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Abstract
Background: Anopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's
population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled.
We assessed population genetic structure and levels of differentiation based on 1,376 samples from 31 localities throughout the
Peruvian and Brazilian Amazon and Central America using 5–8 microsatellite loci.

Results: We found high levels of polymorphism for all of the Amazonian populations (mean RS = 7.62, mean HO = 0.742), and
low levels for the Belize and Guatemalan populations (mean RS = 4.3, mean HO = 0.457). The Bayesian clustering analysis revealed
five population clusters: northeastern Amazonian Brazil, southeastern and central Amazonian Brazil, western and central
Amazonian Brazil, Peruvian Amazon, and the Central American populations. Within Central America there was low non-
significant differentiation, except for between the populations separated by the Maya Mountains. Within Amazonia there was a
moderate level of significant differentiation attributed to isolation by distance. Within Peru there was no significant population
structure and low differentiation, and some evidence of a population expansion. The pairwise estimates of genetic differentiation
between Central America and Amazonian populations were all very high and highly significant (FST = 0.1859 – 0.3901, P < 0.05).
Both the DA and FST distance-based trees illustrated the main division to be between Central America and Amazonia.

Conclusion: We detected a large amount of population structure in Amazonia, with three population clusters within Brazil and
one including the Peru populations. The considerable differences in Ne among the populations may have contributed to the
observed genetic differentiation. All of the data suggest that the primary division within A. darlingi corresponds to two white gene
genotypes between Amazonia (genotype 1) and Central America, parts of Colombia and Venezuela (genotype 2), and are in
agreement with previously published mitochondrial COI gene sequences interpreted as incipient species. Overall, it appears that
two main factors have contributed to the genetic differentiation between the population clusters: physical distance between the
populations and the differences in effective population sizes among the subpopulations.
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Background
Anopheles (Nyssorhynchus) darlingi is the most efficient
malaria vector in the Neotropics, and is responsible for
transmission of Plasmodium falciparum, P. vivax and P.
malariae [1-5]. Although recently shown to be somewhat
of an opportunistic blood-feeder in eastern Amazonian
Brazil [6], A. darlingi is regarded as the most anthro-
pophilic anopheline in the Americas [7,8]. Anopheles dar-
lingi's range extends from northeastern Argentina to
southern Mexico, with a discontinuity in Nicaragua, Costa
Rica, and Panama, hypothesized to be the result of an ini-
tial colonization event from northern South America into
Central America, followed by a modern extinction event
in these three countries [9,10]. A complete understanding
of A. darlingi's population structure and the processes
responsible for the distribution of differentiation is
important to vector-based malaria control programs and
for identifying heterogeneity in disease transmission as a
result of discrete vector populations [11,12]. Susceptibil-
ity to Plasmodium infection, survival and reproductive
rates, degree of anthropophily, and the epidemiology of
malaria in the human host may all be affected by genetic
variation in vector populations [13,14].

Anopheles darlingi exhibits variation in biology [8,15-18],
morphology [9,19,20], chromosomes [21,22], isozymes
[9,23-25], mtDNA [26-28], Random Amplified Polymor-
phic DNA (RAPDs) [9], rDNA ITS sequences [9,10,29],
and nuclear white sequences [10]. The original suggestion
that A. darlingi is a species complex [17,23] was refuted by
Manguin and others [9] with a genetic and morphologic
survey, although recent mitochondrial and nuclear range-
wide studies provide support for the initial hypothesis
[10,28]. Mirabello and Conn [28] found a significant
genetic division with mtDNA cytochrome oxidase I (COI)
data between populations in (1) Amazonia and southern
Brazil, and those in (2) Central America and northwestern
Colombia. This division was further evaluated with the
single copy protein-coding nuclear white gene [30,31] and
rDNA internal transcribed spacers (ITS) 1 and 2 as inde-
pendent markers [10]. The white gene detected two geno-
types, 1 and 2, with significantly different polymorphism
statistics (genotype 1 nucleotide diversity = 0.00451; gen-
otype 2 nucleotide diversity = 0.00130), high levels of
genetic differentiation (FST = 0.7104; Hudson's statistics,
HS, = 0.5163, KS, = 0.7161, ZS, = 8.7577, Snn = 0.9253; all
P < 0.0001), and these genotypes were fairly well-sup-
ported monophyletic clades [10]. Together the white, ITS,
and COI gene data confirm a deep divergence between
(genotype 1) Amazonia and southern Brazil, and (geno-
type 2) Central America, Colombia, and Venezuela, and
these data are interpreted as incipient speciation within A.
darlingi [10,28]. The divergence was hypothesized to have
occurred during the early to late Pleistocene, most likely

shaped by complex Pleistocene climatic changes leading
to refugial isolation [10].

Many of the anopheline species responsible for malaria
transmission are members of species complexes com-
posed of closely related cryptic species [32]. Most notably,
the well-studied African A. gambiae complex, which
includes seven isomorphic and closely related mosquito
species [33], as well as incipient species within A. gambiae
s.s. [14,34,35]. The members of this complex are highly
variable, and also display a large amount of adaptive
genetic variation [36]. The recently identified A. darlingi
incipient species may have differential susceptibility to
malaria parasites, and (or) subtle ecological or behavioral
differences that could require modifications to vector con-
trol efforts. Therefore, a restriction enzyme digestion was
designed to distinguish A. darlingi genotypes 1 and 2
[Mirabello and others in submission].

Microsatellites are highly polymorphic genetic markers
that evolve much faster than mitochondrial or nuclear
genes, and are particularly useful for resolving the struc-
ture of populations at a finer geographical and evolution-
ary scale. They have been extensively used for population
studies of anophelines, including studies of A. darlingi in
the Brazilian Amazon [37,38] and between incipient spe-
cies [14,39-41]. The microsatellite analyses of A. darlingi
in Amazonian Brazil found that all populations had high
genetic variability and departures from Hardy-Weinberg
Equilibrium due to heterozygote deficits most likely
caused by the Wahlund effect or selection in the east [37]
and null alleles in western and central Amazonian popu-
lations [38]. There was significant differentiation between
A. darlingi northeast and southeast of the Amazon River
attributed to isolation by distance [37]; central and west-
ern Amazonian Brazil populations also demonstrated a
correlation between genetic and geographic distance,
although, the data supported little genetic structure in this
region of the Amazon [38] as compared to that observed
in eastern Amazonian Brazil [37].

