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Independent Component Analysis (ICA) is a powerful method for uncovering statistical structure in 

natural stimuli. Lewicki (2002 Nature Neuroscience) used ICA to examine statistical properties of human 

speech. Filters that optimally encoded speech were an excellent match for frequency tuning in the cat 

auditory nerve, leading to suggestions that speech makes efficient use of coding properties in the 

mammalian auditory system. However, Lewicki only examined American English, which is neither 

normative nor representative of the world’s languages. Here, fifteen languages were examined (Dutch, 

Flemish, Greek, Javanese, Ju|’hoan, Mandarin Chinese, Norwegian, Swedish, Tagalog, Tahitian, Urhobo, 

Vietnamese, Wari’, Xhosa, Yeyi). Each recording contained speech tokens from native speakers without 

any background noise for at least seven minutes. Maximum likelihood ICA was used to create statistically 

optimal filters for encoding sounds from each language. These filters were then compared to the same 

physiological measures analyzed in Lewicki (2002). Languages produced a range of ICA solutions, as 

expected, but were highly consistent with both statistically optimal filters for American English and 

physiological measures. Results significantly extend Lewicki (2002) by revealing agreement between 

response properties of the auditory system and speech sounds in a wide range of languages. 
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INTRODUCTION 
Sensory systems adapt and evolve to accommodate stable or regular inputs in the 

environment. This is evident in the close relationship between sensory system response 

properties and natural signal statistics. Response properties of the visual system are well-tuned to 

the statistics of natural images (Field, 1987; Bell & Sejnowski, 1995; Olshausen & Field, 1996; 

Geisler, 2008), and recent efforts reported correspondences between auditory system response 

properties and natural sound statistics as well. Using Independent Components Analysis (ICA), 

Lewicki (2002) derived filters that were statistically optimal for encoding human speech sounds. 

Considerable similarity existed between these filters and frequency tuning curves measured in 

the cat auditory nerve, leading to the proposal that speech might be optimally adapted to the 

coding capacity of the auditory system (Smith & Lewicki, 2006).  

However, these analyses suffer from a serious limitation in that they only analyzed 

American English. English is neither a normative nor representative language, given its finite 

sampling of roughly 40 phonemes from over 800 phonemes observed across over 5,000 

documented languages. The statistical structure of one language is not guaranteed to hold for 

(all) other languages. The statistics of natural stimuli can vary from one stimulus class to the next 

(e.g., Lewicki, 2002; Torralba & Oliva, 2003; Lewis et al., 2012; Stilp & Lewicki, 2014). This 

holds true for approaches using ICA, as statistically optimal filters differed for encoding animal 

vocalizations, environmental sounds, or human speech (Lewicki, 2002), and differed across 

individual categories of speech sounds (English consonant sounds arranged by manner of 

articulation; Stilp & Lewicki, 2014). At issue is whether the statistics of human speech are 

consistent across languages, thereby validating claims that speech is efficiently coded by the 

auditory system, or if stimulus statistics vary by language (i.e., by stimulus class), challenging 

the generalizability of Lewicki’s (2002) claims. 

Here, we investigated the statistical structure of each of a wide range of languages. 

Comparisons are made to assess the similarity of language statistics to each other, to American 

English, and most importantly to physiological measures of the mammalian auditory system. 

METHODS 
1. Stimuli

Language recordings were collected from multiple online resources including: Global 

Recordings (http://globalrecordings.net/en), the Endangered Languages Archive 

(http://elar.soas.ac.uk/), the University of Minnesota Center for Advanced Research on Language 

Acquisition (http://www.carla.umn.edu/), Loyal Books (http://www.loyalbooks.com/), and 

Speech Ocean (http://speechocean.com/). All recordings were clearly spoken and free of any 

audible background noise. Recordings from different talkers were collected whenever possible 

(see Table I). Individual recordings for each language were concatenated to meet a total duration 

of approximately ten minutes (with the exception of Tahitian, which was seven minutes in 

duration). Concatenated recordings were then resampled at 16 kHz.  
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Language Family # Talkers 

