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Abstract. Graphical Gaussian model (GGM) has been widely used in genomics 
and proteomics to infer biological association networks, but the relative 
performances of various GGM-based methods are still unclear in metabolomics. 
The association between two nodes of GGM is calculated by partial correlation 
as a measure of conditional independence. To estimate the partial correlations 
with small sample size and large variables, two approaches have been 
introduced, which are arithmetic mean-based and geometric mean-based 
methods. In this study, we investigated the effects of these two approaches on 
constructing association metabolite networks and then compared their 
performances using partial least squares regression and principal component 
regression along with shrinkage covariance estimate as a reference. These 
approaches then are applied to simulated data and real metabolomics data. 
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1 Introduction 

Metabolomics is a rapidly emerging field to systemically analyze small-molecule 
metabolites in a biological organism [1]. It is equally important in systems biology as 
other “-omics” such as genomics, transcriptomics, and proteomics. One of the 
important approaches to integrating the individual “-omics” data for system level 
analysis is the reconstruction of cellular networks, which is collection and 
visualization of all physiologically relevant cellular processes.  

In metabolomics, a relatively small number of studies have been reported for 
metabolic network construction. For instance, Arkin et al. [2] predicted interactions 
within reaction networks over time for the glycolytic pathway, where Pearson's 
correlation coefficient was used to construct the interaction networks. A major 
drawback of Pearson's correlation-based networks is unable to distinguish between 
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direct and indirect associations. On the other hand, graphical Gaussian models 
(GGMs) reveal direct associations with conditional independences/dependences 
among variables, using partial correlation coefficients that are calculated by the 
correlation of two variables after removing affection of other variables [3]. GGMs 
have been employed in metabolomics for several studies [4, 5]. Note that the size of 
samples (experiments) was larger than the number of variables (metabolites) for these 
studies so that network construction was straightforward. 

If the number of samples is much smaller than number of variables, it is difficult to 
directly estimate partial correlation due to singularity. To overcome this difficulty, 
several methods have been developed by either reducing the number of given 
variables or a regularized estimation [6, 7]. Another alternative is to use dimension-
reduced regression such as partial least squares regression (PLSR) and principal 
component regression (PCR) approaches. When calculating the partial correlations 
using regression coefficients, arithmetic and geometric means of regression 
coefficients were employed in Kramer et al. [8] and Pihur et al. [9], respectively. The 
partial correlation coefficients estimated by these two methods are not the same to 
each other and, it is important to investigate the effects of the different calculation 
methods on network reconstruction. Therefore, we evaluated the performance of 
PLSR and PCR using shrinkage covariance estimate as a reference in terms of 
network construction.  

2 Methods and Materials 

The graphical Gaussian model (GGM) is a statistical multivariate analysis to infer the 
direct relationship among variables using nodes and edges [3], where the nodes 
correspond to the variables under consideration, and the edges represent the 
conditional independence between two variables as measured by partial correlation 
coefficient.  

Suppose a data matrix  consists of  observed samples and  metabolites with a 
mean of zero. Then the partial correlation coefficient matrix  is calculated 
by the inverse of the covariance matrix  as follows:  

 (1)

where . 
The covariance matrix  becomes singular when the sample size  is smaller than 

the number  of variables. To deal with singularity, several methods have been 
introduced [8]. In this study, the following three methods are considered. 

2.1 Shrinkage Covariance Estimation 

Schafer and Strimmer [10] introduced shrinkage covariance estimator (SCE) for the 
partial correlation estimation when the covariance matrix  is singular. 
Under singularity of covariance matrix, the SCE is to trade off the unbiased sample 
covariance  and low dimensional shrinkage target matrix : 
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 (2)

where  is shrinkage intensity. The optimal value of the tuning parameter  is 
analytically determined and estimated from the data.  

2.2 Regression with Dimension Reduction 

Partial Least Squares Regression and Principal Component Regression. The 
common property of both partial least squares regression (PLSR) and principal 
component regression (PCR) is to use dimension reduction method to avoid the 
singularity for the “small , large ” paradigm. PLSR finds orthogonal vector  to 
maximize the covariance between  and dependent (response) variable , 
while PCR searches for orthogonal vector  to maximize the variance of .  

