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SUMMARY

Standard methods for de novo protein structure
determination by nuclear magnetic resonance
(NMR) require time-consuming data collection and
interpretation efforts. Here we present a qualitatively
distinct and novel approach, called Comparative,
Objective Measurement of Protein Architectures by
Scoring Shifts (COMPASS), which identifies the
best structures from a set of structural models by nu-
merical comparison with a single, unassigned 2D
13C-13C NMR spectrum containing backbone and
side-chain aliphatic signals. COMPASS does not
require resonance assignments. It is particularly
well suited for interpretation of magic-angle spinning
solid-state NMR spectra, but also applicable to solu-
tion NMR spectra. We demonstrate COMPASS with
experimental data from four proteins—GB1, ubiqui-
tin, DsbA, and the extracellular domain of human tis-
sue factor—and with reconstructed spectra from 11
additional proteins. For all these proteins, with mo-
lecular mass up to 25 kDa, COMPASS distinguished
the correct fold, most often within 1.5 Å root-mean-
square deviation of the reference structure.

INTRODUCTION

Nuclear magnetic resonance (NMR) is a powerful technique for

studying protein structure and dynamics in near-native condi-

tions. Substantial progress has been made in the solution of

high-resolution protein structures by solid-state NMR (SSNMR)

in the last decade. Structures previously inaccessible by solu-

tion NMR and X-ray crystallography, such as fibrils of the

HET-s protein and amyloid-b, have been solved at atomic

detail, offering insight into important biomedical problems

(Wasmer et al., 2008; Lu et al., 2013). SSNMR approaches to
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solving structures of membrane proteins also have several

notable successes (Shahid et al., 2012; Wang et al., 2013a;

Park et al., 2012).

However, NMR methods, and SSNMR in particular, still

require extensive sample preparation, data collection, and inter-

pretation efforts. Typically, tens of milligrams of 13C,15N-labeled

protein and several weeks of instrument time are required to

collect the half a dozen or more 3D datasets necessary for the

resonance assignments. Additional samples with sparse 13C

labeling and weeks of instrument time are needed to obtain a

sufficient number of inter-residue distances to determine the

fold uniquely (Comellas and Rienstra, 2013). Methods are in

development to shorten the lengthy process of data collection,

including non-uniform sampling (Paramasivam et al., 2012; Hy-

berts et al., 2010; Sun et al., 2012), proton detection with fast

magic-angle spinning (MAS) (Knight et al., 2011; Zhou et al.,

2012; Barbet-Massin et al., 2014), and combinations of these

two approaches (Linser et al., 2014). Dynamic nuclear polariza-

tion is also a very promising method for accelerating data collec-

tion times, yet is usually not compatible with conditions that yield

high-resolution spectra (Maly et al., 2008; Wang et al., 2013b;

Renault et al., 2012).

In addition to challenges associated with data collection, the

assignment and interpretation of spectra to yield a structure

remain major bottlenecks and can take months of manual data

analysis. Although methods are now available to automate the

assignment process (Moseley et al., 2010; Güntert 2009; Guerry

and Herrmann, 2011; Schmidt et al., 2013), these approaches

still require complete sets of 3D data and extensivemanual inter-

vention. Once resonance assignments are available, methods

such as CS-ROSETTA (Shen et al., 2008) andCHESHIRE (Cavalli

et al., 2007; Robustelli et al., 2010) are available to leverage the

chemical shift data for structure determination. These ap-

proaches have been highly successful; yet still require complete

sets of site-specific resonance assignments. Therefore, there re-

mains a compelling need for alternative methods that are faster

and more cost-effective, requiring less sample, instrument time,

and analysis. Combining NMRwith advances in protein structure

prediction (both homology modeling and ab initio methods)
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Figure 1. Prediction of 13C-13C Correlation Spectra from Protein Models with SHIFTX

The predicted chemical shifts are paired using a Python function that enumerates all directly bonded carbon pairs in the structure, and the corresponding

chemical shifts are stored in a list without any assignment information. COSY, correlation spectroscopy.
offers a potential increase in efficiency (Simons et al., 1997; Es-

war et al., 2002; Moult et al., 2014). This approach requires vali-

dation by comparing predicted NMR observables from the

models with empirical or experimental data. In all prior methods,

this has been done using sequence-specific resonance

assignments.

