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SUMMARY

Most known disease-associated mutations are
missense mutations involving changes of amino
acids of proteins encoded by their genes. Given the
plethora of genetic studies, sequenced exomes,
and new protein structures determined each year, it
is appropriate to revisit the role that structure plays
in providing insights into the molecular basis of dis-
ease-associated mutations. In that regard, a large-
scale structural analysis of 6,025 disease-associated
mutations as well as 4,536 neutral variations for com-
parisonwas performed.While buried amino acids are
common among the disease-associated mutations,
as reported previously, more are statistically signifi-
cantly enriched at observed or predicted functional
sites. Interesting findings are that ligand-binding
sites adjacent to protein-protein interfaces and resi-
dues involved in enzymatic function are especially
vulnerable to disease-associated mutations. Finally,
a compositional analysis of disease-associated
mutations in comparison with variants identified in
the 1000 Genomes Project provides a structural ra-
tionalization of the most disease-associated residue
types.

INTRODUCTION

Since the sequencing of the first human genome was completed

a decade ago (Collins et al., 2004), tremendous efforts have been

made to advance new sequencing methods that allow rapid,

massively parallel sequencing at low cost (Metzker, 2010). These

next-generation sequencing methods enable large-scale se-

quencing on thousands of individuals, generating a large amount

of data available for comparative genome analysis (Abecasis

et al., 2010, 2012). By identifying variations of DNA sequences,

in particular, Single Nucleotide Polymorphisms (SNPs), we may

begin to decipher the links between phenotypes and genotypes.

Of particular interest are geneticmutations that cause various hu-

man, especially Mendelian, diseases. Statistical analyses of pa-

tients’ and normal people’s sequences often pinpoint mutations

strongly associated with patients. Many such mutations are

collected in databases such as theOnlineDatabase ofMendelian
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Inheritance in Man (OMIM) (McKusick, 2007) and the Human

Gene Mutation Database (HGMD) (Stenson et al., 2008).

Since most cases in these databases are SNPs identified

through statistical analysis, it is not clear whether a particular

mutation is actually the cause of the implicated disease. These

mutations are usually referred to as being disease associated.

Most are non-synonymous SNPs (nsSNPs), which occur in the

coding regions of genes and result in changes of amino acid

type, i.e., missense mutations. It is therefore expected that the

change of amino acid impairs the function of the involved pro-

tein. However, for the vast majority of cases, it is not clear how

the mutation affects the function of the protein. In this regard,

studying the impact of mutations may provide a better under-

standing of the mechanisms of the corresponding diseases

and eventually may significantly increase the chance of finding

a better treatment for patients with the disease.

Meanwhile, over a comparable period, the three-dimensional

structures of many proteins have been determined at high reso-

lution (Berman et al., 2000). Often, these proteins are co-crystal-

lized with other biomolecules that are relevant to their functions,

e.g., protein-protein complexes and protein-ligand complexes.

Given these structural data, many questions regarding dis-

ease-causing mutations can be asked and addressed by a thor-

ough inspection of these structures: canwe understand disease-

associated mutations in the context of their locations in the

structure of the protein?Where are disease-linkedmissensemu-

tations located in the proteins? What are the functional and

structural consequences of these mutations? Is there any loca-

tion in the protein where variations are more likely to cause

disease? What is the structural reason why certain types of mu-

tations are more likely to be disease associated? Answers to

these questions not only deepen our understanding of the mo-

lecular mechanisms of diseases but also have practical implica-

tions for the predictions of disease association by automated

computational tools and for personalized medicine.

Over a decade ago,Wang andMoult (2001) performed an early

study of 262 disease-associated mutations from 26 proteins and

found that about 80%of them destabilize proteins and about 5%

involve ligand binding. A subsequent study by Steward et al.

