m− 1
. (8)

Similarly, std(Y) is also obtained. Then Pearson correlation
coefficient is calculated as:

ρ(X,Y) =
sum(XY)−m · avg(X) · avg(Y)

(m− 1) · std(X) · std(Y)
. (9)

To calculate Spearman’s rank correlation coefficient of thetwo
vectorsX andY , the values in each vector are replaced with
their ranks (within the vector), from1 to m; if two or more
values are identical, their ranks are the average of what their
ranks would otherwise be. That is, if there is a two-way tie,
and the ranks of the tied values would bei and i + 1, then
their ranks are both(i + (i + 1))/2. The Spearman’s rank
correlation coefficient is the Pearson correlation coefficient
calculated from the vectors of ranks. Since ranks are needed,
sorting of the values within a vector must be performed,
which takesO(m logm) time. Thus it takesO(n2m logm)
time to calculate the pairwise distance matrix when Spearman
correlation is used. For all the other metrics, the computation
time isO(n2m).

For reasons that will be explained in Section II-C, a large
matrix is often partitioned into16 × 16 submatrices to be

processed by blocks of16 × 16 CUDA threads. This tiling
strategy needs to handle the cases whenn and m are not
multiples of 16. One straightforward solution is to useif
statements in CUDA code to handle the special case when
a block of threads hangs over the boundary of the matrix.
However, the overhanging threads will follow a divergent
execution path from the threads that are within the boundary
of the matrix. Divergent execution will slow down the overall
computation [5]. A second strategy is, whenn or m are not
multiples of 16, the data matrix are padded to avoid using
if statements and divergent execution. Letn′ andm′ be the
smallest multiples of16 that are greater than or equal ton
andm, respectively:

n′ =

⌊

n+ 15

16

⌋

· 16, (10)

m′ =

⌊

m+ 15

16

⌋

· 16. (11)

An n′×m′ matrix may be created, where the upper leftn×m
submatrix is the same as the original matrix, and the extra
stripes on the right and the bottom are filled with zeros. Then
divergence-free CUDA code may be executed on thisn′×m′

matrix. This padding strategy works well for all theLp metrics,
because the extra zeros do not change the distances. Thus
the distance matrix calculated from the padded data matrix is
identical to the distance matrix calculated from the original
data matrix. Padding also works well for Canberra distance
if one adapts the convention that the distance from the origin
to the origin is zero. However, if the mathematical definition
of zero divided zero being one is used, care must be taken to
returnm instead ofm′ for the distance from the origin to the
origin.

To use the padding strategy for Pearson correlation coef-
ficient, a slight modification is needed. LetX ′ and Y ′ be
two vectors of lengthm′ such thatX ′

i is equal toXi, for
i = 1, . . . ,m, andX ′

i is equal to zero fori = m+ 1, . . . ,m′;
the same relation holds betweenY ′ and Y . Using Equation
(9), theρ(X ′, Y ′) calculated withm′ substituted form will
generally be different fromρ(X,Y). The required modifica-
tion is as follows. To calculate sum(X ′), sum(Y ′), sum(X ′2),
sum(Y ′2), and sum(X ′Y ′), the summations go from1 tom′ in
order to avoid divergent CUDA thread execution. However, to
calculate avg(X ′), avg(Y ′), std(X ′), std(Y ′), andρ(X ′, Y ′),
the original value ofm should still be used.

In general, padding with zeros would not work for Spearman
rank correlation coefficient because it changes the ranks ofthe
values originally in the vector, unless all values are less than
zero. The most suitable value for padding for Spearman cor-
relation is the maximum floating point number representable
by the system. In Matlab, the functionrealmax returns such
a value. In C and thus CUDA [1], the value is the constant
FLT MAX defined in the header filefloat.h. Thus, after
sorting, the padded maximum floating point values will all
stay on the high (right) end of the vector, and they receive

C1060 C2050 M2090
Compute capability 1.3 2.0 2.0
of multiprocessors 30 14 16

of cores per multiprocessor 8 32 32
total # of cores 240 448 512

Core clock, MHz 602 575 650
Peak single precision GFLOPs 933 1,288 1,331
Peak double precision GFLOPs 78 515 665

RAM, GB 4 3 6
RAM bandwidth, GB/s 102 144 177

Power consumption, watts 188 238 225

Table 1. Key features of three Nvidia Tesla cards.

the highest (averaged) rank. Still, the values of their ranks
will change the subsequent calculation of Pearson correlation
coefficient. Thus, the ranks of the padded values must be reset
to zeros. In short, to calculate Spearman correlation using
CUDA, the data matrix must be padded with the maximum
floating point value; after sorting and ranking the values inthe
padded vector, the ranks of the padded values must be reset
to zeros.