Dutch West Germanic 1 

Greek Hellenic 2 

Javanese Western Malayo-Polynesian brand of the 

Austronesian languages 

1 

Ju’|hoan Khoisan Language, !Kung Family 3 

Mandarin Chinese Sinitic branch of Sino-Tibetan 87 

Norwegian North Germanic 5 

Swedish North Germanic 1 

Tagalog Central Philippine group of the Philippine subgroup 

of the Western-Malayo-Polynesian branch of the 

Malayo-Polynesia subfamily of the Austronesian 

language family 

1 

Tahitian Polynesian Languages, Austronesian 3 

Urhobo Niger-Congo 5 

Vietnamese Muong-Vietnamese subgroup of the Mon-Khmer 

subfamily of the Austro-Asiatic family 

1 

Vlaams (Flemish) West Germanic 6 

Wari Chupacura, Madeira 3 

Xhosa Nguni group of the Bantu sub branch of the Benue-

Congo brand of the Niger-Congo subfamily of the 

Niger-Khordofanian family 

11 

Yeyi Bantu 5 

 

TABLE I. List of languages analyzed, family of origin, and number of unique talkers. 

 

Language databases were constructed following the methods of Lewicki (2002) and Stilp 

and Lewicki (2014). Concatenated recordings for a given language were high-pass filtered at 125 

Hz (100-coefficient finite impulse response filter), set to zero mean and unit variance, then 

divided into 8-ms segments. 

 

2. ICA 

Details of the basic ICA algorithm for deriving statistical structure in natural stimuli have 

been provided by Bell and Sejnowski (1995). Briefly, ICA assumes that the observed data x are 

the result of linear combinations of s: 

x = As      [1] 

where A is a mixing matrix whose columns constitute basis functions, and s is an independent 

source vector with components si that are statistically independent from each other. A and s are 

unknown, so ICA estimates them according to Equation 2: 

y = Wx     [2] 

W is an unmixing matrix of the same dimensionality as A (W = A-1), making the output y the 

recovered source vector which approximates s up to scaling and permutation. Thus, the rows of 

W are statistically optimal filters for recovering source signals s from the observed mixtures x.  

Each language was analyzed using maximum likelihood ICA (Pearlmutter & Parra, 

1997). The natural gradient extension was used to facilitate convergence (Amari et al., 1996). A 

Laplacian prior was used to model the distribution of source signals in s and correspondingly in y 
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(Gazor & Zhang, 2003). W was iteratively updated by stochastic gradient descent, resulting in 

the learning rule in Equation 3: 

∆W = [I – sign(y) yT]W    [3] 

where I is the identity function, sign(.) is the sign function, and yT is the transpose of y. W is 

initialized to the identity matrix, and ∆W is the change in the unmixing matrix that is added to W 

at each iteration. ICA simulations were conducted for 20,000 iterations, with the learning rate set 

to .01 for the first 16,000 iterations and reduced to .001 for the final 4,000. Different batches of 

500 8-ms samples were randomly selected at each iteration for analysis. This process was 

repeated ten times for each language. ICA results were highly stable across simulations of a 

given language, thus representative results are shown. 

 

 
FIGURE 1: Filter quality measures for auditory nerve fibers in the cat auditory system. Each plot 

depicts Q10 measures as a function of filter center frequency measured up to 8 kHz. Each circle 

depicts tuning for a single auditory nerve fiber. Dotted lines are linear regressions fit to the data, 

with correlation coefficients listed at the top of each plot. These are the datasets used by Lewicki 

(2002) to compare physiological measures to statistically optimal encoding of American English. 

 

 

3. Filter Regression Analysis 

After conducting ICA on a given language, peak (center) frequencies for each filter (row) 

in W were identified using FFT. Q10 was then measured for each filter when possible (some 

filters could not be analyzed owing to the lack of 10 dB decreases both above and below the 

center frequency; this occurred at lower and upper extremes of the 8 kHz signal bandwidth). A 

linear regression was fit to Q10 as a function of center frequency with both metrics on logarithmic 

scales. Regression functions were then visually compared to those for physiological measures 

(Figure 1) in order to assess similarity across datasets. 

 

RESULTS AND DISCUSSION 
ICA filters and regression functions for each language are presented in Figure 2. 