(2003) of 1,292 mutations from 63 proteins showed that about

28% are buried and related to protein stability, while 29% are

involved in intermolecular interactions such as protein-protein

interactions and ligand binding. Similar results were also re-

ported in another study (Sunyaev et al., 2000). However, mainly

due to the paucity of solved protein structures, these studies

were carried out on very few proteins. Since then, many new
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Table 1. Locations of Disease-Associated Amino Acid Mutations

in Protein Structures

Location Count (Frequency)

Buried 2,211 (0.22)

PPI 726 (0.12)

Ligand binding 714 (0.12)

Metal ion binding 174 (0.029)

DNA/RNA binding 42 (0.007)

Geometric pocket 2,177 (0.36)

EFICAz 420 (0.07)

FINDSITE 738 (0.12)

Other (exposed) 1,451 (0.30)

Total 6,025
disease-causing mutations have been found, and the number of

known protein structures has also grown exponentially, espe-

cially for those in complex with functional partners. The previous

studies also lacked a comparison with neutral variations. The

statistical significance of their discoveries, in particular, the value

of structural analysis to the prediction of disease association, is

unclear.

Given this background, it is worthwhile revisiting the questions

raised above. In this study, we performed a large-scale analysis

of 6,025 disease-associated mutations in 642 proteins with

experimental structures, as well as 4,536 neutral mutations in

1,743 proteins for comparison. We took advantage of the fact

that many of these proteins have multiple structures in complex

with other proteins or ligands. Below, we first map these muta-

tions to their locations onto protein structures. We then compare

them with neutral variations and identify regions more likely to

cause disease. We also analyze the likelihood that different

amino acid types are disease associated and provide structural

explanations for some of the most deleterious mutations.

RESULTS

We have collected 6,025 disease-associated missense muta-

tions in 642 human genes and 4,536 neutral mutations in 1,743

human genes from the August, 2013 release of the UniProt

(Universal Protein Resource) database (see Experimental Proce-

dures) (Wu et al., 2006). All these mutations have at least one

experimentally determined protein structure containing the

corresponding mutation. The locations of these mutations are

subsequently analyzed.

Where Are the Disease-Associated Missense Mutations
in Their Protein Structures?
Table 1 shows the statistics of disease-associated mutations.

About 22% are buried in protein cores; 12% are found at pro-

tein-protein interfaces (PPIs); 36% are located in concave

pockets; 12% and 2.9% are found in direct physical contact

with small-molecule ligands and metal ions, respectively; and a

small fraction, 0.7%, are at either DNA-protein or RNA-protein

interfaces. Since the experimental information is most likely

incomplete, we further applied two computational tools, EFICAz

for enzyme function prediction (Kumar and Skolnick, 2012) and
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FINDSITEcomb for ligand-binding site predictions, to our datasets

(Zhou and Skolnick, 2013). About 7%of disease-associated mu-

tations are classified by EFICAz as being functional discrimi-

nating residues (FDRs) for their corresponding enzymatic func-

tions, and an additional 12% of mutations are at FINDSITEcomb

predicted ligand-binding sites that did not have bound ligands

in their PDB structures. It should be noted that these location

classifications are not necessarily mutually exclusive, e.g., about

69% and 45% of observed small-molecule ligand-binding sites

are found in geometric pockets or predicted by FINDSITEcomb,

respectively. Another interesting observation is that about 15%

of disease-associated mutations of observed ligand-binding

sites are also identified at the PPIs. This is investigated in detail

below.

Figure 1 shows a pie chart obtained by assigning a unique pri-

mary location to each mutation, using the following order: DNA/

RNA binding, ion binding, small-molecule ligand binding, PPI,

buried, EFICAz, FINDSITEcomb, pocket, and other exposed.

About 15% of disease-associated mutations are located at

known functional sites, i.e., they involve binding to other mole-

cules than proteins; 10% are at PPIs; and 20% of mutations

are within protein cores and are likely important for maintaining

stability. EFICAz and FINDSITEcomb in addition flagged 3% and

5% of mutations that are potentially important for the functions

of the corresponding protein. After these classifications, 17%

of mutations are found in pockets, which might engage in un-

known interactions with some biomolecules. Overall, this classi-

fication scheme could assign a primary functional or structural

role for 70% of disease-associated mutations. The remaining

30% of mutations involve exposed surface residues and are

located at either a flat surface or small pocket. They are poten-

tially candidate interaction sites for unknown protein-protein in-

teractions or interactions with biomolecules that do not require

large concave pockets.

