

New Tools for Mitigation & Outreach

Louie Greenwell – Stantec

Our Discussion Today

- Background What is Risk MAP?
- FEMA Products
- Overview of RiskMAP Data Sets
 - Changes Since Last FIRM
 - Depth and Analysis Grids
 - Risk Assessment Results
 - Areas of Mitigation Interest
- Overview of RiskMAP Products
 - Flood Risk Database
 - Flood Risk Report
 - Flood Risk Map

Datasets & Products in Action

Risk MAP (Mapping, Assessment, Planning) Vision

Through collaboration with State, Local, and Tribal entities, Risk MAP will deliver <u>quality data</u> that increases <u>public</u> <u>awareness</u> and leads to <u>action that reduces risk</u> to life and property

Risk MAP: Increasing Value Through Ownership

4

Risk

Increasing Resilience Together

FEMA Product Comparisons

Traditional Regulatory Products

FIRM Database Flood_Hazard_Data Political_Boundaries Public_Land_Survey_System TopoData Community Panel Info FLOOD IL Comm Info INSURAN IL MT1 LOMC STUDY L_Pan_Revis L_Pol_FHBM IL Riv Model L_Stn_Start IL Wtr Nm 🕂 S_Bfe S_DOQ_Index S_Firm_Pan S_Gen_Struct S_Label_Ld FLOOD COUNTY, S Label Pt USA S LOMR AND INCORPORATED AREAS S Perm Bmk S_Quad 1.000 S_Riv_Mrk -S_Trnsport_Ar AUGUST Federal Emergency TAXABLE A DESCRIPTION OF 1986 1000 and a 100-0010 A. *** Section in (à) *** 1111

RiskN

Increasing Resilience Together

5

Program Product Comparisons

Non-Regulatory Flood Risk Products

Risk

Increasing Resilience Together

Flood Risk Products and Datasets

Three Flood Risk Products

- Flood Risk Database
- Flood Risk Report
- Flood Risk Map

Flood Risk Database

Flood Risk Report

Flood Risk Map

Four Flood Risk Datasets

- Changes Since Last FIRM
- Flood Depth & Analysis Grids
- Flood Risk Assessments
- Areas of Mitigation Interest

Flood Risk Datasets

Flood Risk Datasets

- Changes Since Last FIRM
- Flood Depth & Analysis Grids
- Flood Risk Assessment
- Areas of Mitigation Interest

Changes Since Last FIRM Dataset

Purpose of Changes Since Last FIRM

Identify Areas and Types of Flood Zone Change:

- Compares current effective (previous) with proposed (new) flood hazard mapping. (all inputs must be digital)
- Flood zone changes are categorized and quantified

Provide Study/Reach Level Rationale for Changes Including:

- Methodology and assumptions
- Changes of model inputs or parameters (aka Contributing Engineering Factors)

Offer Stakeholders Transparency and Answers to:

- Where have my flood hazards increased or decreased?
- Why have my flood hazards increased or decreased?
- Which communities are subject to new BFEs or ordinance adjustments.

Previous Mapping

*

*

New Mapping

B B B B B B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B

12

.

🎕 MeyerWatershed.mxd - ArcMap - ArcInfo

Changes Since Last FIRM

Unchanged

SFHA Increase

Unchanged

SFHA Increase

STELEFT.