Here we present a method, called Comparative, Objective

Measurement of Protein Architectures by Scoring Shifts (COM-

PASS), which aims to extract structural information from NMR

spectra by fully leveraging a limited amount of experimental

data—one 2D 13C-13C spectrum—to accurately distinguish

the correct protein fold from a set of proposed models. This

avoids the lengthy structure determination process and re-

quires no manual analysis of spectra. COMPASS solely em-

ploys the numerical comparison of predicted spectra from

structural models, produced by various methods (e.g., homol-

ogy modeling, molecular dynamics, ab initio quantum chemis-

try), with a single, unassigned 2D 13C-13C NMR spectrum,

utilizing the dependence of chemical shifts upon protein

conformation.

COMPASS leverages the accuracy of 13C chemical shift pre-

diction methods, and in this study we utilize SHIFTX2 (Han

et al., 2011). For each protein, we collect a 13C-13C homonuclear

correlation spectrum under conditions of scalar or dipolar mixing

that yield exclusively one-bond correlations throughout the

entire aliphatic region (Chen et al., 2006; Hohwy et al., 1999).

Cross-peaks in this spectrum are enumerated and filtered ac-

cording to a simple heuristic to generate a list of unassigned

peaks. Meanwhile, a series of models are generated from the

amino acid sequence using either homology or ab initio
Structure 23, 1958–
methods, and the 13C chemical shifts are predicted for each

model by SHIFTX2. Due to the simplicity and predictability of sin-

gle-bond homonuclear correlation spectra, the hypothetical

cross-peaks that would result from eachmodel can be predicted

(Figure 1). Then, using a scoring method based on the modified

Hausdorff distance (Dubuisson and Jain, 1994) (see Figure 10),

the models can be ranked according to their consistency with

the experimental peak list. In the large majority of cases, the

best model identified is consistent with the experimentally

solved structure (see Figure 9).

RESULTS AND DISCUSSION

We selected 16 proteins, ranging in molecular mass from 6.6 to

33.6 kDa, to test COMPASS. For all selected proteins, high-qual-

ity structures of the monomeric form in the absence of any per-

turbing ligands are available in the PDB (Bernstein et al., 1977).

2D one-bond 13C-13C correlation spectra under solid-state con-

ditions (MAS) were collected for four of these proteins: GB1,

ubiquitin, DsbA, and the extracellular domain of human tissue

factor (TF). For GB1, ubiquitin, and DsbA, constant-time, uni-

form-sign cross-peak correlation spectroscopy (CTUC-COSY)

spectra were collected. For TF, we collected an SPC5 spectrum

with a short mixing time to observe only one-bond transfers

(Hohwy et al., 1999). Other pulse sequences that generate

one-bond correlations could also be employed.

Automated Peak Filtering
Peaks were picked using the automated peak picking function of

the Sparky NMR data analysis program (Goddard and Kneller,
1966, October 6, 2015 ª2015 Elsevier Ltd All rights reserved 1959



Figure 2. Peak Filtering Procedure

(A) Peaks automatically picked in the Sparky analysis program with a noise

floor set at twice the root-mean-square (RMS) noise level.

(B) The same peaks after being filtered to exclude points near the diagonal and

peaks without corresponding peaks opposite the diagonal.

(C) Peaks automatically picked with a noise floor set at six times the RMS noise

level.

(D) The same data as (C), but filtered as in (B).

See also Figure S1.
2004). A range of noise floors was tested and an optimal mini-

mum signal-to-noise ratio of 6 was chosen on the basis of testing

shown in Figure S1. Peaks were then filtered to retain only those

in the aliphatic region (0–80 ppm), at least 0.5 ppm away from the

diagonal. The lists were then further filtered to retain only those

peaks that were observed on both sides of the diagonal within

a cutoff of 0.3 ppm (Figures 2B and 2D). This automated peak

picking and filtering heuristic contributes significantly to the

noise tolerance of COMPASS, as observed by the exclusion of

the majority of the noise peaks even in a spectrum picked with

a noise floor of twice the root-mean-square (RMS) noise

(Figure 2B).