How Useful Is Structural/Functional Information
for Predicting Disease Association?
In order to answer this question, we compared the frequency of

disease-associated mutations versus neutral mutations at

different locations derived from our structural and functional

analysis mentioned above. As shown in Figure 2A, in all loca-

tions except for unannotated, exposed regions, disease muta-

tions are more likely to appear than neutral mutations. In the

protein interior, the frequency of disease mutations is over

two times that of neutral mutations. This gives an odds ratio

(OR) of 2.66, which is the odds of disease versus neutral among

buried mutations over the odds of disease versus neutral

among all other mutations in our sets. The result is statistically

highly significant, with a p value 4.0 3 10�67 (Fisher’s exact

test, two-tailed). Likewise, ligand-binding sites are about 50%

more likely to be observed in the disease set than in the neutral

set, which gives a significant OR of 1.53 (p = 6.8 3 10�12). At an

OR of 1.75 (p = 4.4 3 10�21), the performance of FINDSITEcomb

in terms of OR is slightly better than that obtained by counting

observed ligand-binding sites in experimental structures. Within

a PPI, or pocket region, disease mutations are slightly, but

significantly, more frequent than neutral mutations, yielding

ORs of 1.23 (p = 1.3 3 10�3) and 1.09 (p = 0.04), respectively.

The latter is less significant, partly due to the fact that not all
362–1369, July 7, 2015 ª2015 Elsevier Ltd All rights reserved 1363



Figure 1. Pie Charts of Disease-Associated

Mutations According to Their Primary

Locations

On the left are the overall distributions; on the right

are the charts of positive hits by FINDSITE and

EFICAz, respectively.
residues identified in a predicted, geometric protein pocket are

important for protein function or stability; thus, there are more

noisy signals in this region. Surprisingly, EFICAz predictions

have the highest OR, of about 17 (p = 1.6 3 10�78). Many of

these predictions are at highly conserved active sites important

for enzymatic function, although they cover only about 7% of

disease mutations. On the other hand, among unannotated sur-

face residues, neutral mutations have a high percentage at

45%, compared with about 30% of disease mutations. This is
1364 Structure 23, 1362–1369, July 7, 2015 ª2015 Elsevier Ltd All rights reserved
expected, as surface residues without a

functional or structural role are less likely

to cause disease.

Since neutral mutations are from a

much more diverse set of proteins than

disease-associated mutations (1,743

versus 642 proteins), there is the concern

that the dataset might be biased. In order

to eliminate such a concern, we further

performed the same analysis on the sub-

set of mutations that appear in the same

set of proteins. Figure 2B shows results

that qualitatively are in agreement with

the analysis on the full set shown above.

Mutations Adjacent to PPIs Are
More Likely Associated with
Disease ThanMutations within PPIs
Overall, about 58%of disease-associated

mutations are found in at least one pro-

tein-protein complex structure versus

50% of neutral mutations that are found

in a protein-protein complex. We further

analyzed the distribution of mutations in
protein-protein complexes according to their distance from

observed PPIs (Figure 3A). As shown above, about 12.0% of

all diseasemutations and 10.1%of neutral mutations in our data-

sets are located at the PPIs, i.e., 0 Å from the interface. This gives

a small, but statistically significant, difference of 1.9%, corre-

sponding to an increase of about 20% in OR to 1.23 for the

disease-associated mutations. The remaining difference in cu-

mulative fraction comes mainly from the mutations close to but

not at the PPIs. Within 3 Å from PPIs, the cumulative difference
Figure 2. Disease-Associated Mutations

Versus Neutral Ones Assigned by Their
Location in the Structure of the Protein

Each bar represents the fraction of mutations in

either disease-associated or neutral datasets. The

numbers above pairs of bars are the ORs. Aster-

isks denote statistical significance according to

one-tailed Fisher’s exact test (*0.01 < P < 0.05;

**0.001 < P < 0.01; ***P < 0.001; no asterisk, P >

0.05).

(A) All mutations.

(B) Subset of mutations from the same set of pro-

teins that contain both disease-associated and

neutral mutations.

LBS, ligand-binding sites.



Figure 3. Distribution of Mutations in the Neighborhood of PPIs

(A) Cumulative fractions of disease-associated mutations versus neutral ones according to their distance from known PPIs.

