The President’s Report

Issue 24 June 2011

"We are committed to quality healthcare for all people in our state"

Partners Reach Agreement, Commit to Bold Statewide Mission

Officials of three major Kentucky health care organizations have announced that their boards have formally approved plans to form a health care delivery system to meet the needs of all of the people of Kentucky and beyond. The new system will include the University of Louisville Hospital/James Graham Brown Cancer Center, Jewish Hospital & St. Mary's HealthCare based in Louisville; and Saint Joseph Health System based in Lexington.

By coming together, the partnership will bring its collective expertise and quality to patients and their families even in the most rural areas. Already serving more than half a million of the state’s citizens, the map illustrates the system’s current reach, with plans to expand access even further through embracing the latest technology, establishing new partnerships, and enhancing existing services.

Watch the press announcement in its entirety at uofl.me/newpartnership

For patients and families, in Kentucky and beyond, a double-size academic medical center means increased access to the latest developments in diagnostic, therapeutic, and preventive care developed by some of the nation’s leading physician scientists at the University of Louisville.

Dr. James R. Ramsey, President, University of Louisville

In Catholic health care, mission is the constant – reflecting our past and guiding our future. With our partners, we will work to transform and improve how health care is delivered in the Commonwealth.

Michael Rowan, Executive Vice President, Catholic Health Initiatives

In this new organization, we want to train Kentucky’s next generation of rural physicians so that they can inspire other young Kentuckians to practice medicine. Often living without medical care in these communities, young people grow up without mentors or even the consideration of medicine as a career. With our increased presence in smaller towns, we plan to change that for the better.

Daniel Varga, MD, Chief Medical Office, Saint Joseph Health System

This is the next evolution in a history of partnerships for Jewish Hospital & St. Mary’s HealthCare. Going forward, we’re going to work together to take this same spirit of collaboration to communities across our state.

LouAnn Atlas, Chair, Jewish Hospital & St. Mary’s HealthCare

Individually, each organization already provides extraordinary patient care. But together, we will provide an unmatched geographic reach from Louisville to Paducah to Lexington to Martin.

Bob Hewett, the first chair of the system’s community board of trustees, long-time board member of the Saint Joseph Health System

With recognition of the past, we will march into the future with a shared vision of creating a world-class academic medical center and a leading statewide network for our citizens.

Dr. Gerald Temes, Board Chair, Jewish Hospital HealthCare Services
UofL Neuroscientists and Bucks for Brains Doc Gain Global Attention
With a “Breakthrough” Toward Improving Patients Affected By Paralysis

Dr. Susan Harkema, Dr. Jonathan Hodes, and a team of scientists at the University of Louisville, UCLA and the California Institute of Technology have achieved a significant breakthrough in their initial work with a paralyzed male volunteer at Louisville’s Frazier Rehab Institute. It is the result of 30 years of research to find potential clinical therapies for paralysis. The study is published in the British medical journal The Lancet.

Dr. Harkema is lead author of The Lancet article. Her primary focus is the study of the plasticity of the human lumbosacral spinal cord in individuals with spinal cord injury during Locomotor Training. Dr. Hodes performed the implantation of the epidural stimulator, a series of 16 electrodes, on the spinal cord at University of Louisville Hospital.

Dr. Harkema, lead author of today’s Lancet article. “But we have a long road ahead.”

The man, Rob Summers, age 25, was completely paralyzed below the chest after a hit and run accident in July 2006. Today, he is able to reach a standing position, supplying the muscular push himself. He can remain standing, and bearing weight, for up to four minutes at a time (up to an hour with periodic assistance when he weakens). Aided by a harness support and some therapist assistance, he can make repeated stepping motions on a treadmill. He can also voluntarily move his toes, ankles, knees and hips on command.

These unprecedented results were achieved through continual direct epidural electrical stimulation of the subject’s lower spinal cord, mimicking signals the brain normally transmits to initiate movement. Once that signal is given, the research shows, the spinal cord’s own neural network combined with the sensory input derived from the legs to the spinal cord is able to direct the muscle and joint movements required to stand and step with assistance on a treadmill.