Evaluation of COMPASS Score
Next, we investigated the relationship between the scores of a

group of models and their Ca RMS deviations (RMSDs)

measured against the reference structure deposited in the

PDB to test the behavior of the COMPASS score on models

of differing accuracy. Figure 3 shows plots of the COMPASS

score versus Ca RMSD for the four proteins with peak lists

obtained directly from 2D spectra. For all four examples,

models with lowest scores have low RMSDs. The obverse,

however, is not always true. As can be seen, especially for

GB1 (Figure 3A), many models with RMSD below 2 Å have

scores greater than or equal to those models with RMSD

>10 Å. This phenomenon occurs because the scores depend
1960 Structure 23, 1958–1966, October 6, 2015 ª2015 Elsevier Ltd A
not only on the Ca-Cb correlations, which report most

strongly on secondary structure, but also on cross-peaks

involving side-chain carbons, which report more strongly on

the local environment (Han et al., 2011). Therefore, models

with the correct side-chain conformations will agree best

with the NMR data (i.e., exhibit the lowest scores). This

behavior gives the COMPASS score a conservative character

in that it rejects some models that have good coarse-grain

structure but incorrect side-chain packing, while uniformly re-

jecting models with incorrect folds. Consistent with the

score’s sensitivity to side-chain conformation, there is a

decreased correlation between the score and RMSD at higher

RMSD values, since models with extremely different back-

bone structure but energetically optimized side chains are

very unlikely to have conformations that would produce similar

side-chain 13C chemical shifts.

Overlays of the reference structure (red) with the model with

the lowest score (blue) for each protein are shown in Figures

3E–3H. For all tested proteins, the bundle RMSD acts as a

good surrogate for the actual RMSD from the true structure.

When the bundle of five lowest-score structures had an accept-

ably small average pairwise RMSD, the consensus structure also

had a low RMSD with respect to the reference structure

(Figure 4).

We chose an additional 11 proteins with known structure and

complete 13C chemical shift assignments from the Biological

Magnetic Resonance DataBank (BMRB) to test the performance

of COMPASS on a wider range of structures (Ulrich et al., 2008).

In lieu of raw spectra, we reconstructed peak lists from the

known assignments using the same algorithm applied to predict-

ing model peak lists. Although the sequence-specific assign-

ments were available for these cases, the assignment informa-

tion was not carried forward in the calculation.

The COMPASS score performed similarly well for most pro-

teins in the synthetic dataset (Figures 5, 6, and 7). However,

for the protein StR65, none of the models predicted by

MODELLER had an RMSD below 10 Å. For this dataset, the

COMPASS score exhibits the desirable quality that the five

structures that agree most closely with the experimental data

have an average pairwise RMSD of over 22.4 Å, providing an

unambiguous indication that a consensus structure does not

exist in the model set (Figures 7D–7F). As expected, if the set

of models supplied to COMPASS does not contain any models

that are consistent with the experimental data, a consensus

structure cannot be identified.

In one case, a model with a low score but a high RMSD was

observed. In this calculation on coactosin-like protein, a single

model was generated with a Ca RMSD of 13 Å but had a

COMPASS score comparable with much better models (Fig-

ure 7A). Upon manual inspection of the outlying model, it is clear

that themajority of the secondary and tertiary structure elements

are correct, but the model corresponds to a protein with two do-

mains dissociated from each other, tethered by an unstructured

loop. While this outlier did not perform as expected, its score is

still well above that of the consensus, which agrees with the

reference structure to within an RMSD of 0.72 Å. Manual inspec-

tion or the application of structure validation programs would

easily identify this model as incorrect, enabling its removal

from the structure pool.
ll rights reserved



Figure 3. COMPASS Results for Four Pro-

teins with Unassigned NMR Data

(A–D) COMPASS Score versus Ca RMSD from the

reference structure for (A) GB1 (PDB: 2LGI),

(B) ubiquitin (PDB: 1UBQ), (C) DsbA (PDB: 1FVK),

and (D) TF (PDB: 1BOY). The structure with the

lowest COMPASS score is shown in blue and

indicated with an arrow.