(B) Subsets of mutations that are also observed at small-molecule ligand-binding sites (LBS).

(C) Distributions of ORs according to distance from PPIs. A bin width of 2 Å is employed. Asterisks represent statistical significance as in Figure 2.
rapidly increases to 6.8%; this percentage further increases to

8.3% within 6 Å from PPIs. Thus, it appears that disease muta-

tions are more likely to occur at and/or adjacent to PPIs than

neutral mutations. Moreover, the biggest difference is attributed

to regions immediately neighboring PPIs, i.e., at a distance from

0 Å to 6 Å, rather than at the PPIs themselves. This difference

leads to a significant increase of OR values to as high as 1.75

at 3 Å from PPIs (Figure 3C).

Since disease-causing mutations are more likely to be buried

thanneutralmutations, as shown inFigure 2, onenatural explana-

tion is that buriedmutations close to PPIs are more likely disease

associated than neutral. The difference in cumulative fraction of

buried mutations around PPIs between the disease and neutral

sets is about 0.1% at 0 Å, 3.5% within 3 Å, and 5.1% within 6 Å

from PPIs. Therefore, mutations of buried residues do make a

major contribution to the observed phenomenon. However, this

explains only about 61% of the observed difference.

A second main reason for this phenomenon is that adjacent to

PPIs, there are functionally relevant pockets involving ligand

recognition. It has been shown that protein-protein association

naturally creates geometric pockets (Gao and Skolnick, 2012).

Some of these pockets could be selected by evolution for ligand

binding. As a result, functionally relevant ligand-binding pockets

are enriched around PPIs. Mutations at these pockets likely lead

to harmful effects. Indeed, if we focus on the subset of mutations

that are also ligand binding within protein-protein complexes, we

find that disease-associated mutations are much more likely to

be found in the neighborhood of PPIs versus neutral mutations.

As shown in Figure 3B, the difference in the cumulative fraction

of mutations is 0.9% at 0 Å from PPIs, 2.0% within 3 Å from

PPIs, and 2.6% within 6 Å, which could explain about 31% of

the corresponding 8.3% difference in overall cumulative fraction

difference mentioned above. This also contributes to an overall

bump in the OR shown in Figure 3C. Notice that the risk of

being disease associated is about 30% higher in terms of OR

when a mutation is observed in a ligand-binding site within 3 Å

from a PPI.

Figure 4 shows two examples of disease-associated muta-

tions located at/near PPIs. Medium-chain acyl-coenzyme A
Structure 23, 1
(CoA) dehydrogenase (ACADM) is one of four enzymes involved

in fatty acid catabolism (Lee et al., 1996). The enzyme is respon-

sible for the a,b-dehydrogenation of fatty acyl-CoA derivatives.

The structure of this protein is a dimer of dimers. Figure 4A

shows the structure of the basic dimer unit, in which the co-fac-

tor FAD (flavin-adenine dinucleotide) is sitting at the dimeric

interface, whereas the fatty substrate is located close by. There

are five known mutations located in the binding sites of these

substrates within 5 Å. They are linked to ACADMD (ACADMme-

dium-chain deficiency), a disease that can cause sudden death

of infants (OMIM: 201450).

One important benefit of an interfacial pocket formed adja-

cent to PPIs is that it could function as a molecular switch

controlled by the association/dissociation of the protein com-

plex. This is illustrated in an example involving two proteins,

retinitis pigmentosa 2 (RP2) and the small G protein Arf-like 3

(Arl3), which form a complex providing a guanosine triphos-

phate binding pocket at the PPI (Figure 4B) (Veltel et al.,

2008). It is thought that this is a molecular switch for regulating

the ciliary process in photoreceptor cells. Mutations in RP2 that

disrupt ligand binding at the PPI, such as the arginine finger

R118, may cause X chromosome-linked eye disease (OMIM:

312600).

Post-Translational Modifications and Disease
Association
Post-translational modifications play essential roles in many bio-

logical processes. We examined how many disease-associated

mutations are located at such a site compared with neutral mu-

tations. From the UniProt knowledge base, we searched for

experimentally validated modification sites. We found only

27 cases in the disease mutation set and 11 cases in the neutral

set, which gives a p value of 0.1 (Fisher’s exact test, two-tailed).