Here we analyze the molecular variation of A. darlingi
throughout the Brazilian [combined with previous data
from 37,38] and Peruvian Amazon, within Central Amer-
ica in Guatemala and Belize, and between the incipient
species described as genotypes 1 and 2 [10] using micros-
atellite loci. Brazil and Peru have the first and second
highest number of reported malaria cases (599,960 cases
reported in Brazil; 124,746 in Peru), respectively, in the
Neotropics [42] and the majority of cases are reported
from the Amazon delta region, attributed to transmission
by A. darlingi. Anopheles darlingi is hypothesized to have
been introduced into the Peruvian Amazon in the early
1990's from Brazil [43,44], and in 1997 there was a huge
re-emergence of malaria attributed to its presence [45,46].
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Within Central America, in Guatemala and Belize, there is
a much lower incidence of malaria (33,525 cases reported
in Guatemala; 844 in Belize) [42], Anopheles albimanus is
considered to be the primary malaria vector overall [42],
and there is great geographic diversity, in particular there
are high mountain ranges (e.g., the Guatemalan High-
lands in southern Guatemala and Maya Mountains in
western Belize and eastern Guatemala) and lowlands
(e.g., Petén lowlands in northern Guatemala and coastal
lowlands of Belize) that may restrict gene flow. A more
thorough understanding of A. darlingi's population struc-
ture and contemporary gene flow patterns in these regions
is necessary if vector populations are to be successfully
controlled.

We use the variation at 5–8 microsatellite loci [47] from
1,376 A. darlingi to address the following questions: Is
there population structure within the Peruvian Amazon
and throughout Amazonia? Is there a signature of a pop-
ulation expansion around Iquitos, Peru as expected if A.
darlingi had been recently introduced? Does the level of
differentiation observed between genotypes 1 and 2 sup-
port the hypothesis of incipient speciation? Is there differ-
entiation within Central America? What are the main
forces responsible for the partitioning of genetic variation
– geographic distance, physical barriers, or demographic
history?

Methods
Mosquito collections
Adult A. darlingi were field collected outdoors using
human landing catches, resting in vegetation near houses,
on the outer walls of houses, or at livestock corrals, and
identified morphologically [48]. Informed consent was
obtained from all collectors, and the Biosafety Committee
at the Instituto Evandro Chagas in Belém, state of Pará,
Brazil, and New York State Department of Health Institu-
tional Review Board (IRB) reviewed and approved the
project. Approval from the IRB board of the Centers for
Disease Control and Prevention and the Universidad del
Valle de Guatemala was obtained for the collections in
Guatemala. The human landing catch protocol used in
the Peruvian localities was approved by the US Naval
Medical Research Center Detachment in Iquitos, Peru.
The mosquito landing catch protocol for Belize was
deemed an occupational hazard by Uniformed Services
University of the Health Sciences (USUHS) at the time of
collections (2006) and appropriate precautions were
undertaken. Table 1 lists all the collection and locality
information, along with the number of mosquitoes geno-
typed per site. The collection information for LI, GA, STN,
ARA, BEL, MOJ, and PEX is given in Conn et al. [37]; for
MAC, PVE, SMI, COA, NAI, CAS, PUR, RBR, and BAN in
Scarpassa and Conn [38]. All mosquitoes, except those
from the collection localities in Scarpassa and Conn [38],

are stored at -80°C in the Conn Laboratory at the
Wadsworth Center.

Genotyping and data analysis
Individuals were first determined to be A. darlingi geno-
type 1 or 2 using a white gene restriction enzyme digestion
[Mirabello and others in submission]. Eight microsatellite
loci [47] were amplified and genotyped, as previously
described [37], by the New York State Department of
Health Wadsworth Center Genotyping Core facility. Data
were then analyzed using GENOTYPER 3.7 software
(Applied Biosystems, Foster City, CA). Datasets from
Conn et al. [37] and Scarpassa and Conn [38], consisting
of A. darlingi samples from eastern, central and western
Amazonian Brazil, were included in the analyses and the
majority of these samples were re-genotyped using GEN-
OTYPER for consistency of allele size calls.

The analyses were performed in two ways: 1) including all
of the amplified loci from each population (a variation of
5, 7 and 8 loci); and, 2) including only the 5 loci that were
amplified from all of the populations (ADC02, ADC28,
ADC110, ADC137, and ADC138).

For each locality, summary polymorphism statistics were
generated using Fstat 2.9.3 [49]. Deviations from Hardy-
Weinberg equilibrium were assessed per locus and per
locality, and linkage disequilibrium between pairs of loci
within each locality using Fstat. The significance of these
tests was determined using the randomization approach
that applies Bonferroni corrections in Fstat. Within each
locality the frequency of null alleles was determined using
the Brookfield 2 estimate [50], and the allele and geno-
type frequencies were then adjusted accordingly in
MICRO-CHECKER 2.2.3 [51]. The null allele-adjusted
dataset was compared to the original dataset to investigate
the impact of null alleles on estimations of genetic differ-
entiation.