(E–H) The structure with the lowest COMPASS

score (blue) overlaid with the reference structure

(red). The Ca RMS deviation (RMSD) is noted.

(I–L) The five lowest scoring structures aligned

and overlaid. The average pairwise Ca RMSD is

noted.
Application of COMPASS to Solution NMR Data
Although the COMPASS framework was developed to address

the problems of spectral overlap and low sensitivity in NMR ex-

periments, it does not rely on any special feature of SSNMR

experiments. The performance of COMPASS on solution

NMR data was tested by collecting 1H-15N HSQC (heteronu-

clear single-quantum coherence) and 13C-13C-1H TOCSY (total

correlation spectroscopy) spectra for a uniformly 13C,15N-

labeled ubiquitin solution. The 3D TOCSY spectrum was pro-

jected through the 1H dimension to generate a 13C-13C 2D

spectrum.

The results for the HSQC comparison (Figure 8A) do not

show a strong relationship between the COMPASS score and

the RMSD. We attribute this result to the relative inaccuracy

of chemical shift predictions for 15N and 1H amide resonances,

due to the stronger dependence on hydrogen bonding and

electrostatics, as well as backbone conformation and nearest
Structure 23, 1958–1966, October 6, 2015
neighbor residue type. For example, in

contrast to the 13Ca predictions which

have an RMSD of 0.38 ppm (relative to

known chemical shifts for a set of test

proteins) (Han et al., 2011), amide 15N

predictions have an RMSD of 1.23

ppm, representing a 3-fold larger error

over a similar range of chemical shifts

(�30 ppm overall, or �6–10 ppm for a

given residue type). Moreover, the amide
1H shifts have an RMSD of 0.24 ppm

over a range of �3 ppm. Thus the rela-

tive error in predicting a 1H-15N correla-

tion spectrum is significantly higher

than for 13C-13C spectra, leading in the

case of 1H-15N to an inability to conclu-

sively identify the best structure among

a set, even for the relatively simple

case of ubiquitin.

In contrast, the COMPASS scores for

the projected 13C-13C-1H TOCSY spec-

trum demonstrate a clear correlation

and sharp convergence at a low RMSD

value (Figure 8B), similar to the results

observed for the solid-state NMR
13C-13C spectra, confirming that the
strength of this method comes from its use of 13C chemical

shifts.

Conclusions
We present a new method for objective direct comparison of a

modeled protein structure with experimental NMR data.

COMPASS greatly reduces the time and effort required to vali-

date a structure with experimental data by circumventing the

lengthy process of chemical shift assignment and the collection

of large datasets to obtain distance and orientation information

required for de novo structure determination. The method is

robust with respect to data collection and peak picking proto-

cols, and has good tolerance for noise and artifacts. Here we

have demonstrated successful calculations for 15 proteins,

four with experimental SSNMR data, one with experimental so-

lution NMR data, and ten with reconstructed spectra from the

BioMagResBank chemical shift database.
ª2015 Elsevier Ltd All rights reserved 1961



Figure 4. Ordered Bundle RMSD

Models are scored and ordered by the COMPASS scores. The bundle RMSD is

the average RMSD of the four models with COMPASS scores closest to its

own.

(A) COMPASS score versus bundle RMSD showing the ‘‘funneling’’ toward the

origin, indicating a dataset containing a correct consensus structure.

(B) The bundle RMSD is highly correlated with the Ca RMSD to the correct

structure, which enables its use as a surrogate when the true structure is un-

known.
The COMPASS algorithm exploits the fact that the 13C chem-

ical shift is an exquisitely sensitive reporter on conformation,

including not only backbone conformation as evidenced in
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the secondary chemical shifts (Spera and Bax, 1991), but

also the conformation of side chains and packing in the protein

core, which give rise to ring current and van der Waals packing

effects. COMPASS leverages developments in chemical shift

prediction methodology that take these effects into account.