The most common modifications are glycosylation: nine in the

disease mutations and four in the neutral mutations. If we drop

the requirement of having solved structures, we are able to

match 77 of 23,846 disease mutations and 68 of 37,687 neutral

mutations, which leads to a significant p value of 5.9 3 10�4.

As one would expect, mutations at post-translational
362–1369, July 7, 2015 ª2015 Elsevier Ltd All rights reserved 1365



Figure 4. Examples of Disease-Associated Mutations Observed in

the Neighborhood of PPIs

(A) Dimeric ACADM.

(B) Retinitis pigmentosa 2 and Arl3. In each snapshot, protein structures are

shown in light blue and purple cartoon representations, small molecules are

shown in orange and yellow van der Waals (VdW) representations, and refer-

ence amino acids at themutation sites are also shown in VdW representations,

where carbon, oxygen, and nitrogen atoms are colored in cyan, red, and blue,

respectively.
modification sites are significantly more likely to be associated

with disease. However, the cases that can be explained by

such mutations are very small, to the best of our knowledge.

Amino Acid Changes and Disease Association
Finally, we ask the question whether there are certain types of

amino acid changes that are more likely to be disease associ-

ated. Figure 5A shows the frequency of amino acid types from

the original reference amino acid at the mutation sites. Arginine

is the most common mutation in both disease and neutral sets,

due to the fact that four of the six arginine codons contain the

CpG dinucleotide, which is relatively vulnerable to mutations

(Cooper and Youssoufian, 1988). However, because the fre-

quencies of arginine mutations in these two sets are very close,

14.8% versus 14.3%, it is not a good indicator for predicting dis-

ease association. In terms of OR, mutation from Cys is highest at

4.86, followed by Trp at 3.58, and glycine at 2.04. On the other

hand, mutations involving certain hydrophobic residues, such

as valine and isoleucine, are significantly underrepresented in

disease mutations. One explanation is that valine and isoleucine

have similar physicochemical properties and are very close in the

codon space, with only a single nucleotide difference (GUA,

GUC, GUU of valine and AUA, AUC, AUU of isoleucine).

Figure 5B shows the frequencies of amino acids to different

mutated residues. Statistical analysis suggests that mutation

to Pro is most likely damaging, with an OR of 3.46, followed by

CYS at 1.87. It is interesting to note that the frequencies of dis-

ease-causing mutations show a much lower correlation to fre-

quencies of neutral mutations when one compares mutated-to

amino acids versus mutation-from amino acids. The corre-

sponding Pearson correlation coefficients are 0.35 versus 0.73.

This suggests that the mutation-from frequencies are largely

determined by similar reasons, for example, distribution of co-

dons and distances in the codon space (i.e., those with one

nucleotide difference are of high possibilities), whereas muta-

tion-to frequencies are largely determined by very different rea-

sons between the disease and neutral sets.

The 1000 Genomes Project has revealed a large set of variants

in about 1,000 healthy individuals (Abecasis et al., 2012). One

could argue that these variants are a good neutral background

for the purpose of our analysis. We repeated the same composi-
1366 Structure 23, 1362–1369, July 7, 2015 ª2015 Elsevier Ltd All rig
tion analysis using the data from the 1000 Genomes Project. As

shown in Figures 5C and 5D, we obtained very similar results to

those using the UniProt neutral set. Mutations from and to CYS

give an OR of 2.79 and 1.33, respectively; mutations from Trp

have anOR of 3.58; and theOR ofmutations to Pro is 3.21. These

are also mutations that are most likely associated with diseases

than neutral mutations.

