Reverberation increases perceptual calibration to reliable spectral peaks in speech

Christian E. Stilp
Paul W. Anderson
Ashley A. Assgari
Gregory M. Ellis
Pavel Zahorik
• Sensory systems are highly sensitive to stable aspects of the environment.

• Signal properties are less informative when they are reliable (stable or recurring across time)
 • Adaptation, habituation, attenuation, calibration, …

• Signal properties are more informative when they change
 • More useful for perception
Perceptual Calibration

“Please say what vowel this is” before /i/-/u/ target

Common F_2 peak $=$ decrease reliance on F_2, increase reliance on tilt

Methods

• 20 native English speakers with normal hearing

• Precursor: “Please say what vowel this is”
 • 100-Hz bandpass filter centered at vowel F₂, gain = +20 dB

• Vowels: synthesized 5-by-5 matrix varying from /i/ to /u/
 • Varied in F₂ and tilt, all other stimulus parameters matched
Alexander & Kluender (2010)
Results: Experiment 1

1. Vowels in isolation
 - Calculate logistic regression on responses
 - Standardized regression coefficients = perceptual weights
Results: Experiment 1

2. Vowels following precursors that share F₂ peak
 - Calculate logistic regression on these responses
Perceptual calibration = changes in weights across sessions

- Reliable cue (F_2) \rightarrow decrease weight
- Changing cue (tilt) \rightarrow increase weight
Reverberation

- In speech, energy in a spectral peak waxes and wanes across time; here this peak is made reliable.

- Reverberation smears spectral peaks across time, which would increase their presence throughout the precursor.

- Perceptual calibration is predicted to increase in highly reverberant listening conditions ($T_{60} = 2.97$ seconds).
Results: Experiment 2

1. Vowels in isolation, reverberation
Results: Experiment 2

2. Vowels following precursors that share F_2 peak, reverberation
Results: Experiment 2

Perceptual calibration = changes in weights across sessions
- Reliable cue (F_2) \rightarrow decrease weight
- Changing cue (tilt) \rightarrow increase weight
• Greater perceptual calibration for reverberant speech (p’s < .001)
• But, different starting points for listener groups ($F_2: p < .02$)
Methods

- 22 new listeners
 - n=11: Dry 1st, Reverberant 2nd
 - n=11: Reverberant 1st, Dry 2nd
- Same stimuli as previous experiments
Results: Experiment 3

Perceptual Calibration (Weight Change)

Dry 1st
- F2
- Tilt

Reverberant 2nd
- F2
- Tilt

Reverberant 1st
- F2
- Tilt

Dry 2nd
- F2
- Tilt

Spectral Cue
Conclusions

- Perceptual calibration increases in highly reverberant listening conditions.

- Experience with reverberation extinguished calibration in non-reverberant listening conditions.