Projecting the COVID-19 Weekly Deaths, Infections, and Hospitalizations for Jefferson County, Kentucky

April 23, 2020

Last date with actual data: April 20 Predicted for: Every week from April 23 to August 20

Seyed Karimi

Louisville Metro Department of Public Health & Wellness Louisville Metro Government Email: <u>Seyed.Karimi@louisvilleky.gov</u> & Department of Health Management & System Sciences School of Public Health & Information Sciences University of Louisville

Email: <u>Seyed.Karimi@louisville.edu</u>

Natalie DuPre

Department of Epidemiology and Population Health School of Public Health & Information Sciences University of Louisville Email: <u>Natalie.Dupre@louisville.edu</u>

Paul McKinney

Department of Health Promotion and Behaviorial Sciences School of Public Health & Information Sciences University of Louisville Email: <u>McKinney@louisville.edu</u>

Bert Little

Department of Health Management & System Sciences School of Public Health & Information Sciences University of Louisville Email: <u>Bert.Little@louisville.edu</u>

Sarah Moyer

Louisville Metro Department of Public Health & Wellness Louisville Metro Government Email: <u>Sarah.Moyer@louisvilleky.gov</u> & Department of Health Management & System Sciences

School of Public Health & Information Sciences University of Louisville Email: <u>Sarah.Moyer@louisville.edu</u>

SCHOOL OF PUBLIC HEALTH & INFORMATION SCIENCES

Executive Summary

Objective

We projected the trends in the numbers of actively circulating infections, active hospitalizations, and fatalities caused by the COVID-19 in Jefferson County, KY, over the period April 20 to August 20, 2020.

Background

Jefferson County includes the city of Louisville which has an estimated population of 767,000 people and 310,000 households in July 2019.¹ The county may be more vulnerable to the COVID-19 impact than a typical US county because of its lower-than-average health and economic status. The median household income in the county was about 10% lower than the national average in the past five years, and the poverty rate was 30% higher than the national rate in 2019.¹ Jefferson County also ranks in the lowest tertile of life expectancy and the highest tertile of deaths associated with respiratory diseases, compared to other counties in the US.² Among the 120 Kentucky counties, Jefferson County ranks 47 and 37 in terms of health risk factors and health outcomes, respectively.³

Methods

Epidemic Modeling: We used a classic deterministic model of epidemic dynamics called the <u>s</u>usceptible-<u>e</u>xposed-<u>i</u>nfectious-<u>r</u>ecovered (SEIR) model.⁴ The model classifies a population into four connected compartments: the susceptible, the exposed, the infectious, and the recovered. The susceptible population includes individuals who could be infected by the virus. In this model, those who live in Jefferson County are the susceptible population. The exposed or latently infected population includes those who have acquired the virus but are not transmitting it. The infectious population is a subset of the exposed who are actively transmitting the virus. The recovered population is a subset of the infectious population who recovered and are no longer infectious. We regulated the transmission through these four compartments using the most up to date COVID-19 transmission dynamics parameters (namely, the basic reproduction factor and the periods of incubation and infectiousness) reported in the COVID-19 rapidly growing literature. We also fed the model with globally and locally acceptable clinical dynamics parameters, for example, case fatality rate (CFR), incubation to death period, and length of stay in hospital.

Scenario Building: The model allows for measuring the effect of a public health policy intervention to contain an infection. The policy is characterized by an intervention day and a degree of the strength of the intervention. The intervention day can be set closer to or further from the emergence of the first reported infection and death in the susceptible population. The strength of the infection is determined by the decrease in the number of transmissions by one person.

We used the intervention tool to calibrate the model for the Jefferson County deaths. Specifically, we considered two potential intervention scenarios that would have approximately led to the current number of deaths in the county. In one, we set the intervention day on April 7, 2020 (two weeks after the governor's stay-home order issued on March 25)⁵ and assumed that the intervention (representing all containment measures taken by the public authority, businesses and people) led to a 70% decrease in the transmission of COVID-19. In another intervention scenario, we set the intervention day a week earlier on March 31, 2020, but assumed that the intervention led to a 65% decrease in transmission of the virus. We call these two scenarios *status quo* scenarios. Both scenarios allow for a period of adjustment (compliance) after the governor's March 25 stay-home order.

Under each of the two *status quo* scenarios, we considered four potential alternatives that reflect containment methods that would have been weaker or stronger. Therefore, we discussed where the Jefferson County COVID-19 status in terms of the numbers of infections, hospitalizations, and fatalities would have been if we had practiced weaker or stronger containment (social distancing) strategies.

Results

Observed Data: By April 16, 2020, there were 774 cases and 61 COVID-19 deaths in Jefferson County. On average, there was an estimated 9-day delay from the start date of symptoms to the reporting date in the data. The CFR was 7.9%, which is perceived as an overestimation of the actual case fatality rate because of the lack of widespread testing. The average age of deceased individuals was 75 years. About 91% of them had a history of cardiovascular disease, 55% had a neurological condition, 50% had diabetes, and 46% had a history of chronic lung disease. About 54% and 25% of COVID-19 cases were among white and black residents, respectively; about 56% and 30% of deaths were among the white and black residents, respectively. Among the hospitalized, 35% were admitted to the ICU, and 27% used a ventilator.