Genetic differentiation was estimated by calculating FST
between pairs of populations within and between A. dar-
lingi samples using Arlequin 2.001 [52] and GENEPOP
1.2 [53]. The number of migrants per population per gen-
eration (Nm) between localities was estimated from pair-
wise FST [54]. An analysis of molecular variance (AMOVA)
was used to examine the distribution of genetic variation
in Arlequin using FST. We focused on estimates of FST per-
formed under the infinite alleles model (IAM) because
this model is considered more reliable when fewer than
20 microsatellites are used [55]. The significance for all
calculations was assessed by 10,000 permutations and the
P-values were Bonferroni adjusted. The isolation by dis-
tance model was investigated as a potential explanation
for the observed population differentiation. The signifi-
cance of the regression of genetic distance on geographic
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(page number not for citation purposes)



BMC Ecology 2008, 8:3 http://www.biomedcentral.com/1472-6785/8/3
distance between sample pairs was tested using a Mantel
test [56] with 10,000 permutations using Arlequin.

Several approaches were used to investigate the relation-
ships among populations. We constructed a neighbor-
joining (NJ) tree based on pairwise Nei et al.'s [57]DA dis-
tance and FST values for all the populations using MEGA
version 3.1 [58]. A Bayesian clustering analysis was imple-
mented in STRUCTURE 2.1 [59,60] with a burn-in period
of 500,000 chains and 1,000,000 Markov chains Monte
Carlo replications for each of K = 1 to 8. This clustering
method estimates the most probable number of discrete
populations with no a priori assumptions of population
structure. Each simulation was done in triplicate to assess
the consistency of the data.

Inferences of non-neutral evolution were investigated
using two tests, the homozygosity test implemented in
BOTTLENECK 1.2.02 [61], and Kimmel's β-imbalance
index [62] using the β1 estimator [63]. Significance of the
homozygosity test was evaluated by simulations imple-
mented in BOTTLENECK. The homozygosity test was per-
formed under the step-wise mutation model (SMM) and
the two-phase mutation model (TPM) with one-step
mutations occurring at a frequency of 90% of the total.
SMM and TPM (specifically the 90% model) are consid-
ered the more realistic microsatellite mutation models
[64], thus only these results are given. The β-imbalance
index, as well as 95% confidence intervals, were estimated
using a SAS program written and run by T. Lehmann [65].
The long-term effective population size (Ne) was esti-

mated using NeEstimator version 1.3 [66] based on the
linkage disequilibrium and heterozygote excess models.

Results
All individuals collected from Peru and Brazil were classi-
fied as white genotype 1 and all those collected from Gua-
temala and Belize were classified as white genotype 2 [10,
Mirabello and others in submission].

Genetic diversity
From the original set of eight microsatellite loci designed
for A. darlingi from eastern Amazonian Brazil [47], one
locus (ADC107) did not amplify in any of the individuals
collected from Peru and three loci (ADC01, ADC29, and
ADC107) did not amplify in any of the individuals from
Belize or Guatemala. Seven loci were genotyped from 350
individuals in Peru, five loci from 276 individuals from
Central America (143 from Guatemala and 133 from
Belize), and all eight loci from 57 individuals from BV and
58 from PLT, Brazil (Table 1). In combination with previ-
ously amplified specimens from eastern Amazonian Bra-
zil (N = 254) [37] and from central and western
Amazonian Brazil (N = 381) [38], the total dataset con-
sisted of 1,376 A. darlingi. The levels of polymorphism
were high in Amazonian Brazil and Peru, and low in Cen-
tral America, based on the 5 shared loci: in Peru, the
number of alleles per locus ranged from 5–11 and the
observed heterozygosity from 0.44 – 0.86 (mean RS = 7.2,
mean HO = 0.716); in Brazil, the number of alleles per
locus ranged from 6–22 and the observed heterozygosity
from 0.74 – 0.93 (mean RS = 8.95, mean HO = 0.836)
[37,38]; and, in Belize and Guatemala, the number of alle-

Table 1: Anopheles darlingi collection information.

Site # Locality (Abbr.) Latitude/Longitude Coordinates N Date Collector

Peru
1 Zungarococha (ZUN) 3° 49' 33.92" S, 73° 21' 4.72" W 52 1/06 S.P. Yanoviak
2 Padre Cocha (PCO) 3° 42' 12.38" S, 73° 16' 58.48" W 52 1/06 J.E. Ramírez
3 Mazan (MAZ) 3° 29' 32.32" S, 73° 14' 30.52" W 50 2/06 J.E. Ramírez
4 Nauta (NAU) 4° 30' 41.65" S, 73° 35' 8.74" W 53 2/06 C. Valderrama
5 Piura, Rio Tigre (PRT) 4° 6' 35.76" S, 74° 25' 5.16" W 35 2–3/06 C. Valderrama
6 Shishita, Pevas (SHP) 3° 22' 34.61" S, 71° 43' 38.42" W 58 3/06 E. Requena
7 San Esteban (SAE) 3° 56' 48.55" S, 70° 30' 57.56" W 50 3/06 E. Requena
Brazil
8 Boa Vista (BV) 2° 49' N, 60° 40' W 57 7/03 J.E. Conn,, M.M. Póvoa
9 Palito (PLT) 6° 32' 113" S, 55° 78' 817" W 58 7/03 J.E. Conn,, M.M. Póvoa
Belize
10 Caves Branch (CAV) 17° 9.000" N, 88° 40.030" W 45 3/06 N.L. Achee
11 Golden Stream (GOL) 16° 21.814" N, 88° 47.920" W 41 3/06 N.L. Achee
12 Sibun (SIB) 17° 8.887" N, 88° 37.689" W 47 3/06 N.L. Achee
Guatemala
13 San Pablo (SPB) 15° 58' 5.88" N, 90° 47' 24" W 47 9/00 N. Padilla
14 Santa Rosa (SRO) 15° 58' 38.64" N, 90° 50' 53.88" W 49 9/00 N. Padilla
15 El Peñon (ELP) 16° 1' 47.64" N, 90° 46' 29.64" W 47 9/00 N. Padilla

Total individuals newly genotyped = 741: in Peru = 350, Brazil = 115, Belize = 133, Guatemala = 143; N, sample size; Date, collection month/year.
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les per locus ranged from 2–7 and the observed heterozy-
gosity from 0.12 – 0.68 (mean RS = 4.3, mean HO = 0.457)
(Additional File 1).