SFHA Decrease

Unchanged

<u>। २ व व</u>

407638.24 4767774.5 Meters

Changes Since Last Firm

Contributing Engineering Factors

Factor	FRD Field *	Description
New Terrain Data	TOPO_CHNG	This field is used to indicate a change in the topographic information used in the modeling or used to re-delineate the floodplain boundaries
Peak Discharge Changes	PEAKDSCHNG	This field is used to indicate a change to the study's peak discharges that may have impacted the analysis
Change in Hydraulic or Coastal Model	MDLMETHODS	This field is used to indicate changes to primary assumptions associated with the updated hydraulic or coastal model
Flood Control Structure Change	FLD_CTRLCHG	This field is used to indicate a change to the study's major flood control structure(s) that may have impacted the analysis
Levee Accreditation Change	LEVEECHG	This field is used to indicate a change to the accreditation status of a levee
Hydraulic Structure Change	HYDSTRCHG	This field is used to indicate a change to the study's number of hydraulic structures that may have impacted the analysis
Sedimentation Change	SEDCHG	This field is used to indicate significant changes to channel sedimentation
Erosion Change	EROSIONCHG	This field is used to indicate significant changes to channel erosion or scour
Channel Configuration Change	CHANNELCHG	This field is used to indicate significant changes to channel geometry
Stream Runoff Change	RUNOFFCHG	This field is used to indicate changes in stream runoff caused by land use, vegetation or imperviousness changes that may have impacted the analysis
Dune Change	DUNECHG	This field is used to indicate changes to primary frontal dunes since last the last study.
Other Change	отнснб	This field is used to indicate other changes the Mapping Partner believes to have contributed to the results of the analysis.

Flood Depth & Analysis Grids

What is a "Grid" ?

 a matrix of cells (or pixels) organized into rows and columns (or a grid) where each cell contains a value representing information, such as temperature, elevation, depth, etc. - esri

Purpose of Flood Depth & Analysis Grids

- Communicate / 'Show' Flood Inundation as Function of Event's Magnitude or Severity
- Serve as Key Inputs to HAZUS Risk Assessment Analyses
- Serve as pre-screening criteria for mitigation project potential (e.g. BCA > 1.0 with positive 10-yr depths)
- Increase Flood Risk Awareness as Acknowledged from Varied Contexts (Depth, Probability, Velocity, etc.)
- Communicate that Hazard, and by extension Risk, varies within the mapped floodplain

Flood Depth and Analysis Grids

- Grids include:
 - Flood Depths for various Frequencies
 - Water Surface Elevation
 - Water Surface Elevation Change Since Last FIRM (1%)
 - Percent Annual Chance of Flooding
 - 30-yr Percent Chance of Flooding
 - Velocity
 - Hillshade

How are Grids better?

19

Increasing Resilience Togethe

10% Depth (10-Year)

0000

4

1% Annual Chance Floodplain Boundary

0.0 ft

1.5 ft

0.0 ft

 \bigcirc

Ø

0 - 1 ft 1 - 2 ft 2 - 3 ft 3 - 6 ft 6 ft +

2% Depth (50-Year)

30 8 H

4

0.0 ft

3.8 ft

0.0 ft

 \bigcirc

Ø

0 - 1 ft 1 - 2 ft 2 - 3 ft 3 - 6 ft 6 ft +

1% Depth (100-Year)

30 8 H

4

0.0 ft

4.7 ft

0.1 ft

Ø

0 - 1 ft 1 - 2 ft 2 - 3 ft 3 - 6 ft 6 ft +

0.2% Depth (500-Year)

0 C 2 I

4

1.7 ft

8.9 ft

4.3 ft

 (\mathcal{O})

 $(\bigcirc$

Ø

0 - 1 ft 1 - 2 ft 2 - 3 ft 3 - 6 ft 6 ft +

🔇 MeyerWatershed.mxd - ArcMap - ArcInfo

Percent Annual Chance of Flooding

១០ ខេ ា

4

10% +

1%

Q

0.4%

0.2 - 2% 2 - 4% 4 - 6% 6 - 8% 8 - 10% 10%+

🔕 MeyerWatershed.mxd - ArcMap - ArcInfo

B B B B B B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B

Percent Chance of Flooding over a 30-yr Period

96% +

26%

Ø

406413.25 4768349.35 Meters

11%

Flood Risk Assessment Data

Flood Risk Assessment Data Purpose and Intended Uses

Identify Areas and Communicate Relative Flood Risk:

- Flood prone areas
- Vulnerable people and property

Provide Flood Risk \$:

- Potential damage severity for different flood frequencies
- Identify locations with possible cost effective mitigation options

Improve Estimates for Flood Risk \$:

- Losses from Average Annualized Loss (AAL) Study
- Refined losses from new flood study depth grids
- Refined general building stock data from local sources

Flood Risk Assessment Datasets

Flood Risk Assessment Data

- 2010 HAZUS Average Annualized Loss (AAL) Study
- Refined HAZUS
- User-defined Facilities