Projections: Projections based on the presumed *status quo* (which will be reevaluated as Jefferson County COVID-19 data is updated) showed 518–912 actively circulating infections, 198–399 active hospitalizations, 49–86 total fatalities, on average, on May 7. Also, the average numbers of active infections, active hospitalizations, and total fatalities were projected to decrease to 456–530, 185–269, 79–148, respectively, by June 4. By the end of this first wave of the epidemic (presumably, late August), the average numbers of active infections, and total fatalities were projected to decrease to 113–306, 65–130, 230–317, respectively.

Interpretation: Under any of the two *status quo* scenarios, *if stronger containment methods* (including personal precautions, population management i.e., social distancing, workplace personnel management, and patient placement) would have been used from the presumed intervention days (March 31 and April 7) and *they would have decreased the transmission of the virus by an additional 10%*, the average numbers of active infections, active hospitalizations, and total fatalities may decrease to 74–94, 51–90, 64–127, respectively, by June 4. On the other hand, if weaker containment methods were used from the presumed intervention days and virus transmission would have increased by an additional 10%, the projected average numbers of active infections, active hospitalizations, and total fatalities, may increase to 2175–2278, 637–785, 178–272, respectively, by June 4.

Conclusion

- Maintaining the *status quo* assumes that we decreased transmission by 65% or 70% (which may or may not be true and needs to be reevaluated as Jefferson County data is updated). Nonetheless, we will likely have hundreds of active infections in early June.
- If we *practice stronger social distancing strategies, we could safely open in early June.* Therefore, taking new and more effective measures can make a manageable early-June opening more likely.
- Stronger containment efforts in the future to reduce transmission of the virus could include more extensive testing together with consistent tracing (quarantine as appropriate) of all contacts of recognized cases.
- These efforts should allow for much more effective containment of spread than is currently present and could allow for an earlier date of gradual relaxation of current restrictions.
- If we had practiced *weaker social distancing than the current status, we would have been in an unstable path with increased hospitalization and infection trends.* Decreasing the current social distancing measures without efforts in regard to testing, isolating, and contact tracing can move us to an unstable status which can be catastrophic.
- The *rapid implementation and effectiveness* of social distancing measures, personal protection measures, testing, and systems to quickly contact trace to decrease transmission after a contact has been made are *crucial to limit the transmission of the virus.* The rates of hospitalization suggest that only 400 beds are needed to handle the "surge" under good social distancing compliance. Point of care (POC) rapid testing should be used before any hospitalization. This provides better medical care to the community and brings hospital beds back online that will likely not be needed under a surge if we prudently practice social distancing.

Key Takeaways

- 1. Social distancing measures taken in Jefferson County were justified.
- 2. We have hospital capacity to reopen carefully and slowly.
- 3. The modeling numbers help the Louisville Metro Department of Health & Wellness (LMPHW) predict the number of staff they will need to expand to do proper investigations and contact tracing (currently between 250 and 500 staff are expected to be needed).

The COVID-19 in Jefferson County, KY

Table 1: Characteristics of COVID-19 positive cases County (KY) as of April 16 th , 2020	s and deaths from COV	ID-19 in Jefferson
	Cases (n=774)	Deaths (n=61)
Time from symptoms to report form in days, mean (SD) n=600 (174 missing symptom onset date)	9.2 (5.9)	
Input Statistics from the data:		
Case Fatality Rate (%)	7.9%	
Time from symptoms to death in days, mean (IQR) n=56		10 (6, 17)
-# of deaths with missing onset date		5
Hospitalization proportion, n (%)*	326 (46.8%)	
-% of cases with unknown hospitalization status, n (%)	77 (9.9%)	
Length of hospital stay in days, median (IQR),	5 (3, 8)	
- % of hospitalized patients (n=326) with unknown	113 (34.7%)	
Time from symptoms to hospitalizations in days, median (IQR), n=294	4 (1, 7)	
- % of hospitalized patients (n=326) with unknown admission or onset date, n (%)	32 (9.8%)	
Case Characteristics (n=774)		
Age in years, mean (IQR; min:max)	56.9 (43, 71; 0:102)	75.3 (66, 85; 42:93)
Race, n (%)		
-White	420 (54.3)	34 (55.7)
-Black	192 (24.8)	18 (29.5)
-Asian	47 (6.1)	1 (1.6)
-Other	115 (14.9)	8 (13.1)
Sex, n (%)*		
Male	340 (45.8)	28 (47.5)
Female	403 (54.2)	31 (52.5)
-Missing	31	2
With COVID-19 symptom, n (%)	627 (81.0)	56 (91.8)
-Missing	80 (10.3)	4 (6.6)
Among those hospitalized COVID-19 cases $(n=326)$:		Among hospitalized deaths (n=50)
Admitted to ICU, n (%)*	107 (35.1)	31 (62.0)