Deviations from Hardy-Weinberg equilibrium, detected
by the inbreeding coefficient FIS, within some samples
from Peru (6 of 49 tests), Brazil (BV: 1 of 8 tests, and PLT:
5 of 8 tests), and Central America (4 of 30 tests) indicated
heterozygote deficits (Additional File 1). The heterozygote
deficits are most likely due to null alleles as they were not
genome or population wide and no significant linkage
disequilibrium was detected, consistent with the presence
of null alleles detected in western and central Amazonian
Brazil for A. darlingi [38]. In eastern Amazonian Brazil,
heterozygote deficits were associated with linkage disequi-
librium most likely due to either selection or the Wahlund
effect (population substructure) [37]. To determine if the
null alleles impacted our population genetic analyses, we
performed these analyses both before and after the dataset
was adjusted for estimated null allele frequencies. The
effect of this treatment was minimal and did not signifi-
cantly change the degree or statistical significance of the
estimated parameters.

Population structure and differentiation
For analyses of population structure and differentiation,
only the data based on the five loci that were amplified
from the entire sample set are shown.

An unsupervised Bayesian clustering analysis revealed five
population clusters. Anopheles darlingi seemed to cluster
mostly on the basis of physical proximity of sampling
sites, with four population clusters within Amazonia and
one cluster including all specimens from Belize and Gua-
temala (Figure 1). The five population clusters had the fol-
lowing proportion of specimen membership from each
collection site: (1) 95.5% of the individuals from Belize
(CAV, GOL, and SIB) and Guatemala (SPB, SRO, and
ELP); (2) 95.8% of the individuals from Peru (ZUN, PCO,
MAZ, NAU, PRT, SHP, and SAE), and 26.8% from PLT,
Brazil; (3) 94.3% of the individuals from western and cen-
tral Amazonian (WCA) Brazil (MAC, PVE, SMI, COA,
NAI, CAS, PUR, RBR, and BAN), 23.6% from PEX, and
14.1% from PLT, Brazil; (4) 96.5% of the individuals from
northeastern Amazonian (NEA) Brazil (LI, GA, and STN),
and11.2% from PEX, Brazil; (5) 96.9% of the individuals
from southeastern Amazonian Brazil (ARA, BEL, and
MOJ), 92.6% from BV, 50.3% from PEX, and 40.8% from
PLT, Brazil. Allele frequency distributions among the five
population clusters showed that there is a mix of shared
and private alleles, and particularly more private alleles in
the Central America cluster (data not shown). The five
clusters show differences in the most common allele size
and allele distributions for each locus, most markedly

between Central America and the Amazonian popula-
tions.

Both the DA and FST distance-based trees illustrated two
main population clusters: one including all of the samples
from Belize and Guatemala, and the other including all
samples from Amazonian Peru and Brazil (Figure 2).
These two clusters are consistent with genotypes 1 and 2
[10]. Within the Amazonian cluster there were four
smaller subclusters, corresponding to those detected with
the Bayesian analysis (2–5 above).

An AMOVA using the five population clusters detected
with the Bayesian analysis as the groupings, found that
18.9% of the variance was explained at the among groups
level, and 77.9% at the within populations level. In an
AMOVA using the two genotypes, Amazonia and Central
America, as the groupings, 20.1% of the total variance was
explained at the between groups level and 70.1% within
populations. All of the global FST estimates revealed signif-
icant overall genetic structure (P < 0.001). The majority of
the genetic diversity in A. darlingi is accounted for by
within-population differences among individuals.

Within genotype and population cluster levels of differen-
tiation ranged from low to moderate. Within Central
America (genotype 2) there was mostly low non-signifi-
cant differentiation (mean FST = 0.047, 33.3% P < 0.05),
except for between GOL and all other subpopulations
there was a moderate amount of significant differentia-
tion (FST range of 0.1063–0.1489) (Table 2). Within Ama-
zonia (genotype 1) there was a moderate level of
significant differentiation (mean FST = 0.1244, 89% P <
0.05), and within the four Amazonian population clusters
the mean FST ranged from -0.002 to 0.082 (70.6% P <
0.05) (Table 2). Pairwise FSTcomparisons among all of the
samples ranged from -0.0005 to 0.3901, with the largest
values corresponding to comparisons between genotypes
1 and 2 (0.1859 – 0.3901). The mean pairwise estimates
of genetic differentiation between Central America and
the four population clusters in Amazonia were high (FST =
0.2161 – 0.3625) (Table 3). Comparisons between the
population clusters within Amazonia revealed moderate
differentiation among the Amazonian clusters (mean FST
= 0.0751 – 0.1813), particularly between Peru and WCA
Brazil, Peru and NEA Brazil, and NEA and WCA Brazil
(Table 3). All of the comparisons between genotypes 1
and 2, and between the five population clusters, revealed
significant differentiation (P < 0.05) after correction for
multiple tests. Estimates of gene flow revealed little or no
recurrent gene flow between genotypes 1 and 2, and
reduced gene flow among the population clusters in Ama-
zonia (Table 3). Within each population cluster, there was
moderate to high levels of gene flow, particularly high
within NEA Brazil (Table 3).
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The significant differentiation between genotypes 1 (the 4
population clusters in Amazonian Peru and Brazil) and 2
(Central America) was genomewide, as shown by inde-
pendent analyses for each of the five loci revealing signif-
icant differentiation between them (data not shown). The
differentiation between the genotypes varied in magni-
tude, with the highest level of differentiation observed at
locus ADC28 and the lowest at locus ADC110. The differ-
entiation among the four Amazonian population clusters
was not genomewide, as shown by independent analyses
of the eight loci (data not shown). Loci ADC137 and
ADC01 (only amplified in the Amazonian populations)
did not show significant differentiation among the Ama-
zonian population clusters. The highest level of differenti-
ation among all of the Amazonian population clusters
was at locus ADC02.