Consider linear regression of dependent variable  on data matrix  as follows: 

 (3)

where  is a vector of regression coefficients and  is error. The estimation of 
coefficient  using PLSR consists of two steps [11]. The first step is to extract a latent 
variable set  of orthogonal components ( ), which 
maximizes a covariance with dependent variable . The second step is to estimate the 
coefficient of regression of  on the new latent variable set  and then to transform it 
into space spanned by data . The first PLSR component  is obtained by 
maximizing the covariance as follows: 

 (4)

The next components , are satisfied with maximizing the squared 
covariance to  and are mutually orthogonal to each other. Consider the orthogonal 
part  of  on all components : 

 (5)

where  is the projection operator related to . The th latent 
variable, , is then obtained by solving the optimization problem: 

 (6)

Using the following equations, the vector of regression coefficients  is 
determined to predict the output of a model including  components: 

 (7)

For PCR, the equations (4) and (6) are replaced with the following equations, 
respectively: 
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Then, the predicted output  and regression coefficients  can be calculated 
by  

. (9)

Once the regression coefficients in equations (7) and (9) are computed, the partial 
correlation coefficients are estimated by using either geometric or arithmetic mean of 
regression coefficients.  

Method 1: Geometric mean approach. In this approach, the partial correlation 
coefficient  of  in the equation (1) is estimated by  

 (10)

Method 2: Arithmetic mean approach. Arithmetic mean approach of the 
association/interaction scores was introduced by Pihur et al. [9]. The partial 
correlation is calculated by 

. (11)

In this equation (11), the coefficients are obtained from 

 (12)

where  is a th latent variable of PLSR and PCR , and  is the number of latent 
variables which is pre-determined by user. 

2.3 False Discovery Rate 

After estimating partial correlation coefficients, statistical hypothesis test is 
performed to select the significant edges indicating strong association between two 
variables. To do this, false discovery rate (FDR) is applied to control the expected 
proportion of incorrectly rejected null hypotheses by using the q-value method in R 
software package fdrtool [12]. 

2.4 Data 

Simulation Data. The simulated data were generated using two conditions, sample 
size and network complexity. The number of variables  was always set to 100. We 
used three different densities, 5%, 15%, and 25%, to describe the complexity of the 
network. Given each density, we considered five different sample sizes, 25, 50, 100, 
150, and 200, to generate simulated data. For each case, we generated 100 data sets 
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and then compared the performance of each method with their averages. The R 
software package GeneNet was used to generate the simulated data [13].  
 
Experimental Data. We also investigated the performance of each method using 
experimental data of metabolites extracted from mouse liver. The experimental data 
consist of all compounds detected from mouse samples on a linear trap quadruple-
Fourier transform ion cyclotron resonance mass spectrometer (LTQ-FTICR MS) via 
direct infusion electrospray ionization (DI-ESI)-mass spectrometry. For the 
association network study, we used 99 compound peaks that were detected in all 40 
samples by MetSign software [14].  

2.5 Performance Evaluation 

We evaluated the five estimation methods, shrinkage covariance estimation (SCE), 
geometric/arithmetic mean-based partial least squares regression (PLSR.G and 
PLSR.A, respectively), and geometric/arithmetic mean-based principle component 
regression (PCR.G and PCR.A, respectively), in this study. In order to evaluate their 
performance, the following three criteria were considered: 

1. The true positive rate is the proportion of true positives which are correctly 
predicted; ,  

2. The positive predictive value is the proportion of subjects with positive output 
results which are correctly predicted; ,  

3. F1 score is a measure of accuracy, which is the harmonic average of TPR and PPV; 
. 

3 Results and Discussion 

Fig. 1 (a)-(c) show the F1 scores of each method in terms of network construction 
based on simulated data. It can be seen that the performance of geometric mean-based 
and arithmetic mean-based approaches relies on the estimation methods (PLSR and 
PCR). As for PCR, geometric mean-based approach performs better than arithmetic 
mean-based approach when the network is complex regardless of the sample size. 
However, arithmetic mean-based approach has the larger F1 score than geometric 
mean-based approach with PLSR (PLSR.G) when the sample size is large. In 
particular, when the sample size is less than 50, PLSR.G performs the best with 
density of 5%, while PCR.G is the best method if the density is 15% or 25% based on 
F1 score, as shown in the figure.  