	Cases (n=774)	Deaths (n=61)
-Missing	21	
Mechanical Ventilator, n (%)*	77 (26.6)	25 (50.0)
-Missing	37	
Characteristics of COVID-19 deaths (n=61)		
Diabetic, n (%)*		26 (50)
-Missing		9
Immunocompromised, n (%)*		6 (13.6)
-Missing		17
History of CVD, n (%)*		51 (91.1)
-Missing		5
History of Chronic Liver Disease, n (%)*		1 (2.3)
-Missing		17
History of Chronic Lung Disease, n (%)*		22 (45.8)
-Missing		13
Neurological Condition, n (%)*		24 (54.6)
-Missing		17
Pneumonia, n (%)*		50 (89.3)
-Missing		5
Renal Disease, n (%)*		15 (31.9)
-Missing		14
Abnormal Chest X-Ray, n (%)*		49 (84.5)
-Missing		3
Acute Respiratory Distress, n (%)*		21 (38.9)
-Missing		7
ICU, n (%)*		32 (54.2)
-Missing		2
Intubated, n (%)*		26 (44.1)
-Missing		2
		(A) (A)

Table 1: Characteristics of COVID-19 positive cases and deaths from COVID-19 in Jefferson

#Results are presented as sample sizes, n, with percentages within parentheses, n (%); and means or medians with standard deviations (SD) or interquartile ranges (IQR) within parentheses.

The Model

A traditional infectious disease model — SEIR (Susceptible \rightarrow Exposed \rightarrow Infected \rightarrow Removed).⁶

Table 2: Assumptions

Inputs	Assigned Numbers
Transmission Dynamics:	
Jefferson County population ¹	767k
Basic reproduction number (R ₀)	2.75
Length of Incubation Period ^{7,8}	5.2 days
Duration patient is infectious ⁹	5 days
Clinical Dynamics:	
Case Fatality Rate (CFR) ¹⁰⁻¹⁴	2%
Time from end of incubation to death	32 days
Length of hospital stay	7 days
Recovery time for mild cases	11 days
Hospitalization rate	20%
Time to hospitalization	5 days
Intervention Day	Scenarios on effective intervention day:
The date of stay-stay home executive order: March 25 ⁵	(1) One week later, on March 31
	(2) Two weeks later, on April 7
Decrease in transmission after the intervention	Scenarios:
(a correlate of R_t , with lower R_t for higher decreases in	(1) Low: 55% and 60%
transmission)	(2) Middle: 65% and 70%
	(3) High: 75% and 80%

Calibration:

The model is calibrated for the observed Jefferson County deaths for two pairs of benchmark or status quo scenarios:

Intervention day: April 7 & Decrease in transmission: 70% Intervention day: March 31 & Decrease in transmission: 65%

Interpretation of the results under each scenario:

Section 1:

- Figure 1.1 shows the patterns of exposure, infections, hospitalizations, and deaths under a calibrated scenario that assumes the stay-home order became effective on April 7 and resulted in a 70% decrease in transmission. This scenario, which we call the first status quo scenario, approximately fits the trend of deaths in Jefferson County under the model assumptions.
- Figures 1.2 and 1.3 show the potential patterns had the measures taken to decrease the transmission of the virus from April 7 were more effective (or had we practiced stronger social distancing).
- Figures 1.4 and 1.5 show the potential patterns had the measures taken to decrease the transmission of the virus from April 7 were less effective (or had we practiced weaker social distancing).

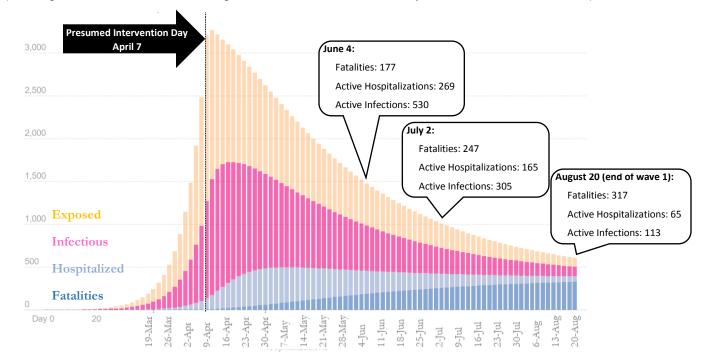
- Table 3 present the projected numbers under our modeling assumptions.
- Figures 1.6–1.8, respectively, show the trends in infections, hospitalizations, and deaths under social distancing scenarios that are weaker or stronger than the status quo scenario.