Strategies based on empirical models, homology methods,

quantum mechanical calculations, and machine learning have

progressively improved the accuracy, Here we used SHIFTX2

(Han et al., 2011), which uses a hybrid approach combining a

sequence homology module with an ensemble machine-

learning method to attain good accuracy for both backbone

and side-chain atoms. SHIFTX2 attains prediction accuracy of

better than 0.6 ppm for a, b, and carbonyl carbons and better

than 1.0 ppm accuracy for most side-chain carbons. This level

of prediction accuracy enables us to use the inherent sensitivity

of 13C chemical shifts to discern structural information from

NMR data at a much earlier stage of analysis, and to quantita-

tively judge consistency of raw spectra with structural models.

The rapid discrimination of valid protein folds by COMPASS

may enable rational prioritization of subsequent data collection

for structure refinement and acceleration of data analysis. For

example, the experimentally consistent folds identified by

COMPASS may be used to perform assignments of ambiguous

correlations in spectra with long mixing times, reporting on

long-range correlations.

As NMR is applied to systems of increasing complexity,

manual data analysis becomes unfeasible. We envision potential

future improvements including the application of COMPASS to

3D spectra, the use of the COMPASS score directly in model

refinement and structure determination, as well as continued im-

provements in the accuracy of chemical shift prediction. In the

current implementation only 13C chemical shifts are used but,

to accommodate the inclusion of higher dimensionality data,

weighted aggregate scoring functions could be devised to ac-

count for differing chemical shift prediction accuracy of different

nuclei.

While the combination of MODELLER and SHIFTX works

well for the primarily monomeric, globular proteins presented

here, the COMPASS algorithm could straightforwardly be
Figure 5. Additional COMPASS Results for

Synthetic Peak Lists Constructed from

BMRB-Deposited Chemical Shifts

(A–C) COMPASS score versus Ca RMSD from the

reference structure for (A) Ufm1-conjugating

enzyme 1 (PDB: 2Z6O), (B) macrophage metal-

loelastase (PDB: 2KRJ), (C) a-parvalbumin (PDB:

1RWY). The structure with the lowest COMPASS

score is shown in blue and indicated with an arrow.

(D–F) The structure with the lowest COMPASS

score (blue) overlaid with the reference structure

(red). The Ca RMSD is noted.

(G–I) The overlay of five structures from each

calculation with the lowest COMPASS scores. The

average pairwise Ca RMSD is noted.

ll rights reserved



Figure 6. Additional COMPASS Results for

Synthetic Peak Lists Constructed from

BMRB-Deposited Chemical Shifts

(A–C) COMPASS score versus Ca RMSD from the

reference structure for (A) Basic fibroblast growth

factor (PDB: 1BFG), (B) sterol carrier protein 2

(PDB: 1C44), and (C) integrin a-L (PDB: 1XUO). The

structure with the lowest COMPASS score is

shown in blue and indicated with an arrow.

(D–F) The structure with the lowest COMPASS

score (blue) overlaid with the reference structure

(red). The Ca RMSD is noted.

(G–I) The overlay of five structures from each

calculation with the lowest COMPASS scores. The

average pairwise Ca RMSD is noted.

See also Figures S2 and S3.
extended to more specialized areas by using integrative struc-

ture prediction approaches for multimeric assemblies (Sali

et al., 2015) and utilizing molecular dynamics averaged chem-

ical shift predictions for dynamic loops (Robustelli et al., 2012).

In addition, our assignment-free approach can be used to

replace many chemical shift similarity-based potentials for

structure refinement, and possibly in methods utilizing chemi-

cal shifts to develop models of structural ensembles (Kannan

et al., 2014).

The continual progression in the quality of model prediction

methods and chemical shift prediction algorithms will benefit

COMPASS because of its modular approach. By leveraging

these increasingly accurate predictions combined with the sim-

ple automated analysis of COMPASS, previously inaccessible
Structure 23, 1958–1966, October 6, 2015
systems will become feasible. These ad-

vances may be particularly significant to

address categories of proteins, such as
membrane proteins and fibrils, which have historically been

very challenging.

EXPERIMENTAL PROCEDURES

The COMPASS framework can be applied to any combination of model-gen-

eration method and chemical shift prediction algorithm. In this study, models

were prepared using the MODELLER protein structure-modeling program, us-

ing a standard protocol (Eswar et al., 2002), and subsequently relaxed using

the ab initio relaxation function in the Rosetta software package to ensure

low-energy side-chain conformations (Simons et al., 1997). SHIFTX2 was

used to predict chemical shifts due to its speed and its applicability to both

backbone and side-chain carbons.