We then sought structural explanation for the top three most

deleterious types of mutations involving Cys, Pro, and Trp amino

acids. First, we ask why mutations from and to a Cys residue are

harmful. Since it is known that Cys often form disulfide bonds, it

is hypothesized that a Cys mutation either disrupts useful disul-

fide bonds in the case of mutation from or introduces an

unwanted disulfide bond in case of mutation to. To test this hy-

pothesis, we examined if there are Cys disulfide bonds in the

structure of the corresponding protein. In the mutation-from

set, about 2/3 of Cys mutations are likely to form a disulfide

bond with another Cys residue nearby within 4.5 Å, whereas

only about 1/3 of Cys mutations in the neutral set have another

Cys nearby. This gives a highly significant p value of 3.2 3

10�6. Therefore, disease-associated Cys mutations are more

likely to disrupt an original disulfide bond important for protein

stability or function. On the other hand, in the mutation-to data-

sets, we found that after the mutation to Cys, there are 45 cases

in which there is another Cys nearby in the disease set, versus

only seven cases in the neutral set (p = 0.007). In these cases,

the Cys mutation may introduce an unwanted disulfide bond

that could lead to protein malfunction.

Second, why is a mutation to Pro likely to be harmful? Pro is a

unique amino acid that does not have an hydrogen for backbone

hydrogen bond formation. In addition, it has a more restricted

dihedral angle space than a typical amino acid. This restriction

often creates a kink in helical structures at the position of a

Pro. As a result, mutations to Pro often disrupt helical structures.

We performed an analysis of the secondary structure where a

mutation to Pro occurs, with the result shown in Table 2. The

most common Pro mutation in the disease set lies within a 310
helix, about 36%, in contrast to 23% cases in the neutral set

(p = 0.006). The second common secondary structural element

where a Pro mutation occurs is a turn: 26% in disease versus

18% in neutral (p = 0.1) sites, where a Pro mutation might disrupt

hydrogen bonding. By contrast, in the coil region, where there is

no ordered secondary structure, a Pro mutation is much less

likely present at 20%, in comparison with 32% in the neutral

set (p = 0.009). The result supports the conclusion that the

disruptive presence of a Pro mutation in the secondary structure

is often disease associated.

Lastly, we investigatedmutation from Trp that is often linked to

disease. Trp is the largest amino acid that plays an important role

in protein folding and stability. On average, a Trp residue makes

8.5 side-chain contacts versus 6.0 side-chain contacts of other

types of amino acids. Further calculation estimates that a Trp

mutation in the disease set leads to a mean increase of the

free energy of protein folding DDG of 3.4 kcal/mol (126 cases,

SD = 1.61 kcal/mol), versus 2.9 kcal/mol (27 cases, SD =

1.36 kcal/mol) of Trp mutations in the neutral set (p = 0.076,

t test, two-tailed). This analysis suggests that mutations from

Trp likely destabilize the structure of the protein and result in

less fitness. In the vast majority of cases analyzed, this
hts reserved



Figure 5. Composition Analysis of Disease-

Associated Mutations Versus Neutral Muta-

tions from the UniProt database and the

1000 Genomes Database

Amino acids are labeled by their one-letter names.

The color of each type of amino acid represents

ORs of disease mutations versus neutral ones. The

same color scale of OR shown as the insert in (A) is

adopted throughout all other panels. Statistical

significance of association is indicated by asterisks

in the same way as in Figure 2. CC, Pearson cor-

relation coefficient. The dashed line represents an

OR of 1. (A and B), from the UniProt database;

(C and D), from the 1000 Genomes Database
destabilization likely has a significant impact on the function of

protein, thus leading to various disease conditions.

DISCUSSION

Since the vast majority of disease-associated mutations are

assigned based on statistical analysis, it is not clear whether

a mutation is actually the cause of the implicated disease.

To provide a better understanding of mutations from a struc-

tural prospective, we performed a large-scale analysis of

6,025 disease-associated mutations in 642 proteins. We found

that about 20% of mutations are buried in protein cores and

that these mutations may destabilize protein structures,

whereas about 11% of mutations are involved in ligand bind-

ing, and another 10% are involved in protein-protein interac-

tions. About 17% are in pockets, 3% involve ion binding,

and 1% DNA/RNA binding. These numbers are consistent

with previous studies conducted on smaller datasets (Steward

et al., 2003; Sunyaev et al., 2000). Using computational

approaches, we further predicted that about another 8% of

mutations are likely ligand-binding or essential for enzyme

function. We found a structural/functional annotation for about

70% of mutations. As more experimental structures are deter-

mined for functional complexes of proteins, e.g., in complex

with other ligand or proteins for their function, we expect to

see more mutations explained by the functional roles of the

mutated residues.