Section 2:

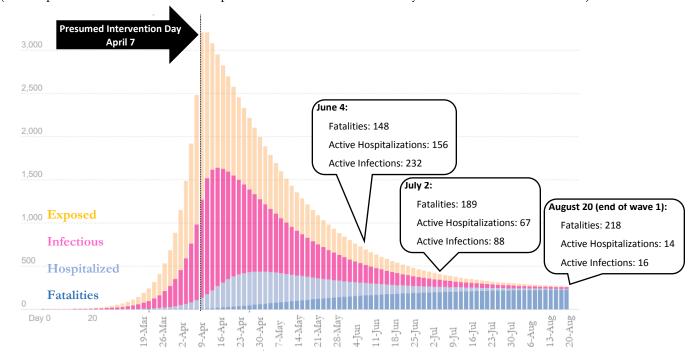
- Figure 2.1 shows the patterns of exposure, infections, hospitalizations, and deaths under a calibrated scenario that assumes the stay-home order became effective in March 31 and resulted in a 65% decrease in transmission. This scenario, which we call the second status quo scenario, approximately fits the trend of deaths in Jefferson County.
- Figures 2.2 and 2.3 show the potential patterns had the measures taken to decrease the transmission of the virus from March 31 were more effective (or had we practiced stronger social distancing).
- Figures 2.4 and 2.5 show the potential patterns had the measures taken to decrease the transmission of the virus from March 31 were less effective (or had we practiced weaker social distancing).
- Table 4 present the projected numbers under our modeling assumptions.
- Figures 2.6–2.8, respectively, show the trends in infections, hospitalizations, and deaths under social distancing scenarios that are weaker or stronger than the status quo scenario.

Caveats:

- The projections are highly dependent on the assumptions of basic reproduction number R_0 (no control over), the true intervention day in the sense of when it became an effective intervention, and the presumed percentage decrease in transmission after the intervention.
- The scenarios will be narrowed further as more Jefferson County data is fed into the model.

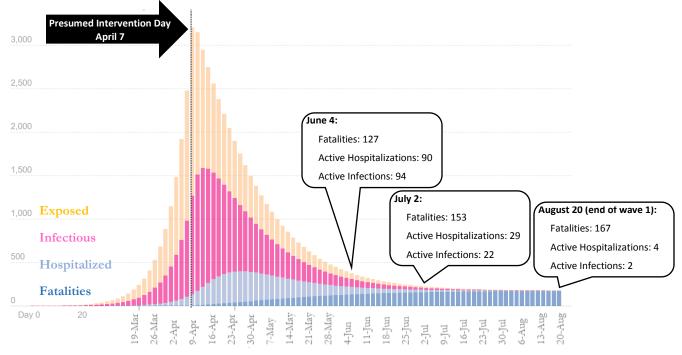

All considered scenarios

		% Decrease in Transmission								
		or								
		Degree of Social Distancing								
		Low	Middle	High						
Effective	March 31	55% and 60%	65% and 70%	75% and 80%						
Intervention Day	April 7	55% and 60%	65% and 70%	75% and $80%$						


1. Projections with April 7 as the Effective Intervention Day

The Benchmark Scenario, resembling the current status in Jefferson County

Figure 1.1: The pattern of the exposed, the infectious, the hospitalized, and fatalities (Assumption: the intervention on April 7 decreased transmission by 70% and others in Table 2)



The status if we had practiced a stronger social distancing

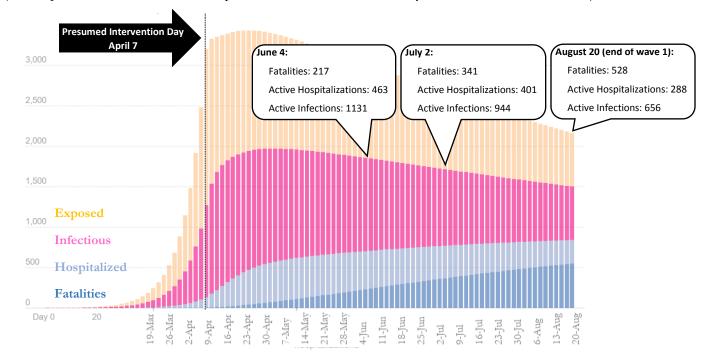
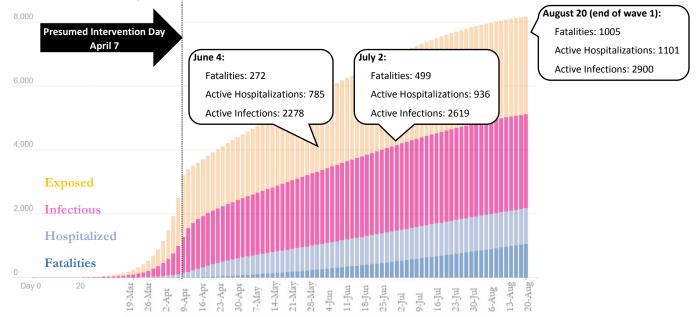