B. GPU and CUDA

Nvidia has released several generations of CUDA-capable
GPU devices, which are characterized by their Compute Capa-
bility. The Matlab Parallel Computing Toolbox can work with
GPU cards of Compute Capability 1.3 or higher. There are
three such GPU cards in our labs: Tesla C1060, Tesla C2050,
and Tesla M2090. Some of their key features are listed in
Table 1. The computation in the present work is conducted
with single precision floating point operations.

Nvidia has a programming guide to CUDA [1], which is
an extension of C. Briefly, the Single Program Multiple Data
(SPMD) code is written in a GPUkernel function, which
contains the code that will be executed by the GPU processor
cores. CUDA supports a large number of threads. The threads
are organized intoblocks, and the blocks are further organized
into agrid. A block can be one-, two-, and three-dimensional,
and it may contain 512 threads for Compute Capability 1.3
and lower, and 1,024 threads for Compute Capability 2.0 and
higher. A grid can be one-, two-, and three-dimensional with
up to (216 − 1) blocks in each dimension. Thus a kernel may
be invoked with up to(216−1)× (216−1)× (216−1)×1024
threads in one execution configuration. Each block of threads
is executed on a multiprocessor. The threads within a block
are dispatched to the processors in groups of 32, called a
warp. A limitation is that all cores in one multiprocessor
must execute the same instruction or a “No Operation.” When
there is anif statement, and when some threads within a
warp follow the if branch while the other threads in the
warp follow the else branch, the execution of the two
branches are serialized. This divergent execution slows down
the computation. When developing parallel algorithms for the
GPU/CUDA platform, divergent execution should be avoided
or reduced. This is the reason why the padding strategy was

developed in [5]. Additionally, high performance is achieved
by having many blocks of threads so that the utilization of all
the multiprocessors is kept high.

The GPU device providesregistersand local memoryfor
each thread, ashared memoryfor each block, and aglobal
memoryfor the entire grid of blocks of threads. Although all
threads execute the same GPU kernel function, a thread is
aware of its own identity through its block and thread indices,
and thus a thread can be assigned a specific portion of the data
on which it can perform computation. The shared memory
for a block of threads is fast, yet it is limited in size. One
strategy to attain high performance is for the threads in the
same block to collaborate on loading data that they all need
from the global memory to the shared memory. The shared
memory is further partitioned into banks. The threads in the
same block may access different banks simultaneously, yet a
memory bank conflict will serialize the threads involved in
the conflict. Thus another strategy for high performance is to
avoid shared memory bank conflicts as much as possible. For
Compute Capability 1.3 and lower, there is 16KB of shared
memory. For Compute Capability 2.0 and higher, there is a
total of 64KB of RAM for shared memory and L1 cache,
which can be configured either as 16KB shared memory plus
48KB L1 cache, or as 48KB shared memory plus 16KB L1
cache. There is also 768KB L2 cache.

C. Implementation

The input data is ann×m matrix, wheren is the number of
entities andm is the number of features. There are three steps
to calculate the pairwise distance matrix where the distance
is based on Spearman rank correlation coefficient. The first
step is to sort each row of the matrix. The second step is to
assign ranks to the features in each row, and to calculate the
average ranks if there are ties. The third step is to calculate
the Pearson correlation coefficient based on the ranks. The first
and second steps are combined in one CUDA kernel function,
and the third step is in another kernel.
C.1. Sorting

A number of classical sorting algorithms have been adapted
to the GPU platform, such as odd-even merge sort [7],
bitonic sort [7], quicksort [8], radix sort [9], and merge
sort [9]. Most of these studies focused on sorting a very
long array. In the present work, the number of features,
m, is expected to be from a few dozens to a few hun-
dreds in data analysis, whereas the number of vectors to
be sorted,n, is expected to be from thousands to tens of
thousands. Under these assumptions, the most suitable sorting
algorithm for the present work is odd-even merge sort [7],
[9] as implemented in the CUDA SDK. Specifically, the
kernel functionoddEvenMergeSortShared in the file
oddEvenMergeSort.cu is slightly modified so that ranks
can be assigned after sorting. The input matrix is stored in
the global memory of the GPU. The numbers in each vector
are read into the shared memory, and the sorting is performed

with the data in the shared memory.
Each row of the data matrix is sorted by a block of threads,

and thus the number of blocks in the grid of the execution
configuration isn. If m is not a power of 2, the matrix is
padded with extra columns so that, after padding, the number
of columns,m′, is the smallest power of 2 that is equal to
or greater thanm. The number for padding is the largest
floating point number representable in the system. The number
of threads in a block ism′/2. For Nvidia GPU Compute
Capability 1.3 and lower, a block may have up to 512 threads,
and thusm can be up to 1,024, which is adequate for most
of the tasks in data analysis. For Compute Capability 2.0 and
higher, a block may have up to 1,024 threads, and thusm can
be up to 2,048.
C.2. Assigning ranks