In order to demonstrate the usefulness of the structural/

functional data, one needs to compare disease-associated

mutations with neutral mutations. This has been largely
Structure 23, 1362–1369, July 7, 2015
ignored or not thoroughly pursued in pre-

vious studies. Here, we show a statisti-

cally significant difference between dis-

ease-associated and neutral mutations.

As pointed out previously (Ng and Henik-

off, 2006), one of the most effective de-

scriptors is the degree of surface expo-

sure of the protein residue at the

mutation site. Buried residues in the dis-

ease set have the second highest OR, at

2.66, compared with neutral ones,

whereas exposed residues not involving

any interactions or pocket-like feature
are more likely to be neutral at an OR of 0.50. Functional sites,

such as ligand-binding sites and PPI residues, all have signif-

icant ORs at 1.53 and 1.23. However, they are not as effective

as one naively expects. One reason might be due to purifica-

tion selections, which removed many deleterious, fatal muta-

tions at these functional sites. It is also worth mentioning

that computational predictions achieved good performance.

Predictions by FINDSITEcomb and EFICAz yield OR values at

1.75 and 16.9, respectively, which is comparable with or better

than results obtained by counting known ligand-binding sites

from experimental structures. Most interestingly, it is the pre-

dicted loss of enzymatic function that is most strongly disease

associated. These are encouraging results, which demonstrate

the potential of computational, knowledge-based methods.

One novel observation is that mutations adjacent to PPIs are

more likely associated with disease than mutations at the PPIs

themselves. At 1.75, the OR is highest about 3 Å from PPIs,

which is about 40% higher than the OR at PPIs. There are two

contributing factors. One is that the mutations at buried sites

within each monomer but close to the PPIs are more likely to

be disease causing, presumably by destabilizing the protein

complex. The second is due to the presence of interfacial

pockets, which are ligand-binding pockets at or adjacent to

PPIs (Gao and Skolnick, 2012). Mutations within interfacial

pockets could disrupt functionally important ligand-protein inter-

actions. This is supported by subsequent analysis, which shows

that mutations within interfacial pockets have more than double

the OR of mutations at PPIs.

Although amino acid type change is one main factor for as-

sessing pathogenicity of human mutations in many automatic
ª2015 Elsevier Ltd All rights reserved 1367



Table 2. Analysis of Secondary Structure Location of Mutations

to Proline

Type Disease Neutral Pa

310 helix 195 (0.36) 29 (0.23) 0.003

a helix 21 (0.039) 7 (0.056) �
Turn 139 (0.26) 23 (0.18) 0.049

b sheet 38 (0.071) 11 (0.088) �
Bend 35 (0.065) 15 (0.12) �
Coil 110 (0.20) 40 (0.32) 0.005

Total 538 125
aInsignificant P value is indicated by �.

Table 3. Contingency Table for the Statistical Test

Disease Neutral Odds

Positive dpos npos dpos/npos

Negative dneg nneg dneg/nneg

Total 6,025 4,325 �
annotation tools (Adzhubei et al., 2010; Kumar et al., 2009), in-

depth analysis of why it works is somewhat lacking, although

there have been studies about the frequencies of disease-

associated mutations (de Beer et al., 2013; Vitkup et al.,

2003). Obviously, if the mutation involves very different amino

acid types, e.g., from hydrophobic to charged residues, it is

more likely to cause an issue than mutations among hydropho-

bic residues. Ideally, one would like to study all 380 pairs of

non-synonymous mutations. However, the number of known

disease-causing mutations is currently too limited for such a

study. We opt instead to focus on each type of amino acid,

grouped by mutations from and mutation to a given amino

acid type. We found that certain types of mutations, such as

mutations involving Cys, Trp, or Pro, are more likely to be dis-

ease associated. Through structural analysis, Cys mutations

often involve breaking disulfide bridges or forming unwanted

disulfide bonds; Trp mutations usually significantly destabilize

structures, and mutations to Pro tend to disrupt helical struc-

tures. These analyses provide some examples of how structural

analysis could provide further insights into the mechanisms of

disease.