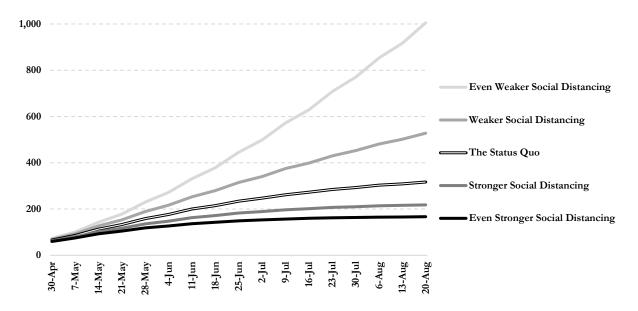
Figure 1.2: The pattern of the exposed, the infectious, the hospitalized, and fatalities (Assumption: the intervention on April 7 decreased transmission by 75% and others in Table 2)

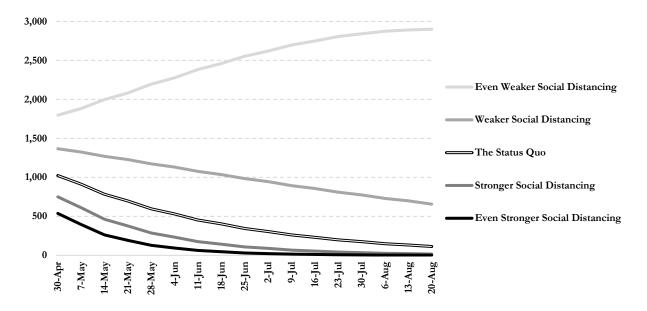
Figure 1.3: The pattern of the exposed, the infectious, the hospitalized, and fatalities (Assumption: the intervention on April 7 decreased transmission by 80% and others in Table 2)



The status if we had practiced a weaker social distancing

Figure 1.4: The pattern of the exposed, the infectious, the hospitalized, and fatalities (Assumption: the intervention on April 7 decreased transmission by 65% and others in Table 2)


Figure 1.5: The pattern of the exposed, the infectious, the hospitalized, and fatalities (Assumption: the intervention on April 7 decreased transmission by 60% and others in Table 2)


Dates	Total Pro	jected Num Ci	nbers of In t irculating	fections <i>I</i>	Actively	Total	Total Projected Numbers of Active Hospitalizations						Total Projected Numbers of Fatalities						
in		% Decreas	se in Transı	nission			% Dect		% Decrease in Transmission										
2020	60	65	70	75	80	60	65	70	75	80		60	65	70	75	80			
30-Apr	1,797	1,367	1,023	750	537	547	475	413	359	312		73	69	66	63	60			
7-May	1,883	1,325	912	610	395	600	490	399	325	265		101	93	86	80	75			
14-May	1,997	1,270	782	463	262	659	491	365	270	200		143	127	113	102	93			
21-May	2,083	1,228	696	377	192	699	486	336	231	159		178	153	133	117	105			
28-May	2,195	1,172	596	286	127	749	474	297	185	116		230	189	159	136	119			
4-Jun	2,278	1,131	530	232	94	785	463	269	156	90		272	217	177	148	127			
11-Jun	2,384	1,076	453	176	62	831	447	235	123	65		331	253	200	163	137			
18-Jun	2,459	1,036	403	143	46	864	433	212	103	51		379	280	215	172	143			
25-Jun	2,554	983	344	108	30	906	415	184	81	37		446	315	234	183	149			
2-Jul	2,619	944	305	88	22	936	401	165	67	29		499	341	247	189	153			
9-Jul	2,697	894	261	67	15	974	383	143	53	21		572	375	262	197	157			
16-Jul	2,749	857	231	54	11	999	369	128	44	16		629	399	273	202	160			
23-Jul	2,807	809	197	41	7	1,030	350	110	34	12		708	430	285	207	162			
30-Jul	2,841	775	175	33	5	1,050	336	98	28	9		770	453	293	210	164			
6-Aug	2,875	730	149	25	3	1,073	318	85	22	7		853	481	303	214	165			
13-Aug	2,891	698	132	21	3	1,087	305	75	18	5		917	502	309	216	166			
20-Aug	2,900	656	113	16	2	1,101	288	65	14	4		1,005	528	317	218	167			

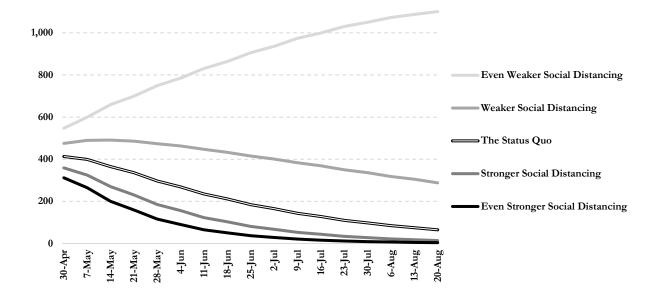

Table 3: Projected fatalities, infections and hospitalizations under different scenarios of decrease in transmission after the presumed intervention(Assumption: April 7 was the effective intervention day and others listed on page 4 of the report)

Figure 1.7: Projected weekly numbers of **infections actively circulating** under different social distancing scenarios (The status quo: the intervention on April 7 decreased transmission by 70%)