Immediately after sorting, in the same CUDA kernel func-
tion, the ranks are assigned according to the sorted vector in
the shared memory, and they are written to the global memory.
A number receives the ranki+ 1 if its position is i (between
0 andm′−1) in the sorted list. This is straightforward, except
that when there are ties, the ranks of the tied numbers must
be replaced with the average of their ranks.

There does not seem to be an efficient way to detect the
left and right boundaries of a sequence of tied values. The
parallel scan algorithm [10] requires the operation of the
scan to be associative, which is not true for the transitions
between non-tied and tied values. Thus a simple strategy is
implemented as follows. Each thread examines a number in
the sorted list. If the number is less than its right (larger)
number and equal to its left (smaller) number, it is looking
at the right boundary of a sequence of tied values. Then this
thread will move sequentially to the left till it reaches the
left boundary of the tied values, and it calculates the average
rank and assigns it to all the tied values. The CUDA code
has severalif statements, and a lot of divergent execution is
resulted. Obviously this simple implementation is very slow
if there are many tied values. However, if the underlying data
distribution is continuous, the probability of ties is verysmall,
and thus the computation penalty seldom arises.

If m is not a power of 2, the matrix is padded before
the CUDA kernel function is executed. Then the elements
in positions fromm to m′ − 1 are the largest floating point
number representable in the system. These values stay in their
own places after sorting, and they receive the (same, averaged)
largest rank. However, their high rank values will affect
the subsequent calculation of Pearson correlation coefficient.
Thus, their ranks are all reset to zero. Finally, the values of
ranks are written to the GPU global memory to be used by
the next CUDA kernel execution.
C.3. Calculating correlation

The input matrixin is n×m of n entities andm features.
The values of the features are the ranks as described in the
previous section. Let us assume that the matrix has been
padded so thatn is a multiple of 16, and m is a power

in (nxm)

16*by

16*bx

16*bx

out (nxn)

16

16

16*by

Fig. 1. Each block (of 16 by 16 threads) computes one sub-matrix of
the distance matrixout, and the threads work on one pair of aligned
sub-matrices of the data matrixin at a time.

of 2. The output matrixout is n × n of pairwise Pearson
correlation coefficients. Figure 1 illustrates the idea of the
CUDA algorithm. In CUDA, each thread has its block and
thread indices. A two-dimensional grid and two-dimensional
blocks are used, and thus each thread has four indices:
int bx = blockIdx.x, by = blockIdx.y;

int tx = threadIdx.x, ty = threadIdx.y;

Each thread will calculate one entry ofout. Let us assume
that a thread needs to calculate the entry indexed by(i, j) in
the matrixout where i is 16*by and j is 16*bx; that is,
both tx and ty are zero. Row16*by of the matrixin is
first copied to shared memory for fast access. While the copy
of row 16*by is in shared memory, those threads that are
responsible for entries(i, j + 1), (i, j + 2), . . . , (i, j + 15) of
the matrixout can all use the same copy for fast memory
access. Similarly, after rowj of the matrixin is copied to
shared memory, the threads that are responsible for entries
(i, j), (i+1, j), . . . , (i+15, j) can use the same copy. Thus it
is advantageous to have16× 16 square blocks of threads that
share the data in the shared memory. The blocks are organized
into a grid.