To simulate the 2D spectra, a Python program enumerates all adjacent 13C

pairs, assembles the corresponding predicted chemical shifts into pairs, and

records them in a list (Figure 9). The simulated peak list for each model is
Figure 7. Behavior of theCOMPASSScoring

Method when Applied to Incorrect Models

(A–C) Coactosin-like protein (A) COMPASS score

versus Ca RMSD from PDB: 1T3Y. Point with

anomalously low score is blue and noted with an

arrow. (B) Structure from PDB: 1T3Y. (C) Structure

of outlier model showing split structure.

(D–F) NorthEast Structural Genomics consortium

target STR65 (D) COMPASS score versus Ca

RMSD from PDB: 2ES9. Points with five lowest

COMPASS scores are denoted by large blue dots.

(E) Structure from 2ES9. (F) Aligned overlay of five

lowest COMPASS score structures. Ca RMSD is

noted.

ª2015 Elsevier Ltd All rights reserved 1963



Figure 8. COMPASS Applied to Solution NMR Data of Ubiquitin

(A) SOFAST 1H-15N HSQC of ubiquitin.

(B) F3-projection of 13C-13C-1H TOCSY of ubiquitin.

(C) COMPASS score versus Ca RMSD for ubiquitin using peaks from HSQC.

Difficulty in predicting amide proton and nitrogen shifts makes it unsuited for

use with the COMPASS algorithm.

(D) COMPASS score versus Ca RMSD for ubiquitin using peaks from TOCSY

spectrum projection. Just as in SSNMR data, the COMPASS score based on
13C-13C correlations has a strong relationship with Ca RMSD, allowing its use

in the determination of experimentally consistent data.
then compared with the experimental peak list using the COMPASS score,

which is based on the modified Hausdorff distance. Hausdorff distances are

a popular family of metrics in computational image analysis, and have found
Figure 9. Flow Chart of the COMPASS Algorithm

(A) The algorithm takes as input a 13C-13C correlation spectrum. A selected regio

(B) The peaks are enumerated and stored as a list of unassigned chemical shift p

(C) A collection of test models is produced. The model shown was generated byM

PDB: 1UBQ.

(D) The chemical shifts for each model are predicted by SHIFTX2, and a list of p

(E) The experimental and model peak lists are compared using the COMPASS s

(F) In this example the COMPASS score from the experimental peak list to the m

models are then ranked in the order of their computed COMPASS score.
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applications both in structure comparison and NOESY (nuclear Overhauser ef-

fect spectroscopy) peak matching (Zeng et al., 2008; Kozin and Svergun,

2001).

The COMPASS score is defined by Equations 1 and 2.

dða;BÞ= min
b˛B

ka� bk; (Equation 1)

dCOMPASSðA;BÞ= 1

NA

X

a˛A

dða;BÞ: (Equation 2)

Equation 1 defines the distance between a point a and a point set B as the

distance from point a to the closest point in set B. The COMPASS score is then

defined in Equation 2 as the average of these minimum distances for every

point in set A. This definition makes the COMPASS score directional, meaning

that switching sets A and B gives different results. While this diverges from

typical Hausdorff distances, it emphasizes the importance of the points in

set A (chosen as the experimental peak set) over the points in set B (the pre-

dicted peaks). This way, every experimental peak is used in the calculation

of the score but if the peak sets are very different, many of the predicted peaks

(set B) may be ignored; for example, some regions of a protein may yield lower

signal intensities experimentally.

The COMPASS score for each model is computed by matching each exper-

imental peak with the nearest predicted peak in the model peak list, and calcu-

lating the average minimum distance for these pairings (Figure 10). The

COMPASS score is therefore smaller for models that predict peak patterns

similar to the experimental spectrum. In the limit of identical peak patterns, it

would be identically zero. By weighting each experimental peak equally, the

COMPASS score naturally addresses overlap and missing peaks in experi-

mental spectra. If a peak is missing from the experimental spectrum, nearby

peaks in the predicted spectrum are not matched and thus do not contribute

to the overall score. Similarly, noise signals are deemphasized by the aver-

aging procedure. Significant outliers that have no near matches in any model

peak list contribute a similar magnitude to the scores of all models, manifesting

as a nearly constant offset of all resulting scores.

