

## Managing Bloodborne Pathogens Exposures

Phillip F. Bressoud, MD, MS, FACP Executive Director Campus Health Services University of Louisville



## Bloodborne Pathogen Standard

 Federal Law requires employers to develop a blood borne pathogen standard

 Purpose is to protect employees from the health hazards associated with blood borne pathogens



- Universal Precautions
- Pre-exposure prophylaxis
- Personal Protective Equipment
- Workplace practice controls
- Post-exposure prophylaxis



#### **Universal Precautions**

An approach to infection control in which all **blood** or body fluids are treated as if they are infectious



#### Pre-exposure Prophylaxis

Immunization with Hepatitis B vaccine or other vaccines to prevent future transmission of a BBP



Personal Protective Equipment





Sometime you can go too far!



#### Work Place Practice Controls

- Needle disposal boxes
- Needless IV systems
- Alcohol Hand Sanitizers
- Device Formularies



#### Post-Exposure Prophylaxis

Utilization of medications, vaccines and/or immunoglobulin in the event of an TRUE BBP in cases where all other components of BBP program fail

| Characteristics                                     | No   | (%)                                                 |  |
|-----------------------------------------------------|------|-----------------------------------------------------|--|
| Mean Age (± SE)                                     | 26±3 | 26±3.2 years                                        |  |
| Gender                                              |      | E oceane one o                                      |  |
| Male                                                | 59   | (63.4)                                              |  |
| Female                                              | 34   | (36.5)                                              |  |
| Departments                                         |      | 75 D                                                |  |
| Medicine and allied                                 | 18   | (19.3)                                              |  |
| Surgery and allied                                  |      | (39.7)                                              |  |
| Obstetrics and Gynecology                           | 17   | (18.2)                                              |  |
| Lab sciences: Pathology, Microbiology, biochemistry | 21   | (22.5)                                              |  |
| Non-clinical                                        | 12   | (12.9)                                              |  |
| Year of residency                                   |      | 25 35                                               |  |
| 1 <sup>st</sup> Year                                | 37   | (39.7)                                              |  |
| 2 <sup>nd</sup> Year                                | 29   | (31.1)                                              |  |
| 3rd Year                                            | 27   | (29.2)                                              |  |
| Undergone any training on                           |      | \$200 \$400 \$100 \$100 \$100 \$100 \$100 \$100 \$1 |  |
| HIV/AIDS and Universal precaution                   | 15   | (16.1)                                              |  |

On average, exposure risk decreases for most residents as they progress through their residency.

| Level of training | Number of exposure |           |          |           |       |   |
|-------------------|--------------------|-----------|----------|-----------|-------|---|
|                   | None               | Once      | Twice    | >Twice    | Total |   |
| First Year        | 23 (62.1)          | 6 (16.2)  | 3 (8.1)  | 5 (13.5)  | 37    |   |
| Second Year       | 12 (41.3)          | 7 (24.1)  | 3 (10.3) | 7 (24.1)  | 29    |   |
| Three Year        | 04 (14.81)         | 7 (25.9)  | 8 (29.6) | 8 (29.6)  | 27    | 4 |
| Total             | 39 (41.9)          | 20 (21.5) | 14 (15)  | 20 (21.5) | 93    |   |
|                   |                    |           | 79.74    |           |       |   |

This can be specialty specific and in fact, for residents who report exposures the risk increases over the same period.

| Characteristics                             | No of Participants (%) |                                |  |
|---------------------------------------------|------------------------|--------------------------------|--|
| Exposure while patient care                 |                        |                                |  |
| Never                                       | 39                     | (41.9)                         |  |
| Only once                                   | 20                     | (23.6)                         |  |
| Twice                                       | 14                     | (12.9)                         |  |
| More than twice                             | 20                     | (21.5)                         |  |
| Status of the Source                        |                        | 588 S                          |  |
| HIV Positive                                | 04                     | (07.4)                         |  |
| HIV Negative                                | 06                     | (11.1)                         |  |
| HIV Status Un-know                          | 35                     | (64.8)                         |  |
| Source Unknown                              | 09                     | (16.6)                         |  |
| Reported the injury/exposure to authorities |                        | 5075604775750<br>3745604756067 |  |
| Not aware of it                             | 09                     | (16.6)                         |  |
| Not reported, but aware about it            | 20                     | (37)                           |  |
| Yes                                         | 25                     | (46.2)                         |  |
| Total episodes of injury                    | 96                     |                                |  |



Gaidhane et al. Occupational Exposure To HIV And Practices Of Universal Safety Precautions Among Residents Doctors . *Internet J Health*. 2009 8(2):

## Was I exposed?

In order to have an exposure two things must happen:

- 1. The body fluid must contain live organisms

  AND
- 2. The contaminated fluid must enter the body



## High Risk Fluids

- Blood
- Semen
- Vaginal secretions
- Spinal fluid
- Pleural fluid
- Peritoneal fluid

- Pericardial fluid
- Amniotic fluid
- Synovial fluids
- Saliva dental procedures
- Any bloody body fluid



#### Low or Non-Risk Fluids

- Vomit
- Feces
- Urine
- Sweat
- Nasal discharges
- Saliva (non dental)
- Tears



## Was I exposed?

- Agents that are routinely considered during an exposure evaluation are:
  - Hepatitis B
  - Hepatitis C
  - HIV
- Depending on the patient's history and diagnosis, other microbial agents may be important to consider



## Requirements to acquire a BBP related disease

The body fluid <u>must be infected</u> with at least one BBP agent

### **AND**

The fluid must enter the body during the exposure



## Was I exposed?

Only the exposed individual can ultimately determine if they were exposed!

#### **Example:**

Only you can determine if something splashed into your eye

## Was I exposed?



# I think I was exposed!

Now what?



Local wound care—Wash the wound well with soap

Gather information about the source patient



#### Risk Assessment

- --Type of Exposure (mucus membrane, sharp, non intact skin, bite)
- --Type and quantity of fluid and presence of blood if appropriate
- --Source Patient's HIV, Hepatitis B and C status if known
- --Health Care Worker's (student's) HIV, Hepatitis B and C status



#### Source Testing

- Hep B Surf Antigen
- Hep C Antibody
- RAPID HIV Antibody
- Viral load/CD4 count if known positive for HIV

#### Health Care Worker (student)

- Hep B Antibody if unknown
- Hep C Antibody
- HIV Antibody
- Pregnancy testing if starting medications
- CMC/CMP Q WK on treatment



- Post Exposure Prophylaxis (PEP)
  - Thought to reduce HIV transmission by 80%
  - Ideally should be started within one hour of exposure
  - Initiation of PEP is dependent up the amount of fluid and the viral load of the source patient
    - Low Risk -No therapy vs ? AZT
    - Moderate Combivir/Kaletra
    - High Risk Combivir/Kaletra



- Risk of transmission is 0.3% (1/200-250) from all needle stick injuries
- Risk of transmission is 0.09% for splash injuries
- Risk of transmission via skin exposure is unknown but REAL
- Risk increases with co-infection with Hep C



- As of 1997, 52 confirmed and 114 probable conversions
- 47of the 52 confirmed
  - 45 percutaneous (41 hollow bore)
- 80% of patients who convert after an exposure will have a viral syndrome within 25 days of exposure



- There have been three instances of delayed HIV infection in people where the HIV antibody was negative at 6 months
- Simultaneous Hepatitis C infections were identified in 2 conversions



- Follow up Testing
  - Low Risk
    - Repeat HIV at 6 months
  - Moderate and High Risk
    - Repeat testing at 6 weeks, 12 weeks and 6 months
  - Onset of viral illness within 30 days of exposure consider HIV/Hepatitis C PCR testing



- Remember to consider how you will initiate antiviral therapy on off-site and out of town rotations
- Ideally access to appropriate drugs should take no longer than 1-2 hours
- Emergency departments may not be prepared to deal with these types of exposures





- Risk of transmission is variable and dependent upon the presence of "e" antigen
- When "e" antigen is present transmission rate is approximately 30%
- Immunization is protective so long as antibody develops within 4-8 weeks after 3rd immunization (Why we require a antibody titer)



- Be sure to check your antibody titer 4-8 weeks after the last shot of the series.
- Know your antibody status



- Healthcare workers need to know their antibody status
  - Be sure to have you titer measured 4-8 weeks after your last dose of vaccine
  - If antibody negative after 3rd dose, initiate second series
  - If antibody negative after 2nd series, counsel regarding exposures



- Best prevention is immunization (preexposure prophylaxis)
- If HCW not antibody positive, Hepatitis B Immune globulin can be given up to 7 days following exposure
  - ◆ Ideally give HBIG 1-2 days after exposure (70%) effective





- Transmission rate is approximately 3% for each exposure
- 85% or more of acute infections become chronic
- 70% of those infected develop chronic liver disease
- no vaccine
- immunoglobulin not protective



- Real seroconversion rate appears to be about 1.8%
- May be as high as 10% when using HCV viral loads
- Treatment following exposure is controversial
  - ?interferon
  - ?ribavirin
  - Post exposure prophylaxis not recommended

### Conclusions

- We assume you have just forgotten everything you have just learned
- You will receive a needle stick card—attach it to your ULH security card or put in it your wallet
- CALL 852-6446 24 hours a day



## We assume you have just forgotten everything you have just learned so just call!

Please keep your exposure card with your ID at all times.