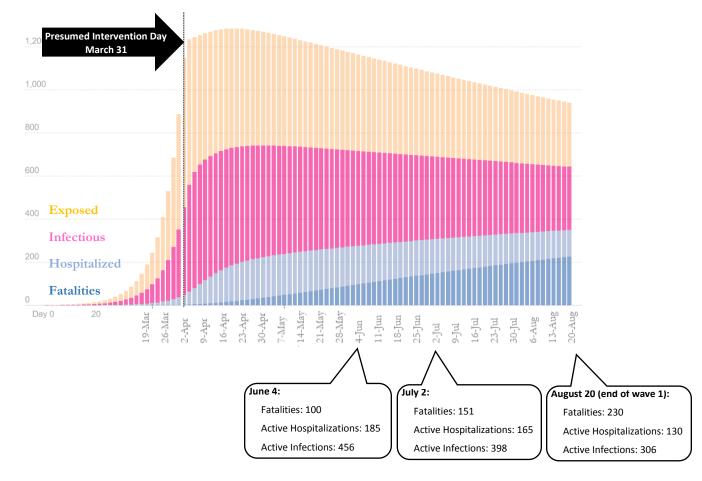
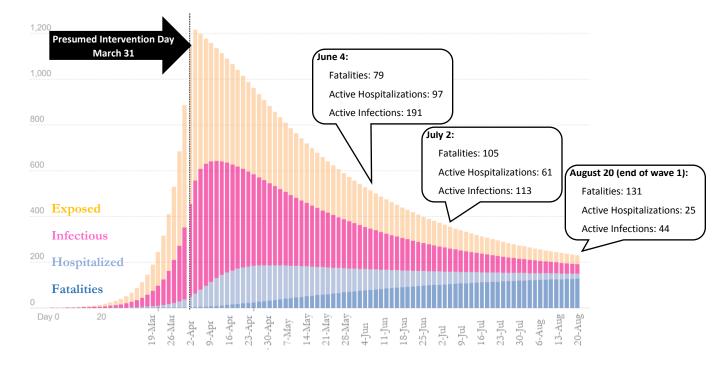
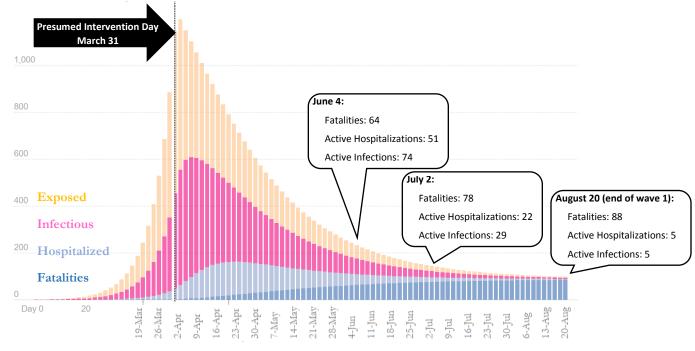


Figure 1.8: Projected weekly numbers of **active hospitalizations** under different social distancing scenarios (The status quo: the intervention on April 7 decreased transmission by 70%)


2. Projections with March 31 as the Effective Intervention Day

The Benchmark Scenario, resembling the current status in Jefferson County

Figure 2.1: The pattern of the exposed, the infectious, the hospitalized, and fatalities (Assumption: the intervention on March 31 decreased transmission by 65% and others in Table 2)



The status if we had practiced a stronger social distancing

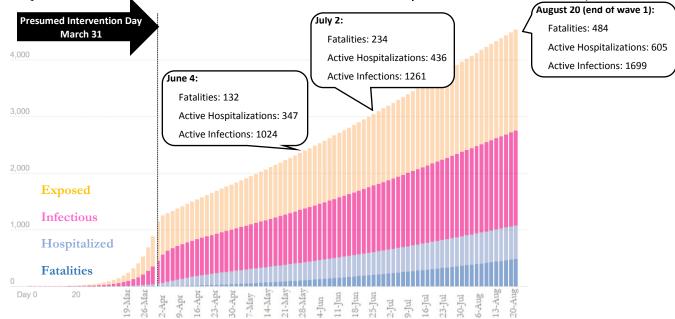
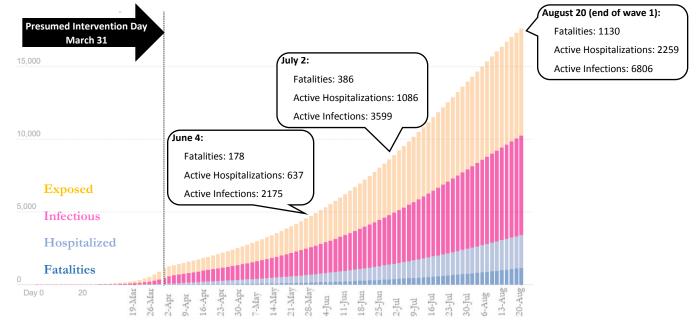