HAZUS MH

Flood Risk Assessment

RiskMAP

Flood Risk Assessment Data Refined HAZUS Analysis

Overview

- Depth Grids from new study areas imported into HAZUS
- HAZUS run for each return period, losses estimated, and annualized
- HAZUS results exported and stored in Flood Risk Database

Estimation of Losses

- Dollar Losses
 - Residential Loss
 - Commercial Loss
 - Other Asset Loss
- Percent Damage
 - Evaluate Building Stock
 - Structure and Content Considerations

Increasing Resilience Togethe

Business Disruption

30

10% Chance Risk (10-yr)

0000

4

A Ln

\$370,000

B

\$670,000

-

+

404582.72 4784209.96 Meters

0000

4

\$870,000

B

\$1.6 Million

Flood Risk

Severe

Medium

High

Low

-

+

3 🛛 | Ə II

4

0.2% Chance Risk (500-yr)

\$1.4 Million

В

\$2.6 Million

-

+

Annualized Risk

30 8 H 4

\$26,000

R

\$45,000

-

•

Areas of Mitigation Interest

Areas of Mitigation Interest Purpose and Intended Uses

- Identify areas that may be affecting flood risk that would benefit from a raised local awareness
- Raise awareness by local stakeholders of areas within and upstream of the watershed that may be contributing to flood risk and associated interrelationships
- Provide input to local mitigation plans

Areas of Mitigation Interest Points on the Flood Risk Map

Areas of Mitigation Interest Example

Risk MAP

Non-Regulatory Datasets – Dams

- Leverages existing analysis from dam safety officials
- Flexible depending on varying state regulations & methods
- Enhanced datasets include:
 - Basic dam characteristics
 - Upstream inundation areas delineated
 - Downstream inundation areas delineated
 - Assorted depth and analysis grids (depth, velocity, arrival time)
 - Easements & critical facilities
 - Flood risk assessments
 - Additional Areas of Mitigation Interest categories
- Data would be used to communicate risks & promote mitigation

Risk MAP

Emergency Spill-Crest Failure: Population at Risk = 450 Sunny Day Failure: Population at Risk = 266 100 Year Flood Event: Population at Risk = 167

How are these datasets delivered?

Flood Risk Database

Flood Risk Report

Flood Risk Report Tuscarawas Watershed, Ohio 05040001

Report Number 01 06/07/2011

Flood Risk Map

Using Non-Regulatory Products for Outreach & Mitigation

Changes Since Last FIRM

Increases to floodplain - outreach to property owners re: flood

insurance

Changes Since Last FIRM

Decreases to floodplain - outreach to property owners re: flood

insurance

Changes Since Last FIRM

- Review engineering factors to explore potential mitigation solutions
 - Hyd. structures
 - Sedimentation
 - Runoff
 - Erosion

Depth & Analysis Grids

- Depth of Flooding
 - Deep/shallow flooding
 - High frequencies

Depth & Analysis Grids

Velocity grids: stream stabilization

Depth & Analysis Grids

30-Year Percent Chance:

outreach to owners & insurance providers

50

Increasing Resilience Together

Risk Assessment

Estimated Lossess

- Where do we expect to see high losses?
- What infrastructure is vulnerable?
- What are the anticipated \$\$?

Areas of Mitigation Interest

- Can come from multiple sources throughout the Risk MAP lifecycle
 - Federal, State, Local, other
 - Discovery, Data Development & Sharing, Flood Risk Review, Resilience
- Data exploration by the project team as preparation for various meetings
- Serves as a record of mitigation opportunities

Data Combinations

- CSLF / Depth & Analysis Grids
 - Decreases / remaining 30-year percent chance of flooding

Data Combinations

- CSLF / Depth & Analysis Grids
 - Increases / deep water / > 6ft / 25-yr event

Data Combinations

- Risk Assessment / Depth & Analysis Grids
 - High total losses / shallow flood depths / 10 or 25-year event

Increasing Resilience Togethe

Summary

- Risk MAP Goals:
 - Through collaboration with State, Local, and Tribal entities, Risk MAP will deliver <u>quality data</u> that increases <u>public awareness</u> and leads to <u>action that</u> <u>reduces risk</u> to life and property