__global__ void gpuPearson(float *in, int n,
int mPrime, int m, float *out){
__shared__ float Xs[BlockSize][BlockSize];
__shared__ float Ys[BlockSize][BlockSize];
int bx = blockIdx.x, by = blockIdx.y;
int tx = threadIdx.x, ty = threadIdx.y;
int xBegin = bx * BlockSize * mPrime;
int yBegin = by * BlockSize * mPrime;
int yEnd = yBegin + mPrime - 1;
int x, y, k, outIdx;
float sumX, sumY, sumX2, sumY2, sumXY;
float avgX, avgY, varX, varY, cov, rho;

sumX = sumY = sumX2 = sumY2 = sumXY = 0.0;
for(y=yBegin,x=xBegin; y<=yEnd;

y+=BlockSize,x+=BlockSize){
Ys[ty][tx] = in[y + ty*mPrime + tx];
Xs[tx][ty] = in[x + ty*mPrime + tx];
__syncthreads();

#pragma unroll
for(k=0;k<BlockSize;k++){

sumX += Xs[k][tx];
sumY += Ys[ty][k];
sumX2 += Xs[k][tx] * Xs[k][tx];
sumY2 += Ys[ty][k] * Ys[ty][k];
sumXY += Xs[k][tx] * Ys[ty][k];

}
__syncthreads();

}
avgX = sumX/m;
avgY = sumY/m;
varX = (sumX2-avgX*avgX*m)/(m-1);
varY = (sumY2-avgY*avgY*m)/(m-1);
cov = (sumXY-avgX*avgY*m)/(m-1);
rho = cov/sqrtf(varX*varY);
outIdx = by*BlockSize*n + ty*n +

bx*BlockSize + tx;
out[outIdx] = rho;

}

Fig. 2. The CUDA kernel function for Pearson correlation coefficient
that assumes the matrices are padded.

dim3 block(16,16);

dim3 grid((n+15)/16,(n+15)/16);

Figure 2 contains the CUDA kernel function for Pearson
correlation coefficient. Notice that the CUDA kernel function
gpuPearson in Figure 2 needs two parameters for the
number of columns of the input matrix: the parametermPrime
for the dimensionm′ after padding, and the parameterm for
the original dimensionm.
C.4. Interface between Matlab and CUDA

The input data matrix is generated in Matlab using a
pseudorandom number generator. The padding of the matrix
for GPU/CUDA processing is carried out with the Matlab
function padarray. Then the Parallel Computing Toolbox
is used to establish the connection between Matlab and the
GPU device. The functiongpuArray is used to copy the data
matrix from the CPU RAM to the GPU global memory. Of
particular interests is that Matlab uses column-major storage of

a matrix while the CUDA kernels in the present work use row-
major. Thus the Matlab functiontranspose is applied to the
data matrix before it is passed to the CUDA kernel. After the
CUDA kernel execution, the Matlab functiongather is used
to copy the pairwise distance matrix from the GPU global
memory to the CPU RAM. For the purpose of comparison,
the Matlab functionpdist in the Statistics Toolbox is used
to calculate Spearman correlation of the same data matrix. The
computation time is measured by using the Matlab functions
tic andtoc.

III. R ESULTS

The computational experiments are conducted on a Linux
machine with a 3.4 GHz AMD Phenom II X4 965 processor,
16 GB RAM, and a solid state boot drive. Four GPU cards,
C870, C1060, C2050, and M2090, are installed directly on the
motherboard, although C870 is not used in the present work
because its Compute Capability 1.0 is below what is required
by Matlab. For the dimensions of the data matrices, the values
of n are 3,000, 6,000, 9,000, 12,000, 15,000, 18,000, and
21,000, and the values ofm are 200, 600, and 1,000. The
data matrices are filled with pseudorandom numbers between
zero and one. Table 2 contains the experimental results. The
time unit is seconds. Each computation is repeated three times,
and the average time is reported. The GPU time includes the
data transfer time between CPU and GPU RAM. When using
C1060 and for matrices of sizes18000×600 or larger, Matlab
gave an error message that the GPU device was out of memory.
This is bizarre because the memory usage is well below the
3GB of C1060; perhaps Matlab takes away some GPU RAM
in an undocumented manner. Overall, Tesla C1060 achieves
7.1 to 15.9 folds of speedup over Matlabpdist; Tesla C2050
achieves8.7 to 24.4 folds; and Tesla M2090 achieves9.5 to
28.9 folds.

IV. CONCLUSION AND DISCUSSION

Previously we described the GPU computation of the dis-
tance matrix [3], [4], under the assumption thatn andm are
multiples of sixteen. In [5], we relaxed the requirement so that
n andm can take arbitrary values. In the present work, we
extend the CUDA computation to Spearman rank correlation
coefficient, for which we need to sort the values in each of the
vectors, and calculate the ranks of the values. If there are tied
values, their average ranks must be calculated. Furthermore,
the CUDA computation is integrated to Matlab, which is a
popular platform in science and engineering fields for technical
computing. Depending on the GPU devices used and sizes of
the data matrices, the CUDA computation is7.1 to 28.9 times
faster than the Matlab functionpdist. This provides a lot of
speedup for routine computations by scientists and engineers.

