INTRODUCTION The auditory system is highly sensitive to stable aspects of the acoustic environment. This includes reliable spectral properties, or spectral peaks and shapes that are relatively stable or recurring across time. When a frequency region is reliable in preceding sounds but it changes in a subsequent target spectral contrast effects. For example, when preceding sounds have a reliable spectral peak in low- F_{1} regions (sounds more "ih"-like), the following target vowel with a slightly higher F_{1} sounds much higher by comparison, resulting in more "eh" responses, and vice versa (Ladefoged \& Broadbent, 1957). Reliable spectral properties and spectral contrast effects have widespread impacts on speech perception by normal-hearing listeners (Ladefoged \& Broadbent, 1957; Watkins, 1991; Holt, 2006; Stilp et al., accepted). However despite their importance for normal-hearing listeners, how these phenomena influence speech perception by cochlear implant (CI) users is unclear. Here w used noise vocoding to investigate how CI users might respond to reliable spectral properties in spectrally degraded speech.

METHODS

Base Stimuli (from Stilp et al., accepted)
Vowels. Nat ("ral productions of
Vowels: Natural productions of [r] ("ih") and [ε] ("eh") (246 ms) were digitally edited to vary in mean F_{1} from $415-565 \mathrm{~Hz}$ across a ten-step series.
$\frac{\text { Precursor Sentence: Vowels were preceded by a recording of the author saying }}{\text { "Please say what this vowel is" }}$ "Please say what this vowel is" (2174 ms). Reliable spectral properties were $\mathrm{F}_{(}(550-850 \mathrm{~Hz})$ regions were amplified in the precursor by +5 or +20 dB .

Noise Vocoding
Stimuli were noi
Stimuli were noise-vocoded from $100-5000 \mathrm{~Hz}$. This low-frequency edge can cause filter instability, but it is essential to preserve information from $100-400$
Hz . To overcome this limitation, stimuli were spectrally rotated about 8000 Hz Hz . To overcome this limitation, stimuli were spectraly rotated about 8000 Hz
100 Hz in the original signal was transposed to 8000 Hz in the rotated signal, and 5000 Hz in the original signal (total stimulus bandwidth) was transposed to 3000 Hz in the rotated signal. Corner frequencies for channels from $100-$ 5000 Hz were computed using Greenwood's (1990) formula then subtracted from 8100 Hz . Thus, acoustic frequencies and channel corner frequencies wer both inverted but properly aligned as in typical vocoding. The spectrally
rotated signal was noise-vocoded (4ti-order Butterworth filters for channel analysis and synthesis; $2^{\text {nd }}$-order Butterworth filter with low-pass cutoff at 400 Hz for envelope extraction). The vocoded signal was spectrally rotated again about 8000 Hz to return all frequencies to their original positions.

Procedure
Listeners (28 native English speakers with normal hearing) heard stimuli over ircumaural headphones and responded by clicking the mouse to indicate
hether the target vowel sounded more like "ih" or "eh".
Analysis
Logistic regressions were fit to responses using generalized linear mixed ts models in R. The final model took the following form response \sim vowel + filter + NCh + filter-by-NCh + vowel-by-NCh + + vowel + filter $+\mathrm{NCh} \mid$ subject)
$\mathrm{Ch}=$ number of spectral channels $(6,12,24)$
50% points (equal probability of "ih" and "eh" responses) were calculated for each regression function. Spectral contrast effect size was defined as the distance between 50% points, measured in stimulus steps along the absciss.

EXPERIMENT 1: +20 dB PEAK ($\mathrm{n}=14$)
Low- F_{1} peak

Responses $\stackrel{(\text { Error bars }}{ }=$ SEM $)$ Low- F_{1} p precursor
High- F_{1} precursor

EXPERIMENT 2: +5 dB PEAK ($\mathrm{n}=14$)

High-F, peak

Contrast effect size:

Full Spectrum

Upper cutoff frequencies
for vocoder channels Channel numbers are
listed in the first three listed in the first three
colums for each evel of
spectrar resolution teste. Colored cutoff
frequencies indicate frequencies indicate
Which channels were
filtered to to and the rele

1.5 steps

Full Spectrum

DISCUSSION

Auditory perception is sensitive to reliable spectral properties in spectrally degraded speech. Listeners responded "ih" (lower F_{1}) more ofte following precursors with reliable spectral properties consistent with $[\varepsilon]$ (higher F_{1}) and vice versa, revealing spectral contrast effects in perception of noise-vocoded speech. This result was observed across all spectra
resolutions tested ($6-24$ vocoder channels), suggesting widespread importance for perception of vocoded speech. When preceding speech featured $a+20 \mathrm{~dB}$ reliable spectral peak, spectral contrast effects grew as spectral resolution worsened. With only six spectral channels, listeners had difficulty accurately distinguishing
target vowels, potentially due to long-term adaptation masking and/or target vowels, potentially due to long-term adaptation, masking, and/or
frequency overlap between the reliable spectral peak and target vowel in such broad channels. However, responses were still heavily biased away from (contrastive with) the reliable spectral property. With 24 channels, contrast effects were still markedly larger than those observed in fullwhectrum speech in silp et a. (accepted)
When preceding speech featured $a+5 \mathrm{~dB}$ reliable spectral peak, spectral contrast effect size was relatively constant across all spectral resolutions.
This is a different pattern from the +20 dB results, suggesting differential sensitivity to the magnitude of reliable spectral peaks. Similar to +20 dB results, contrast effects were still larger than those observed in fullspectrum speech with +5 dB reliable peaks (Stilp et al., accepted), CI users experience auditory enhancement effects (Goupell \& Mostard 2012; Wang et al., 2012), revealing spectral changes are perceptually thhanced for these iisteners. In addition, spectral changes are enhanced
throught the central auditory system (Scutt \& Palmer, 1998; Nelson \& Young, 2010), not only in the cochlea. Together with the present results, this bolsters the prediction that CI users are sensitive to reliable spectral

REFERENCES