Tests of isolation by distance were performed separately
for all of the populations together, for each population
cluster, and for all of Amazonia. For all of the populations
together (4–5028 km) and all of Amazonia (4–2878 km),
there was a significant positive correlation between geo-
graphic distance and genetic differentiation based on the
Mantel test (All: R2 = 0.5972, P = 0.001; Amazonia: R2 =
0.3088, P = 0.0001) (Figure 3). The data did not fit the iso-
lation-by-distance model within Peru (16–433 km), NEA
Brazil (4–8 km), or Central America (4–270 km). Within
WCA Brazil [38] and the southeastern Amazonian and
central (SEAC) Brazil (ARA, BEL, MOJ, PEX, BV, and PLT)
(10–1601 km) population cluster (R2 = 0.6053, P =
0.007), there was a significant positive association
between distance and FST. The results suggest that the
genetic differentiation observed between A. darlingi popu-

Map of collection sites and population clustersFigure 1
Map of collection sites and population clusters. The inset illustrates the geography (mountains are represented by lighter areas) 
and location of the sites in Guatemala and Belize. Each symbol corresponds to a collection site and membership to one or a 
mixture of the five population clusters, outlined in the figure legend; percent membership below 15% is not shown, only men-
tioned in the text. CA, Central America; WCA, western and central Amazonian Brazil; NEA, northeastern Amazonian Brazil; 
SEAC, southeastern Amazonian and central Brazil.
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lations is primarily due to restricted gene flow by geo-
graphic distance. Although, between Peru populations
and those in NEA Brazil and SEAC Brazil the average dis-
tance is 2451 km and 2270 km and the mean pairwise FST
is 0.1484 and 0.0959, respectively; and, the average dis-
tance between Peru and Central American populations is
2923 km and the mean pairwise FST is 0.3625, which dem-
onstrates that the large genetic differentiation is not

accompanied by correspondingly large difference in geo-
graphic distance.

Demographic inference
Statistics designed to detect a population expansion were
calculated. These tests are based on the premise that an
expanded population mutations are more likely to be
recent and, therefore, would only differ in size by a single
microsatellite repeat unit. The homozygosity test contrasts

FST distance-based NJ tree of the pairwise comparisons among all populationsFigure 2
FST distance-based NJ tree of the pairwise comparisons among all populations. The mean pairwise FST values are proportional to 
the branch lengths (see scale bar). The pairwise estimates of FST were 100% significantly different (P < 0.05 after sequential Bon-
ferroni correction) when samples from the two genotypes and among the five population clusters were compared.
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the homozygosity or expected heterozygosity estimated
based on allele frequencies with that estimated based on
the number of alleles and sample size [61]. The β-imbal-
ance index is based on the imbalance between the vari-
ance in allele size and heterozygosity at a locus [62]. These
statistics are expected to be equal in a neutral locus at
mutation-drift equilibrium (MDE). The majority of the
populations did not significantly depart from MDE. Many
of the significant homozygosity test results were depend-
ent on the mutation model used (Table 4). The homozy-
gosity test detected significant departures from
equilibrium across many loci within Peru (MAZ, NAU,
and SAE), WCA Brazil (MAC, CAS, NAI, and RBR), in BV
and PLT, Brazil, and within Central America (GOL and
SPB). The significantly higher heterozygosity based on the
number of alleles suggests a recent expansion of these
populations. Alternatively, these significant results could
be due to a recent influx of rare alleles from genetically
distinct populations [61].

The imbalance index is expected to depart from 1 after a
demographic change. Specifically, the imbalance index is
expected to be less than 1 after a population expansion
and greater than 1 in a population that has expanded after
a bottleneck [62]. However, the imbalance index may also
be greater than 1 in a population that has experienced a
severe bottleneck after an expansion [65]. Although none
of these results were statistically significant, the values
greater than 1 in Peru, WCA Brazil, NEA Brazil, SPB, Gua-
temala, BEL and BV, Brazil suggest that in these popula-
tions there could be a slight signal of an expansion
following a bottleneck or a bottleneck after an expansion.

Effective population size
The Ne estimates varied considerably among the subpop-
ulations and population clusters, and depending on the
model used (Table 5). Under the heterozygote excess
model all of the Ne estimates were infinity for both treat-
ment methods (based on 5 vs. 5–8 loci). Under the link-
age disequilibrium, the highest overall effective
population size estimates for the five population clusters
were observed in Central America (Ne = 8, 95% CI: 649.7
– 8) and NEA Brazil (Ne = 8, 95% CI: 2698.2 – 8), based
on the 5 common loci. The overall Ne estimate for Peru
was high based on 5 loci (Ne = 1161.1, 95% CI: 599.9 –
6815.7), and more moderate based on all 7 amplified loci
(Ne = 379, 95% CI: 316.5 – 464.8), which demonstrates a
discrepancy in the calculation based on 5 vs. 7 loci. The Ne
estimates for BV and PLT, Brazil (Table 5) were similar to
the values for WCA Brazil and eastern Amazonian Brazil
given in Scarpassa and Conn [38] and Conn and others
[37], respectively. In Peru, the highest Ne values were in
NAU, SAE, and ZUN, and the lowest in PRT and MAZ. In
Central America, the highest Ne values were in GOL,
Belize, and SRO, Guatemala, and the lowest in ELP, Gua-
temala. Overall, within the Central American populations
the majority of the effective population sizes were lower
than those observed within the Amazon.

Discussion
The microsatellites used in this study are highly polymor-
phic, and thus are useful for exploring A. darlingi's popu-
lation genetic structure. Anopheles darlingi is a species
characterized by moderate levels of molecular variability
[21-29,67], and our microsatellite analysis is in agreement

Table 2: Pairwise genetic differentiation within populations of A. darlingi based on the 5 shared loci.