EXPERIMENTAL PROCEDURES

Dataset

From the August, 2013 release of the UniProt knowledge base (Wu et al.,

2006), we collected 23,846 disease-associated variants and 37,782 polymor-

phisms in human; we assume that the latter are neutral mutations. The classi-

fication was manually assigned according to the literature and a previously

curated database such as OMIM (McKusick, 2007). These variants are all

missense mutations with changes of amino acid type. Unclassified variants

were ignored. From this collection, we further selected those with at least

one experimentally determined structure deposited in the PDB (Berman

et al., 2000). We verified that the protein structure contains the same amino

acid at the position indicated in the UniProt mutation data. To avoid possible

bias, if the gene contains more than 50 variants, we randomly selected no

more than 50 variants in each gene. If multiple variants are found correspond-

ing to the same residue position in a gene, we also randomly selected only one

variant. This procedure yielded 6,025 disease-associated mutations in 642

proteins and 4,536 neutral mutations in 1,743 proteins. These two sets are

the main dataset used in our study. They share 355 common proteins, with

4,209 disease mutations and 1,113 neutral mutations.

Data of the 1000 Genomes Project variants are from de Beer et al. (2013). It

should be noted that the counts of mutations fromOMIM aremislabeled in that

study. The counts of mutations from were mistaken as mutation to, and vice

versa. The mistake in de Beer et al. (2013) gives incorrect amino acid mutation

frequencies, which are inconsistent with a previous study (Vitkup et al., 2003),

whereas our results are in agreement with Vitkup et al. (2003).
1368 Structure 23, 1362–1369, July 7, 2015 ª2015 Elsevier Ltd All rig
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Using the experimental structures, we mapped the location of each mutation.

For each PDB record, we analyzed the structure given by the basic asymmetric

unit, as well as author assigned biounit if it contains protein-protein com-

plexes. The HET code in each PDB header was used to determine the types

of ligand, i.e., metal ion, small-molecule ligand, or DNA/RNA. Note that this

analysis does not guarantee that a ligand has biologically relevant interaction

with its co-crystallized protein. Nevertheless, in many cases, biologically rele-

vant molecules recognize the same binding sites on proteins as other non-bio-

logical molecules. Atomic contacts between protein and ligand were

determined by the program LPC (Sobolev et al., 1999). If the original amino

acid at the mutation site contains at least one heavy atom making physical

contact with a ligand, it is assigned as ligand binding. Similarly, PPI residues

are defined by a heavy-atom distance of 4.5 Å. The distance between a variant

residue and PPI is defined as the shortest heavy-atom distance between the

residue and any PPI residue. If a protein has multiple complex structures,

we chose the minimal distance among all these complexes. Solvent acces-

sible surface area (SASA) was calculated for each original residue of the muta-

tions using the program NACCESS (Hubbard and Thornton, 1993). If a residue

has less than a 1% relative SASA percentage, it is defined as a buried residue.

Otherwise, the residue is an exposed surface residue. Again, if the residue is

observed in multiple structures, we employed the lowest relative SASA value.

We also ran FINDSITEcomb (Zhou and Skolnick, 2013) to annotate computa-

tionally ligand-binding sites and EFICAz (Kumar and Skolnick, 2012) to predict

FDRs for predicted enzymes. Calculations of the free energy differences,DDG,

of Trp mutations were conducted using the program DMutant, which is based

on statistical potentials (Zhou and Zhou, 2002) and ranked among the top per-

formers in an independent assessment (Khan and Vihinen, 2010). Secondary

structure analysis was carried out using DSSP (Kabsch and Sander, 1983).

Statistical Analysis

With a few noted exceptions, a Fisher’s exact test was conducted on the con-

tingency table given in Table 3. A positive case is a variant containing a certain

feature, such as ligand binding, or a mutation from a Cys residue. A negative

case is a variant without such a feature. Outcomes are either disease associ-

ated or neutral. The counts of positive/negative cases with disease are de-

noted as dpos/dneg, respectively, and similarly, npos/nneg, for positive/negative

cases for neutral ones. Odds are calculated for positive and negative cases

separately, and their ratio yields the OR.

Availability

The datasets are available as Supplemental Information and also online at

http://cssb.biology.gatech.edu/nssnp.
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