On the Importance of Information-Bearing Acoustic Changes for Understanding Speech in Simulated Electrical-Acoustic Stimulation Christian E. Stilp, University of Louisville Gail Donaldson, University of South Florida Soohee Oh, University of South Florida Ying-Yee Kong, Northeastern University

INTRODUCTION

- Information-bearing acoustic changes in the speech signal are important for understanding speech. This has been demonstrated using cochlea-scaled entropy in simulated cochlear implant speech (CSE_{CI}), which measures short-term spectral changes calculated across all channels of noise-vocoded speech (Stilp *et al.*, 2013; Stilp, 2014; Stilp & Goupell, 2015).
 - Poorer sentence intelligibility occurred when high-CSE_{CI} intervals were replaced by noise as compared to replacing low-CSE_{CI} intervals.
- Speech intelligibility for CI users is often aided by preserved lowfrequency acoustic cues in the non-implanted ear (Electric-Acoustic Stimulation, or EAS; Kong et al., 2005; Kong & Carlyon, 2007).
- While listeners are known to benefit from the addition of low-frequency intact speech to vocoded speech (hybrid hearing), it is unclear how they rely on information-bearing acoustic changes from the two different sources (intact low frequencies, vocoded higher frequencies).
- Here, we investigated the perceptual importance attributed to informationbearing acoustic changes in vocoded versus hybrid speech with relatively few spectral channels (conditions which were not systematically studied previously).

METHODS

Participants

37 native English speakers ages 18-35; normal hearing confirmed via hearing screening.

Stimuli

- IEEE sentences spoken by female talker.
- Spectrum divided into 3-6 channels using Greenwood (1990) spacing.
- Amplitude envelopes extracted and assigned to white Gaussian noise.
- Vocoded stimuli: noise-channel vocoding from 80 to 8000 Hz.
- Hybrid stimuli: low-pass-filtered intact speech (<500 Hz) combined with high-pass-filtered vocoded speech (>500 Hz).
- CSE_{CI} calculation
- CSE_{CI} = Euclidean distances between RMS-amplitude profiles of successive 16-ms sentences slices, summed into 80-ms intervals.
- Same calculations performed for vocoded and hybrid sentences.
- In each sentence, four 80-ms intervals with high- or low-CSE_{CI} were replaced with speech-shaped noise; continuous sentences had no noise replacement.

Procedure

- 1. Training
- Familiarization (passive listening) followed by training (testing with feedback).
- Baseline testing: criterion of $\geq 27\%$ on 3-channel vocoded sentences or >31% on 4-channel vocoded sentences.

• 13 listeners failed to meet criteria, did not participate in testing.

- 2. Testing
- CSE_{CI} levels tested at two levels of spectral resolution (3/5 or 4/6, n=12) in each); EAS (vocoded/hybrid) counterbalanced across sessions.
- Mixed design employed due to limited number of IEEE sentence lists: • Within-subjects factors: CSE_{CI}, EAS
- Between-subjects factor: higher (4/6 channels) vs. lower (3/5) numbers of vocoder channels
- Stimuli presented diotically at 70 dB SPL.

Main Findings

Results were arcsine-transformed (Studebaker, 1985) for analysis. Analyses used within-subjects ANOVA (comparing performance at 3 vs. 5 channels, or 4 vs. 6 channels) or mixed ANOVA (comparisons across listener groups) and corresponding paired-samples or independent-samples t-tests. Statistically significant differences are indicated by *.

In general, performance was impaired more when high-CSE_{CI} intervals were replaced by noise than when low-CSE_{CI} intervals were replaced, consistent with Stilp *et* al. (2013), Stilp (2014), and Stilp and Goupell (2015).

EAS benefit (RAU improvement for hybrid condition relative to vocoded condition) varies with stimulus condition:

- For continuous sentences, EAS benefit decreases with more spectral channels.
- For noise-interrupted sentences, EAS benefit increases with more spectral channels.
- No benefit at 3-4 channels, comparable significant benefits across CSE conditions at 5-6 channels.
- EAS benefit does not interact with CSE conditions.

Number of Spectral Channels

* = statistically significant difference for this factor across the given pair of spectral channels at p < .05(only low-CSE_{CI} and high-CSE_{CI} conditions analyzed)

No EAS-by-CSE_{CI} interactions were significant

Perceptual Importance of CSE_{CI}

- Decrements from control performance reveal the perceptual importance of the speech in sentence intervals that were replaced by noise.
 - Larger decrements indicate greater importance of the replaced speech

Vocoded

CSE_{CI}

- Decrements are fairly flat across 3-6 spectral channels.
 - Stilp and Goupell (2015) reported similar results for 4 channels but far larger decrements for high-CSE_{CI} sentences with 6 channels.

Hybrid

- Largest decrements with few spectral channels.
- May be due to abolishing EAS benefit rather than high CSE_{CI} importance. • Smaller decrements with more channels.
 - Ceiling effects for continuous conditions may be contributing to smaller decrements.

1aPPb2

DISCUSSION

Listeners are able to use information-bearing acoustic changes to understand hybrid speech.

- For sentences with 5 and 6 channels, performance suffers more when high- CSE_{CI} intervals are replaced by noise than when low- CSE_{CI} intervals are replaced.
- A similar pattern was observed for vocoded speech, consistent with Stilp and Goupell (2015).

For sentences with very few (3-4) spectral channels, listening mode and information-bearing acoustic changes had little effect on performance.

- Large EAS benefit when sentences are intact; near-zero EAS benefit when sentences are interrupted by noise.
- Performance only slightly worse when high-CSE_{CI} intervals were replaced as compared to replacing low- CSE_{CI} intervals.
- Similar to Stilp and Goupell (2015), listeners utilized informationbearing acoustic changes to facilitate recognition of 6-channel sentences, but no differences were observed for 4-channel sentences.
- This is despite differences in materials (IEEE vs. TIMIT sentences) and procedure (training with feedback versus virtually no practice).

The present data provide no evidence that listeners rely on CSE_{CI} differently in vocoded versus hybrid speech.

- Information-bearing acoustic changes produced different patterns of decrements, but this could be due to abolishing the EAS benefit for 3-4-channel sentences. It made little difference whether low-CSE_{CI} or high-CSE_{CI} intervals were replaced.
- CSE_{CI} is a measure of broadband spectral change, and this often captures changes in the speech envelope. Envelope information is relatively consistent across full-spectrum and vocoded speech (Stilp et al., 2013). This congruence may explain the lack of interactions between CSE_{CI} and vocoder / hybrid conditions, as informationbearing acoustic changes do not differ very much across these processing conditions.
- The intact low-frequency channel (<500 Hz) was not weighted differently from noise-vocoded channels in CSE_{CI} calculations. Future research will consider frequency-specific weighting in CSE_{CI} calculations to reflect EAS benefit.

REFERENCES

Kong, Y.-Y. & Carlyon, R.P. (2007) JASA, 121(6), 3717-3727. Kong, Y.-Y., Stickney, G.S., & Zeng, F.-G. (2005) JASA, 117(3), 1351-1361 Greenwood, D.D. (1990) *JASA*, 87(6), 2592-2606. Stilp, C.E. (2014) JASA, 135(3), 1518-1529. Stilp, C.E. & Goupell, M.J. (2015) JASA, 137(2), 844-855. Stilp, C.E., Goupell, M.J., & Kluender, K.R. (2013) JASA, 133(2), EL136-EL141. Studebaker, G.A. (1985) *JSLHR*, 28(3), 455-462.