CA Peru WCA Brazil† NEA Brazil‡ SEAC Brazil‡ Amazonia

N 276 (6) 350 (7) 381 (9) 122 (3) 247 (6) 1100 (25)
Mean FST 0.0470 0.0185 0.0292 -0.0016 0.0823 0.1244

Range -0.009–0.164 -0.0006–0.061 -0.0002–0.074 -0.001–0.003 0.023–0.160 -0.002–0.220
Significance 5/15 11/21 27/36 0/3 15/15 267/300

CA includes CAV, GOL, SIB, SPB, SRO, and ELP; Peru includes ZUN, PCO, MAZ, NAU, PRT, SHP, and SAE; WCA Brazil includes MAC, PVE, SMI, 
COA, NAI, CAS, PUR, RBR, and BAN; NEA Brazil includes LI, GA, and STN; SEAC Brazil includes ARA, BEL, MOJ, PEX, BV, and PLT; Amazonia, 
includes all populations in Peru and Brazil; †, [38]; ‡, some samples are from [37]; N, number of individuals (number of localities); significance = P < 
0.05 after sequential Bonferroni correction.

Table 3: Pairwise estimates of genetic differentiation (FST) below the diagonal (average distance in km) and gene flow (NM) above the 
diagonal among A. darlingi populations, and within population gene flow along the diagonal.

CA Peru WCA Brazil† NEA Brazil‡ SEAC Brazil‡

CA 5.07 0.43 0.59 0.50 0.90
Peru 0.3625* (2923) 13.26 1.36 1.43 2.36

WCA Brazil† 0.2963* (3883) 0.1556* (1249) 8.31 1.13 2.34
NEA Brazil‡ 0.3326* (4609) 0.1484* (2451) 0.1813* (1370) 156.5 3.08
SEAC Brazil‡ 0.2161* (4593) 0.0959* (2270) 0.0967* (1243) 0.0751* (673) 2.79

See Table 2 for abbreviations; †, samples from [38]; ‡, some samples are from [37]; *, P < 0.05 after sequential Bonferroni correction.
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Scatterplot of pairwise FST values against geographic distance separating pairs of localitiesFigure 3
Scatterplot of pairwise FST values against geographic distance separating pairs of localities. A) shows the plot for Amazonian 
subpopulation comparisons; B) shows the plot for all subpopulation comparisons. The regression line is shown through the 
points.
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with earlier studies. The high allelic diversity and hetero-
zygosity observed in Peru, BV and PLT, Brazil are similar
to the results of previously analyzed Amazonian Brazil A.
darlingi [37,38], A. albimanus [68] in Latin America, and
African vectors A. gambiae [69] and A. funestus [40,41]. We
detected significant departures from HW equilibrium due
to heterozygote deficits, and no linkage disequilibrium, in
loci in Peru, BV and PLT in Brazil, and in Central America.
In contrast, most loci across all populations in eastern
Amazonian Brazil had deficits with linkage disequilib-
rium, interpreted as due to either the Wahlund effect or
selection [37]. In western and central Amazonian Brazil
significant deficits were detected in 50.79% of the HW

equilibrium tests, with only minimal linkage disequilib-
rium interpreted as null alleles [38]. An allozyme study of
two Amazonian populations detected significant devia-
tions from HW equilibrium in 7/8 loci examined [70],
although no significant deviations were detected in earlier
allozyme studies [9,24]. The high levels of heterozygote
deficits and null alleles could be the result of an accumu-
lation of mutations in the primer binding sites which may
be a consequence of the microsatellite library being con-
structed of A. darlingi from eastern Amazonian Brazil [47].
The incidence of null alleles found in A. darlingi is similar
to that reported from many anopheline microsatellite
studies [12,35,39-41]; perhaps mosquitoes with large
population sizes and high levels of polymorphism are
more likely to have null alleles [39].

The eight microsatellite loci used in this study have not
been physically mapped to A. darlingi polytene chromo-
somes. Therefore, their location with respect to polymor-
phic chromosome inversions is unknown, and such
information may modify the interpretation of the data
because neutrality cannot be assumed. Since the analyses
were done in two ways, including all amplified loci (5–8)
and including only the 5 loci amplified from all popula-

Table 4: Tests of neutrality for each population.

Homozygosity test β-imbalance index

SMM TPM-90%

CA
CAV 1/5 0/5 0.97
GOL 1/5* 0/5 1.17
SIB 1/5 1/5 1.43
SPB 2/5* 2/5* 2.78
SRO 2/5 1/5 1.21
ELP 2/5 1/5 1.51

Peru
ZUN 2/7 3/7 6.75
PCO 3/7 3/7 6.20
MAZ 3/7* 2/7 8.22
NAU 4/7* 2/7 12.69
PRT 3/7 2/7 5.47
SHP 0/7 1/7 3.93
SAE 4/7* 2/7 5.57

WCA Brazil
MAC 2/7** 1/7 4.49
PVE 2/7 3/7 2.61
SMI 2/7 1/7 2.92
COA 2/7 0/7 4.77
NAI 2/7** 1/7** 4.96
CAS 2/7* 0/7 4.82
PUR 2/7 0/7 2.53
RBR 4/7* 3/7 7.14
BAN 4/7 3/7 5.29

NEA Brazil‡

LI -- -- 3.68
STN -- -- 4.01
GA -- -- 4.91

SEAC Brazil‡

ARA -- -- 1.90
BEL -- -- 5.32
MOJ -- -- 1.49
PEX -- -- 1.24
BV 2/8** 1/8 4.98
PLT 2/8** 1/8 1.85

CA, Central America; ‡, the Homozygosity test results for LI, GA, 
STN, ARA, BEL, MOJ, and PEX are given in [37]; *, all loci together P 
< 0.05; **, all loci together P < 0.01; --, no data.

Table 5: Estimated Ne (columns 1 and 3) based on the linkage 
disequilibrium (LD) model.