Sample Preparation

The expression, purification, and crystallization of isotopically labeled recom-

binant ubiquitin was previously reported (Igumenova et al., 2004). The b1-

immunoglobulin binding domain of protein G (GB1) was expressed and

purified as previously reported (Franks et al., 2005). DsbA was expressed

and purified according to the method of Sperling et al. (2010). Soluble TF
n for a spectrum of ubiquitin is shown.

airs.

ODELLER and has a Ca RMSD of 8.5 Å with respect to the reference structure,

eaks that would occur in a 13C-13C correlation spectrum is generated.

core. Blue lines indicate the minimum distances described in the text.

odel is 0.902 ppm (point indicated with blue arrow), a relatively high value. The
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Figure 10. COMPASS Score Calculation

The COMPASS score is calculated by matching every experimental peak

(black x) to the closest test peak (red circle) and calculating the average of the

distances between them (gray line). A selected region from a comparison

between a ubiquitin COSY spectrum and a poorly matching model is shown.
was expressed and purified as described by Boettcher et al. (2010) and crys-

tallized by precipitation in 1.6 M ammonium sulfate with 200 mM NaCl and

100 mM HEPES buffer (pH 7.5) at 4�C as previously reported (Boys et al.,

1993). Samples were packed into 3.2-mm thin-walled NMR rotors.

NMR Spectroscopy

The 13C-13C 2D CTUC-COSY spectrum of GB1 has been previously reported

(Franks et al., 2005). The CTUC-COSY spectrum of ubiquitin was collected on

a 750-MHz Varian VNMRS spectrometer (1H frequency) with an HCN Balun

MAS probe. The MAS rate was 16.666 kHz and the variable air temperature

was set to �10�C. SPINAL decoupling (85 kHz) was employed during acquisi-

tion. The refocusing delay was 4.2 ms. The spectrum was processed with

20-Hz net line broadening in each dimension.

The CTUC-COSY spectrum of DsbA was collected on a 500-MHz Infinity

Plus spectrometer (1H frequency) spinning at 22.222 kHz at variable air tem-

perature set point of �10�C. 85 kHz of 1H SPINAL decoupling was employed

during acquisition. 30-Hz net line broadening was applied in each dimension.

The 13C-13C 2D SPC5 spectrum of TF was collected on a 750-MHz Varian

VNMRS spectrometer (1H frequency) with an HCN BioMAS probe. The MAS

rate was 12.500 kHz and the variable air temperature was set to 10�C. The
SPINAL 1H decoupling was employed at 80 kHz during the acquisition. The

spectrum was processed with 20-Hz net line broadening in each dimension.
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Buchner, L., Böckmann, A., Meier, B.H., and Güntert, P. (2013). Automated

solid-state NMR resonance assignment of protein microcrystals and amyloids.

J. Biomol. NMR 56, 243–254.

Shahid, S.A., Bardiaux, B., Franks, W.T., Krabben, L., Habeck, M., van

Rossum, B.J., and Linke, D. (2012). Membrane-protein structure determina-

tion by solid-state NMR spectroscopy of microcrystals. Nat. Methods 9,

1212–1217.

Shen, Y., Lange, O., Delaglio, F., Rossi, P., Aramini, J.M., Liu, G., Eletsky, A.,

Wu, Y., Singarapu, K., Lemak, A., et al. (2008). Consistent blind protein struc-

ture generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA 105,

4685–4690.

Simons, K.T., Kooperberg, C., Huang, E., and Baker, D. (1997). Assembly of

protein tertiary structures from fragments with similar local sequences using

simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268,

209–225.

Spera, S., and Bax, A. (1991). Measurement of NH-CaH coupling constants in

staphylococcal nuclease by two-dimensional NMR and comparison with X-ray

crystallographic results. J. Am. Chem. Soc. 113, 5490–5492.

Sperling, L.J., Berthold, D.A., Sasser, T.L., Jeisy-Scott, V., and Rienstra, C.M.