In Table 2, for matrices with the same number of rows
but 600 or 1,000 columns, the GPU computation times have
similar values. This is because both matrices are padded to
have 1,024 columns before passing to the CUDA kernels.

pdist M2090 C2050 C1060
n m time time ratio time ratio time ratio

3000 200 1.39 0.15 9.5 0.16 8.8 0.19 7.4
3000 600 3.84 0.27 14.2 0.31 12.4 0.46 8.4
3000 1000 6.72 0.27 24.6 0.31 21.8 0.46 14.6
6000 200 4.99 0.53 9.5 0.58 8.7 0.70 7.1
6000 600 15.98 0.97 16.4 1.12 14.3 1.71 9.3
6000 1000 26.50 0.96 27.6 1.11 23.8 1.71 15.5
9000 200 11.16 1.15 9.7 1.24 9.0 1.54 7.3
9000 600 35.52 2.09 17.0 2.45 14.5 3.79 9.4
9000 1000 59.08 2.09 28.3 2.44 24.3 3.77 15.7

12000 200 20.50 1.95 10.5 2.19 9.4 2.72 7.6
12000 600 63.01 3.82 16.5 4.26 14.8 6.64 9.5
12000 1000 104.51 3.66 28.6 4.27 24.5 6.65 15.7
15000 200 33.13 3.04 10.9 3.39 9.8 4.21 7.9
15000 600 98.12 5.81 16.9 6.63 14.8 10.33 9.5
15000 1000 162.77 5.73 28.4 6.67 24.4 10.31 15.8
18000 200 47.30 4.53 10.5 4.88 9.7 6.06 7.8
18000 600 141.00 8.13 17.4 14.80 9.5
18000 1000 234.67 8.18 28.7 14.81 15.8
21000 200 65.32 5.99 10.9 8.21 8.0
21000 600 192.29 11.11 17.3 20.08 9.6
21000 1000 319.71 11.06 28.9 20.09 15.9

Table 2. Performance comparisons of Matlabpdist and GPU
CUDA code computing the pairwise distance matrices of Spearman
correlation coefficient. The time unit is seconds. The ratios are the
speedup folds of GPU over CPU.

Sometimes, the matrix with 600 columns may need more
time than that of 1,000 columns because the former has
more padded values, which create divergent computation in
calculating the ranks.

REFERENCES

[1] Nvidia, NVIDIA CUDA C Programming Guide, Version 4.0. Nvidia
Corporation, 2011.

[2] G. N. Lance and W. T. Williams, “Computer programs for hierarchical
polythetic classification (similarity analyses),”The Computer Journal,
vol. 9, no. 1, pp. 60–64, 1966.

[3] D. Chang, N. Jones, D. Li, M. Ouyang, and R. Ragade, “Compute
pairwise Euclidean distances of data points with GPUs,” inProceedings
of the IASTED International Symposium on Computational Biology and
Bioinformatics, 2008, pp. 278–283.

[4] D. Chang, A. Desoky, M. Ouyang, and E. Rouchka, “Compute pairwise
Manhattan distance and Pearson correlation coefficient of data points
with GPU,” in Proceedings of the 10th ACIS International Conference
on Software Engineering, Artificial Intelligences, Networking and Par-
allel/Distributed Computing, 2009, pp. 501–506.

[5] S. Kim and M. Ouyang, “Compute distance matrices with GPU,” in
Proceedings of the 3rd Annual International Conference on Advances
in Distributed & Parallel Computing, 2012, p. in press.

[6] Q. Li, V. Kecman, and R. Salman, “A chunking method for Euclidean
distance matrix calculation on large dataset using multi-GPU,” in Pro-
ceedings of the 9th International Conference on Machine Learning and
Applications, 2010, pp. 208 –213.

[7] P. Kipfer and R. Westermann, “Improved GPU sorting,” inGPU Gems
2, M. Pharr, Ed. Addison-Wesley, 2005, pp. 733–746.

[8] D. Cederman and P. Tsigas, “GPU-Quicksort: A practical quicksort
algorithm for graphics processors,”J. Exp. Algorithmics, vol. 14, pp.
4:1.4–4:1.24, 2010.

[9] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting algo-
rithms for manycore GPUs,” inProceedings of the IEEE International
Symposium on Parallel & Distributed Processing, 2009, pp. 1–10.

[10] G. E. Blelloch, “Prefix sums and their applications,” 1993.