LD 95% CI (columns 2 and 4)

Based on 5 loci Based on 7–8 loci

Peru 1161.1 599.9 – 6815.7 379 316.5 – 464.8
NAU 8 171.5 – 8 1786 205.6 – 8
PRT 93.6 41.3 – 8 95.2 55.8 – 258.7
MAZ 131.8 61.2 – 4139.3 61.7 46.4 – 87.9
SHP 177.2 78.3 – 8 159 84.3 – 228.7
SAE 1044.9 139.5 – 8 1929 245.3 – 8
PCO 220.2 72.8 – 8 453.7 148.1 – 8
ZUN 8 3405.4 – 8 8 251.0 – 8

CA 8 649.7 – 8 -- --
Belize 216 96.3 – 8274.7 -- --

CAV 70.5 29 – 8 -- --
GOL 526.6 45.9 – 8 -- --
SIB 84.7 30 – 8 -- --

Guatemala 773.8 163.9 – 8 -- --
SPB 62.6 27.9 – 1265.4 -- --
SRO 8 72.6 – 8 -- --
ELP 35.8 17.8 – 129.3 -- --

WCA Brazil† 233.6 195.4 – 284.0 202.4 186.1 – 220.8
NEA Brazil‡ 8 2698.2 – 8 1405.8 539.0 – 8
SEAC Brazil‡ 90.2 81.4 – 100.2 101.4 96.3 – 106.9

BV 413.1 114.6 – 8 324.7 155.0 – 8
PLT 144.2 90.4 – 316.8 120.7 96.50 – 158.9

See Table 2 for abbreviations; †, the results for MAC, PVE, SMI, COA, 
NAI, CAS, PUR, RBR, and BAN are given in Scarpassa and Conn [38]; 
‡, the results for LI, GA, STN, ARA, BEL, MOJ, and PEX are given in 
[37]; CI, confidence intervals; 8, infinity; --, no data.
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tions, we were able to compare the results of these two
treatment methods. The differentiation and mean hetero-
zygosity (Table 2) results were not significantly different
between these two methods; both recovered very similar
values. The allelic richness (Table 2) and the neutrality test
estimates showed a little more variance, and the effective
population size estimates a large disparity between the
two treatment methods, which demonstrates that this test
is more sensitive and should be interpreted with caution.
Although there was variance in these estimates, the same
trends were shown in both treatments.

Substantial population structure was found in Amazonia,
which was undetected with more conservative nuclear
markers and isozymes [9,10,24,71]. Four population clus-
ters were detected in Amazonia, three in the Brazilian
Amazon (northeastern Amazonia, southeastern Amazo-
nia and central, and western and central Amazonia) and
one including the Peruvian Amazon subpopulations,
attributed to an isolation-by-distance effect. There was a
moderate amount of significant differentiation and
reduced gene flow between these Amazonian population
clusters. The considerable differences in Ne among the
populations may have contributed to the observed genetic
differentiation [72,73]. The level of differentiation among
the Amazonian population clusters is comparable to that
detected between A. albimanus populations from Central
and South America (FST = 0.114) [68], among A. gambiae
populations in west Africa separated by > 200 km (FST =
0.034–0.167) [74] and those separated by the Great Rift
Valley complex in Kenya (FST = 0.104) [75], as well as
between A. funestus populations from west, central, and
eastern Africa (FST = 0.110) [11]. An earlier mtDNA study
of A. darlingi [28], although lacking western Amazonian
Brazil samples, detected considerable population struc-
ture throughout South America that is congruent with
some of the Amazonian differentiation detected here; spe-
cifically, differentiation across the Amazon River [37] and
between the NEA and SEAC Brazil population clusters was
also detected with mtDNA [28]. The main forces respon-
sible for partitioning the genetic variation in Amazonian
are most likely the result of geographic distance and/or
differing demographic histories, rather than physical bar-
riers (e.g., rivers or mountains).

Within the WCA Brazil population cluster there was little
genetic structure and differentiation, and the isolation-by-
distance model explained nearly all of the differentiation
observed [38]. Within the NEA Brazil population cluster
there was no significant population structure or differen-
tiation, likely because these three localities are 4–8 km
apart and probably a single population. Within the SEAC
Brazil cluster there was more structure and significant dif-
ferentiation than observed for the other Amazonian clus-
ters, which is explained by isolation-by-distance and also

may be affected by the differing effective population sizes
among these subpopulations. The two central Amazonian
Brazil populations, PEX and PLT, were an admixture of
the Amazonian clusters. PEX was primarily an admixture
of SEAC and WCA Brazil populations, which are the two
nearest population clusters. Interestingly, PLT shared
identity primarily with the SEAC populations, which are
in close proximity (although not the closest), and sec-
ondly shared identity with the Peruvian populations that
are 1611–2044 km apart. BV, the northern Amazonian
Brazil locality, was most similar to the southeastern Ama-
zonian Brazil populations, which again were not the near-
est. This demonstrates that their population identity was
not solely based on proximity, and may be influenced by
demographic history, migration, and/or ecology.

Within Peru there was no significant population structure
and low differentiation among the seven subpopulations,
in agreement with an earlier RAPD-PCR analysis of A. dar-
lingi in the Peruvian Amazon that detected high homoge-
neity among populations (within 60 km) irrespective of
different habitat types [76]. We detected little differentia-
tion between the subpopulations even at distances up to
433 km and there was no indication of isolation-by-dis-
tance. Most of the significant low differentiation among
the subpopulations occurred between samples greater
than 120 km apart, except for between PCO-NAU (59 km
apart, significant differentiation), PCO-PRT (134 km
apart, no significant differentiation), and MAZ-PRT (147
km apart, no significant differentiation). There was a large
amount of variability in Ne among the Peru subpopula-
tions (93.6 – 8) that may contribute to the small signifi-
cant differentiation observed among many of the
localities. Anopheles darlingi appears to be panmictic in
this region of Peru. There is some evidence of a popula-
tion expansion in MAZ, NAU, and SAE. The expansion in
NAU and SAE is reflected in a very large Ne in these local-
ities. Prior to 1991, A. darlingi had not been reported
around Iquitos, the major Peruvian Amazon city [43,44].
This expansion may reflect the introduction of A. darlingi
into the Peruvian Amazon possibly from PLT, Brazil,
where there is the most genetic similarity, in the early
1990's and the resultant increase in malaria [45,46].