The other crucial component of the research was an extensive regime of Locomotor Training while the spinal cord was being stimulated and the subject suspended over the treadmill. Assisted by rehabilitation specialists, the individual’s spinal cord neural networks were retrained to produce the muscle movements necessary to stand and to take assisted steps.

“This is a breakthrough. It opens up a huge opportunity to improve the daily functioning of these individuals,” concludes Dr. Harkema, lead author of today’s Lancet article. “But we have a long road ahead.”

Some examples of how we save:

- Reduction of paper use: two-sided printing/copying, electronic distribution of documents, online publishing. Increased use of email distribution eliminating postage expenses: $135,000
- Purchase hybrid, flex-fuel, and 4-cylinder vehicles whenever available and practical: $3,490
- By obtaining a HRSA Congressional Initiative grant Improving Nursing Care through Clinical Informatics and e-Health the School of Nursing will train faculty/ students in the use of clinical informatics and electronic health/medical records (EHR/EMR); purchase EHR/EMR software, simulators, iPads and other lab equipment and bring three national nursing consultants to campus: $792,000

LouAnn Atlas, Board Chair Jewish Hospital & St. Mary’s HealthCare, reflecting on the partnership between University of Louisville and the Jewish Hospital Organization. "We have partnered in medical research such as the world’s first successful hand transplant in conjunction with Kleinert, Kutz and Associates. University physicians led by Dr. Laman Gray, implanted the world’s first totally implantable transplant in conjunction with Kleinert, Kutz and Associates. University physicians led by Dr. Laman Gray, implanted the world’s first totally implantable

Jonathan Hodes, and a team of scientists at the University of Louisville, UCLA and the California Institute of Technology have achieved a significant breakthrough in their initial work with a paralyzed male volunteer at Louisville’s Frazier Rehab Institute. It is the result of 30 years of research to find potential clinical therapies for paralysis. The study is published in the British medical journal The Lancet. Her primary focus is the study of the plasticity of the human lumbosacral spinal cord in individuals with spinal cord injury during Locomotor Training. Dr. Hodes performed the implantation of the epidural stimulator, a series of 16 electrodes, on the spinal cord at University of Louisville Hospital.

Dr. Harkema is lead author of The Lancet article. Her primary focus is the study of the plasticity of the human lumbosacral spinal cord in individuals with spinal cord injury during Locomotor Training. Dr. Hodes performed the implantation of the epidural stimulator, a series of 16 electrodes, on the spinal cord at University of Louisville Hospital.

The man, Rob Summers, age 25, was completely paralyzed below the chest after a hit and run accident in July 2006. Today, he is able to reach a standing position, supplying the muscular push himself. He can remain standing, and bearing weight, for up to four minutes at a time (up to an hour with periodic assistance when he weakens). Aided by a harness support and some therapist assistance, he can make repeated stepping motions on a treadmill. He can also voluntarily move his toes, ankles, knees and hips on command.

These unprecedented results were achieved through continual direct epidural electrical stimulation of the subject’s lower spinal cord, mimicking signals the brain normally transmits to initiate movement. Once that signal is given, the research shows, the spinal cord’s own neural network combined with the sensory input derived from the legs to the spinal cord is able to direct the muscle and joint movements required to stand and step with assistance on a treadmill.

The other crucial component of the research was an extensive regime of Locomotor Training while the spinal cord was being stimulated and the subject suspended over the treadmill. Assisted by rehabilitation specialists, the individual’s spinal cord neural networks were retrained to produce the muscle movements necessary to stand and to take assisted steps.

“This is a breakthrough. It opens up a huge opportunity to improve the daily functioning of these individuals,” concludes Dr. Harkema, lead author of today’s Lancet article. “But we have a long road ahead.”

Rob Summers, Patient volunteer

The University of Louisville is an equal opportunity institution. The delivery of this publication is carbon neutral. It is printed on 100% post-consumer waste recycled paper. It was produced by the University of Louisville and printed using renewable funds. 201226 - 0611