(2010). Assignment strategies for large proteins by magic-angle spinning

NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. J. Mol. Biol. 399,

268–282.

Sun, S., Yan, S., Guo, C., Li, M., Hoch, J.C., Williams, J.C., and Polenova, T.

(2012). A timesaving strategy for MAS NMR spectroscopy by combining

non-uniform sampling and paramagnetic relaxation assisted condensed

data collection. J. Phys. Chem. B 116, 13585–13596.

Ulrich, E.L., Akutsu, H., Doreleijers, J.F., Harano, Y., Ioannidis, Y.E., Lin, J.,

Livny, M., Mading, S., Maziuk, D., Miller, Z., et al. (2008). BioMagResBank.

Nucleic Acids Res. 36, 402–408.

Wang, S., Munro, R.A., Shi, L., Kawamura, I., Okitsu, T., Wada, A., Kim, S.-Y.,

Jung, K.-H., Brown, L.S., and Ladizhansky, V. (2013a). Solid-state NMR spec-

troscopy structure determination of a lipid-embedded heptahelical membrane

protein. Nat. Methods 10, 1007–1012.

Wang, T., Park, Y.B., Caporini, M.A., Rosay, M., Zhong, L., Cosgrove, D.J., and

Hong, M. (2013b). Sensitivity-enhanced solid-state NMR detection of expan-

sin’s target in plant cell walls. Proc. Natl. Acad. Sci. USA 110, 16444–16449.

Wasmer, C., Lange, A., VanMelckebeke, H., Siemer, A.B., Riek, R., andMeier,

B.H. (2008). Amyloid fibrils of the HET-s(218–289) prion form a beta-solenoid

with a triangular hydrophobic core. Science 319, 1523–1526.

Zeng, J., Tripathy, C., Zhou, P., and Donald, B.R. (2008). A Hausdorff based

NOE assignment algorithm using protein backbone determined from residual

dipolar couplings and rotamer patterns. Comput. Sys. Bioinform. Conf. 2008,

169–181.

Zhou, D.H., Nieuwkoop, A.J., Berthold, D.A., Comellas, G., Sperling, L.J.,

Tang, M., Shah, G.J., Brea, E.J., Lemkau, L.R., and Rienstra, C.M. (2012).

Solid-state NMR analysis of membrane proteins and protein aggregates by

proton detected spectroscopy. J. Biomol. NMR 54, 291–305.
ll rights reserved

http://refhub.elsevier.com/S0969-2126(15)00331-7/sref17
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref17
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref17
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref18
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref18
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref18
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref18
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref19
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref19
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref19
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref19
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref19
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref20
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref20
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref21
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref21
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref21
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref21
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref22
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref22
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref22
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref23
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref23
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref23
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref23
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref24
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref24
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref24
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref24
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref25
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref25
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref25
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref25
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref26
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref26
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref26
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref26
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref27
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref27
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref27
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref27
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref28
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref28
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref28
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref28
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref29
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref29
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref29
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref30
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref30
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref30
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref31
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref31
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref31
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref31
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref32
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref32
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref32
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref32
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref33
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref33
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref33
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref33
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref34
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref34
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref34
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref34
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref35
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref35
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref35
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref35
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref36
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref36
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref36
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref37
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref37
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref37
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref37
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref38
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref38
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref38
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref38
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref39
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref39
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref39
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref40
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref40
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref40
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref40
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref41
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref41
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref41
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref42
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref42
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref42
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref43
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref43
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref43
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref43
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref44
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref44
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref44
http://refhub.elsevier.com/S0969-2126(15)00331-7/sref44

	Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum
	Introduction
	Results and Discussion
	Automated Peak Filtering
	Evaluation of COMPASS Score
	Application of COMPASS to Solution NMR Data
	Conclusions

	Experimental Procedures
	Sample Preparation
	NMR Spectroscopy

	Supplemental Information
	Acknowledgments
	References