Interestingly, in case of PPV as shown in Fig. 1 (d)-(f), arithmetic mean-based 
approach with PCR outperforms geometric mean-based approach regardless of 
sample size and network complexity. On the other hand, as for TPR in Fig. 1 (g)-(i), 
geometric mean-based approach performs better than arithmetic mean-based approach 
when PCR is applied, while arithmetic mean-based approach with PLSR (PLSR.A) is 
better when the density is 15% or 20%. 
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Fig. 1. Performance plots. (a), (b), and (c) show the F1 scores. (d), (e), and (f) show the positive 
predictive value. (g), (h), and (i) show the true positive rate. (a), (d), and (g) correspond to 
density 5%. (b), (e), and (h) correspond to density 15%. (c), (f), and (i) correspond to density 
25%. SCE, PLSR.G, PLSR.A, PCR.G and PCR.A stand for shrinkage covariance estimate, 
geometric mean-based partial least squared regression, arithmetic mean-based partial least 
squared regression, geometric mean-based principle component regression and arithmetic 
mean-based principle component regression, respectively. Error bar stands for average value 
and 95% confidence interval of F1 score, PPV and TPR over 100 runs. 

Table 1 shows the numbers of empty network estimated by SCE, PLSR.G and 
PLSR.A out of 100 independent runs. Note that PCR methods generated no empty 
network. When the true network becomes more complex, those methods generated 
more estimated empty network. Furthermore, the number of estimated empty 
networks is decreased as the sample size goes to 200. However, the trend of PLSR.G 
is different with other methods. For example, the empty network for PLSR.G with 
density of 25% is increased as the sample size is increased.  

The results of network construction using real experimental data are shown in 
Table 2. The number of significant edges and the number of intersection of edges of 
pair of two methods are reported. The geometric mean-based approaches, PLSR.G 
and PCR.G, generate larger significant edges than arithmetic mean-based approaches. 
Namely, PLSR.A and PCR.A selected at least 5.4 times more edges. Most edges 
(90% and 89%) of PLSR.A and PCR.A are overlapped with these of PLSR.G and 
PCR.G, respectively. 
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The reason for the difference of the F1 score between two mean-based approaches 
for PLSR and PCR in complex density is likely due to the different statistical property 
of latent variables from them. The difficulty of regression using PLSR and PCR under 
complex network can also be another reason for disagreement of performance pattern 
of them. Furthermore, since the output of arithmetic mean is larger than that of 
geometric mean for the same input, discrimination power of arithmetic mean-based 
approach to estimating significant edges combined with FDR method increases when 

 = 100, 150, 200 and the density is 5%. This makes the trend of PPV and TPR for 
the final approaches consistent in density of 5%. For the real experimental data, the 
condition seems similar to the case that density is 5% and sample size is 50 or 100 in 
terms of the number of significant edges.  

Table 1. Number of empty networks for SCE and PLSR with geometric (.G) and arithmetic 
(.A) approaches out of 100 independent simulations 

 5% 15% 25% 
n SCE PLSR.G PLSR.A SCE PLSR.G PLSR.A SCE PLSR.G PLSR.A 

25 92 0 0 100 6 8 100 5 7 
50 0 0 0 97 8 1 100 12 2 
100 0 0 0 85 39 0 93 59 1 
150 0 0 0 41 26 0 86 69 0 
200 0 0 0 24 11 0 82 72 0 

Table 2. Number of significant edges for SCE, PLSR and PCR with geometric (.G) and arithmetic 
(.A) approaches for real experimental results and number of intersection of two methods 

 SCE PLSR.G PLSR.A PCR.G PCR.A 
SCE 259 150 131 137 85 

PLSR.G  1228 172 608 136 
PLSR.A   191 133 79 
PCR.G    1292 188 
PCR.A     211 

4 Conclusion 

We evaluated the performance of two estimation methods, arithmetic mean-based and 
geometric mean-based approaches, using regression coefficients to construct association 
networks. We observed that the performances of geometric mean-based and arithmetic 
mean-based approaches are dependent on the dimension-reduced regression methods 
(PLSR and PCR) and simulation settings such as sample size and density. Arithmetic 
estimation outperforms geometric mean when it is incorporated with PLSR and the 
sample size is larger, while the geometric mean-based approach performs better when the 
true network is complex and it is used with PCR in terms of F1 score.  
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