Regression functions for physiological data from Figure 1 are included in each panel to facilitate 

visual comparisons of regression slopes and intercepts. Filters that optimally encode speech 

sounds in a wide variety of languages generally align with tuning properties in the mammalian 

auditory nerve. This supports Lewicki’s (2002; Smith & Lewicki, 2006) claim that the auditory 

system efficiently codes speech, extending it to a wide variety of languages found worldwide. 
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FIGURE 2: Statistically optimal filters for encoding a variety of natural languages. In each plot, 

each circle depicts the sharpness (Q10) and center frequency of a single filter calculated by ICA. 
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Linear regression fit to ICA filters is depicted by the solid blue line; all regressions were 

statistically significant at p < .001. The black dashed line is the regression fit to physiological 

measures from Evans (1975) (see Figure 1, left); the black dotted line is the regression fit to 

physiological measures from Rhode & Smith (1985) (see Figure 1, right).  

 

 

Regression slopes for ICA filters are highly comparable to those for auditory nerve fibers 

across all languages. However, several languages exhibit higher regression intercepts for ICA 

filters than those for physiological measures, especially languages where multiple talkers are 

sampled. This suggests that statistically optimal filters for encoding these stimuli may be slightly 

sharper than those observed in the cat auditory system. This is qualitatively consistent with 

recent studies suggesting that human cochlear tuning is sharper than previously considered. 

Shera and colleagues (2002; 2010) used stimulus-frequency otoacoustic emissions (SFOAEs) to 

measure cochlear tuning in guinea pigs, cats, chinchillas, and humans. They concluded that 

human cochlear tuning was significantly sharper than these animal models; results were 

corroborated by human behavioral data in a separate forward masking experiment (but see 

Ruggero & Temchin, 2005; Lopez-Poveda & Eustaquio-Martin, 2013). Joris and colleagues 

(2011) examined frequency tuning in macaque monkeys, which are phylogenetically closer to 

humans than to guinea pigs or cats. Auditory nerve fiber frequency-threshold tuning curves and 

SFOAEs revealed sharper tuning in macaques than other laboratory animals, but similarly sharp 

tuning as that estimated from human SFOAEs. It is important to note that these studies differ 

from the present investigation in terms of stimuli (narrowband tones vs. broadband speech), 

methodology (SFOAEs vs. ICA), and specific measures of filter sharpness (QERB vs. Q10). 

Further, there is ongoing debate regarding measures of auditory filter bandwidths using 

narrowband tones versus broadband stimuli (see de Cheveigné, 2008; Sayles & Winter, 2010 for 

discussions). Nevertheless, results shed light on how sharper tuning of the human auditory 

system is well-equipped to encode speech sounds in many different languages. Possible 

explanations of why some but not all languages demanded sharper tuning for optimal encoding 

(i.e., exhibited higher regression intercepts) are discussed below.  

Lewicki (2002) calculated statistically optimal filters for encoding roughly four minutes 

of American English (100 sentences x mean TIMIT sentence duration of approximately 2.5 

seconds). The wide range of languages in the present investigation was expected to introduce 

substantial acoustic (and perhaps statistical) variability, so ten minutes of recordings were 

collected and analyzed in each case. Yet, several languages exhibit considerable variability 

among ICA filters (weaker correlations for Tagalog, Urhobo, and Vietnamese), and Swedish 

displays a notably steeper regression slope than any other language. These findings may be due 

to sampling a small number of unique talkers in these languages, in some cases only a single 

talker (Table I). Lewicki (2002) noted that analyzing speech from only one talker produced ICA 

filters that optimally code that talker’s harmonic (formant) structure rather than general 

properties of speech sounds in that language. Further analyses are needed where each language 

contains speech from multiple talkers, not simply longer durations of a single or small number of 

talkers. It bears mention that languages with the most talkers (Mandarin Chinese with 87, Xhosa 

with 11) are well-fit by linear regressions and display higher regression intercepts than cat data. 

These results are expected to occur for other languages investigated here once a sufficient 

number of different talkers are sampled. 
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In all, results provide broad support for the efficient coding hypothesis (Barlow, 1961), as 

the auditory system has evolved to optimally encode the acoustic and statistical structure of 

speech sounds from a wide variety of languages. 
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