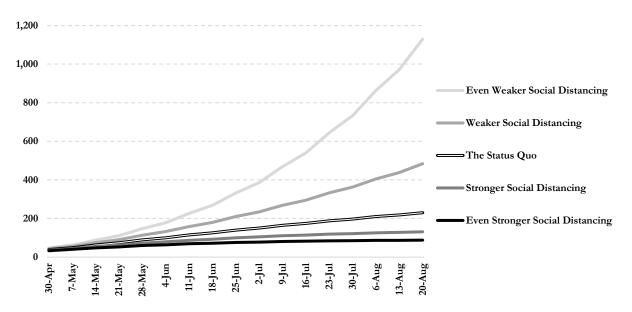
Figure 2.2: The pattern of the exposed, the infectious, the hospitalized, and fatalities (Assumption: the intervention on March 31 decreased transmission by 70% and others in Table 2)

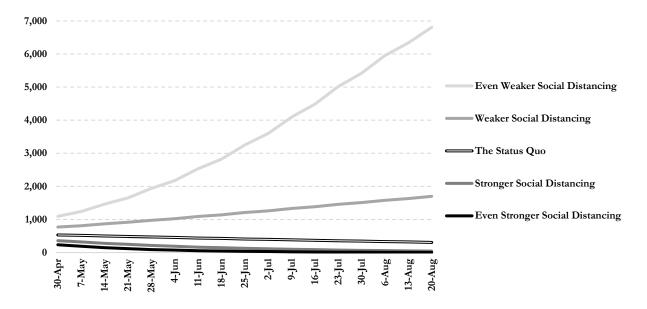
Figure 2.3: The pattern of the exposed, the infectious, the hospitalized, and fatalities (Assumption: the intervention on March 31 decreased transmission by 75% and others in Table 2)



The status if we had practiced a weaker social distancing

Figure 2.4: The pattern of the exposed, the infectious, the hospitalized, and fatalities (Assumption: the intervention on March 31 decreased transmission by 60% and others in Table 2)


Figure 2.5: The pattern of the exposed, the infectious, the hospitalized, and fatalities (Assumption: the intervention on March 31 decreased transmission by 55% and others in Table 2)


Dates	Total	Projected Nu	Total Projected Numbers of Active Hospitalizations						Total Projected Numbers of Fatalities							
in		% Decre	ease in Trans	smission				% Decrease in Transmission								
2020	55	60	65	70	75	55	60	65	70	75		55	60	65	70	75
30-Apr	1,094	771	532	359	235	304	245	197	158	126		47	43	39	36	33
7-May	1,240	812	518	321	192	351	264	198	148	110		63	55	49	44	40
14-May	1,462	869	500	277	146	419	288	196	133	90		88	74	63	55	48
21-May	1,651	914	487	248	119	477	305	193	122	76		111	90	74	62	53
28-May	1,936	976	469	214	91	563	329	189	107	61		147	113	89	72	60
4-Jun	2,175	1,024	456	191	74	637	347	185	97	51		178	132	100	79	64
11-Jun	2,530	1,089	439	164	57	746	372	180	85	40		226	158	115	87	69
18-Jun	2,823	1,140	426	147	46	838	390	176	77	34		268	180	126	93	72
25-Jun	3,252	1,209	410	127	35	974	416	170	67	27		332	210	140	100	76
2-Jul	3,599	1,261	398	113	29	1,086	436	165	61	22		386	234	151	105	78
9-Jul	4,093	1,332	382	97	22	1,249	462	160	53	17		469	268	165	111	81
16-Jul	4,482	1,385	370	87	18	1,380	483	155	47	15		540	295	175	114	83
23-Jul	5,017	1,457	355	75	14	1,566	510	149	41	11		645	333	188	119	84
30-Jul	5,422	1,510	344	67	11	1,712	531	145	37	9		733	363	197	122	85
6-Aug	5,955	1,580	330	58	8	1,911	558	139	32	7		864	405	210	126	87
13-Aug	6,337	1,632	319	51	7	2,062	578	135	29	6		972	438	219	128	87
20-Aug	6,806	1,699	306	44	5	2,259	605	130	25	5		1,130	484	230	131	88

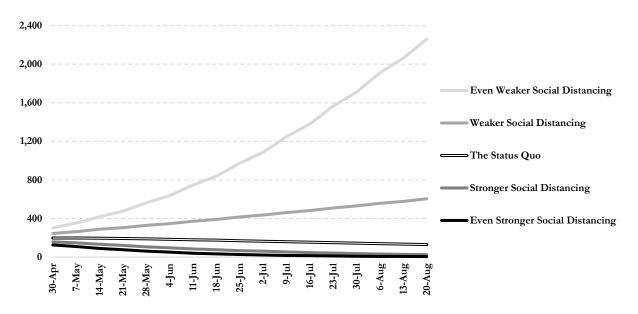

Table 4: Projected fatalities, infections and hospitalizations under different scenarios of decrease in transmission after the presumed intervention (Assumption: March 31 was the intervention day)