Within Central America there was much less variation
(mean RS = 4.3, mean HO = 0.457) as compared to within
Amazonia (mean RS = 7.62, mean HO = 0.742), and there
was no evidence of isolation-by-distance. Low haplotype
and nucleotide diversity was also observed within Central
America with mtDNA COI sequences as compared to
within South America [28]. The low diversity can be at
least partially explained by low effective population sizes
in this region, or perhaps these populations suffered a
recent population bottleneck due to an unknown histori-
cal event. A founder effect resulting from the establish-
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ment of the Central American A. darlingi populations
from only a few individuals from the Colombian popula-
tion is also consistent with the data [10]. The only signif-
icant differentiation observed among the six Central
American subpopulations was between GOL, Belize and
all other localities (FST range of 0.1063–0.1489, all P val-
ues < 0.05), GOL is separated from the other subpopula-
tions by the Guatemalan Highlands and the Maya
Mountains (Figure 1), which may act as a natural barrier,
restricting gene flow. There was no significant differentia-
tion between the northern Belize populations (CAV and
SIB) and the Guatemalan populations, although they are
separated by 257–270 km and by the mountain ranges as
well. Therefore, in northern Belize and within Guatemala
A. darlingi appears to be one panmictic unit. In compari-
son, A. albimanus populations throughout Central Amer-
ica displayed only minor genetic differences using
microsatellites, there was weak isolation by distance,
throughout Guatemala populations were genetically
homogenous between Atlantic and Pacific regions and
thus the Guatemalan Highlands did not appear to restrict
gene flow [68]. The level of differentiation observed
between GOL and the other A. darlingi Central American
populations was similar to that observed between A. albi-
manus populations in Central and South America [68].

The data suggest that the main division within A. darlingi
corresponds to Amazonia (genotype 1) and Central Amer-
ica (genotype 2) [10]. Earlier nuclear white, ribosomal ITS,
and mitochondrial COI sequence data together estab-
lished a deep divergence between genotypes 1 and 2
[10,28], interpreted as incipient species [10]. In the
present study, there is marked differentiation between
Central America and all four Amazonian population clus-
ters. All pairs of genotype 1 and 2 populations showed a
large amount of highly significant differentiation, there
was little or no recurrent gene flow between them, they
demonstrate different microsatellite allele frequencies
and variation, and appear as separate clusters with the
Bayesian analysis. The NJ trees based on genetic differen-
tiation and distance both cluster the populations accord-
ing to the two genotypes. The mixture of shared and
private alleles in the Central America population cluster is
consistent with shared ancestral polymorphism and a
recent divergence between these two genotypes. The pres-
ence of a large amount of private alleles suggests some
degree of independence between the gene pools [77]. The
independent pairwise differentiation analyses of each
locus found significant differentiation across the genome
between genotypes 1 and 2. The differentiation observed
between the genotypes was attributed to isolation by dis-
tance, although, as the graph shows (top right portion of
Figure 3), the comparisons between Central and South
American populations do not fit the positive correlation
trend line, and may be a consequence of comparing

diverse genetic groups that are geographically separated
[11,68]. The level of differentiation observed between
genotype 1 and 2 populations was similar to that
observed among the closely related A. dirus, A. scanloni,
and A. baimaii (former A. dirus species A, C, and D, respec-
tively) in Thailand (mean FST = 0.263) [39], A. gambiae M
and S forms (FST = 0.1–0.3 [12]; mean FST = 0.203 [35]),
and between A. gambiae and A. arabiensis (FST = 0.12–0.27
[78]; mean FST = 0.349 [35]) using microsatellites. These
microsatellite data are consistent with and substantiate
the hypothesis, initially proposed based on mitochon-
drial and nuclear data [10,28], that genotypes 1 and 2 rep-
resent incipient species within A. darlingi. The divergence
between these genotypes was estimated to have occurred
during the Pleistocene using mitochondrial data, most
likely attributed to complex Pleistocene climatic changes
[28].

With the detection of a recent population expansion or
the departure from MDE in many of the populations in
Amazonia and two populations in Central America, the
FST values do not translate into meaningful rates of gene
flow [79]. In the expanded populations, the migration
rates will be overestimated by FST, and the differentiation
will be underestimated as compared to neutral equilib-
rium values. Therefore, the low level of differentiation
measured within Peru and WCA Brazil may be an under-
estimation as well as an overestimation of gene flow; and,
the differentiation and gene flow between the genotypes
and population clusters may be underestimating the cur-
rent degree of isolation. Despite possible departures from
MDE, our large sample sizes and number of populations
add statistical power to our study.

Conclusion
Overall, there was a large amount of population structure
in Amazonia, and a primary division within A. darlingi
between Amazonia (genotype 1) and Central America,
parts of Colombia and Venezuela (genotype 2). It appears
that two main factors have contributed to the genetic dif-
ferentiation between the population clusters: physical dis-
tance between the populations and the differences in
effective population sizes among the subpopulations.
Knowledge of A. darlingi's population genetic structure is
essential to an understanding of malaria epidemiology
and for the success of potential genetic control strategies
(release of transgenic mosquitoes refractory to Plasmodium
infection) that will rely on the ability to target all popula-
tions and will require a thorough understanding of the
forces that produce and maintain the population struc-
ture, especially gene flow [80]. Control strategies involv-
ing insecticides will also benefit from knowledge of gene
flow, which would allow predictions about the spread of
genes conferring insecticide resistance or susceptibility
within and between vector populations. These control
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strategies should take A. darlingi's population structure,
and specifically these genotypes, into account.
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