Figure 2.7: Projected weekly numbers of **infections actively circulating** under different social distancing scenarios (The status quo: the intervention on March 31 decreased transmission by 65%)

Figure 2.8: Projected weekly numbers of **active hospitalizations** under different social distancing scenarios (The status quo: the intervention on March 31 decreased transmission by 65%)

Conclusion

- (1) Maintaining the status quo assumes that we decreased transmission by 65% or 70% (which may or may not be true and needs to be reevaluated as Jefferson County data gets updated) and will likely result in hundreds of active infections in early June.
- (2) If we had practiced stronger containment strategies, we could safely open in early June. Therefore, taking new and more effective measures can make a manageable early-June opening more likely.
- (3) Stronger efforts in the future to reduce transmission of the virus could include more extensive testing together with consistent tracing (with quarantine as appropriate) of all contacts of recognized cases. These efforts should allow for much more effective containment of spread than is available at present and could allow for an earlier date of gradual relaxation of current restrictions.
- (4) If we had practiced weaker social distancing than the current status, we would have been in an unstable path with increasing hospitalization and infection trends.
- (5) Decreasing the current social distancing measures without efforts in regard to testing, isolating, and contact tracing can move us to an unstable status.
- (6) The rapid implementation and effectiveness of any social distancing measures, personal protection measures, and systems to quickly contact trace to decrease transmission after a contact has been made are crucial to limit the transmission of the virus.
- (7) Of more than 3600 hospital beds in Louisville, an estimated 3200 hospital beds could be brought back into clinical use and used as Non-COVID. Point of care (POC) rapid COVID testing should be used before any hospital admission. This would improve medical care in the community and help begin to return the economy to normal.

References

- 1. US Census Bureau, QuickFacts: Jefferson County Kentucky: https://www.census.gov/quickfacts/fact/table/jeffersoncountykentucky/PST045219
- 2. Institute for Health Metrics and Evaluations (IHME). US County Profiles. Jefferson County Kentucky. University of Washington http://www.healthdata.org/us-county-profiles
- 3. The County Health Rankings & Roadmaps. *Kentucky*. Robert Wood Johnson Foundation & the University of Wisconsin Population Health Institute. <u>https://www.countyhealthrankings.org/</u>
- 4. Costa, P. J., *Applied mathematics for the analysis of biomedical data: models, methods, and MATLAB*, Hoboken, New Jersey : John Wiley & Sons, 2016. doi: 10.1002/9781119269540.
- 5. State of Kentucky, Governor Executive Order, 2020-257, March 25, 2020: https://governor.ky.gov/attachments/20200325 Executive-Order 2020-257 Healthy-at-Home.pdf
- 6. Calculations in this document were done with Epidemiology Calculators: https://gabgoh.github.io/COVID/index.html
- Johns Hopkins University Bloomberg School of Public Health. (2020, March 10). New study on COVID-19 estimates 5.1 days for incubation period: Median time from exposure to symptoms affirms earlier estimates and supports CDC"s current 14-day quarantine period. *ScienceDaily*. <u>www.sciencedaily.com/releases/2020/03/200310164744.htm</u>
- 8. Kucharski, A., Russell, T., Diamond, C., Liu, Y., Edmunds, J., Funk, S., . . . Centre, F. (2020). Early dynamics of transmission and control of covid-19: A mathematical modelling study. *The Lancet. Infectious Diseases*, (2020). doi:10.1016/S1473-3099(20)30144-4.
- Kissler, S., Tedijanto, C., Goldstein, E., Grad, Y., & Lipsitch, M. (2020). Projecting the transmission dynamics of sars-cov-2 through the postpandemic period. *Science* (new York, N.y.), 2020 Apr 14. doi:10.1126/science.abb5793.
- Baud, D., Qi, X., Nielsen-Saines, K., Musso, D., Pomar, L., & Favre, G. (2020). Real estimates of mortality following covid-19 infection. *The Lancet. Infectious Diseases*, 2020 Mar 12. doi:10.1016/S1473-3099(20)30195-X.
- 11. Spychalski, P., Błażyńska-Spychalska, A., & Kobiela, J. (2020). Estimating case fatality rates of covid-19. *The Lancet. Infectious Diseases*, 2020 Mar 31. doi:10.1016/S1473-3099(20)30246-2.
- 12. Lipsitch, M. (2020). Estimating case fatality rates of covid-19. *The Lancet. Infectious Diseases*, 2020 Mar 31. doi:10.1016/S1473-3099(20)30245-0.
- 13. Kim, D., & Goel, A. (2020). Estimating case fatality rates of covid-19. *The Lancet Infectious Diseases*. doi:10.1016/S1473-3099(20)30234-6.
- 14. Baud, D., Nielsen-Saines, K., Qi, X., Musso, D., Pomar, L., & Favre, G. (2020). Authors' reply. *The Lancet. Infectious Diseases*, 2020 Mar 31. doi:10.1016/S1473-3099(20)30255-3