Effect of Long Non-coding RNA on Colon Cancer Migration and Phenotype

Ajay Patel, B.S.1,2, Mason Paas, B.S.1, Stephen O’Brien, MB BCh BAO1, Susan Galanduk, M.D.1

1Price Institute of Surgical Research, The Hiram C. Polk Jr. MD Department of Surgery
2University of Louisville School of Medicine

Introduction

- 1 in 20 people will be diagnosed with colorectal cancer in their lifetime.
- Colon cancer is the 3rd most diagnosed and 2nd most common cause of cancer-related deaths in the United States.
- Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells gain a more mesenchymal phenotype and become more invasive.
- Long non-coding RNAs (lncRNA) exceed 200 nucleotides in length and are not known to code for proteins.
- ZFAS1, a lncRNA, has been shown to play a role in the progression and metastasis of various cancers.
- **Hypothesis**: Knockdown of ZFAS1 would lead to decreased cellular migration for colon adenocarcinoma cell lines HT29, SW480, and Caco2.

Methods

- Colon cancer cell lines (HT29, SW480, and Caco2) were obtained and grown in appropriate media.
- Cells were transfected with ZFAS1 silencing RNA (siZFAS1) or the negative control (Non-target).
- Transfected cells were harvested and plated for individual assays.
- For scratch migration assay analysis, cells were plated in a 6-well plate at 1 \times 10^5 cells per well and allowed to adhere for 24 hours. At 24 hours, a vertical and horizontal scratch were made and a photo was taken for baseline and at 24-hour intervals thereafter.
- For transwell migration assay, transfected cells were obtained in serum free media. Cells were seeded at 3 \times 10^5 cells/well into 8 μm pore polycarbonate membrane inserts. Seven hundred μL of 10% FBS-media was used in the bottom chamber as a chemoattractant and cells were incubated for 24 hours. After 24 hours, cells were stained and analysis was performed.
- The Mann Whitney Statistic was used to analyze the data.

Results

Scratch Migration Assay

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Time</th>
<th>Percentage migration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT29 (Duke’s C)</td>
<td>0 hr</td>
<td>50 ± 5</td>
</tr>
<tr>
<td></td>
<td>120 hr</td>
<td>25 ± 4</td>
</tr>
<tr>
<td>siZFAS1</td>
<td>Non Target</td>
<td>50 ± 5</td>
</tr>
</tbody>
</table>

Transwell Migration Assay

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Transwell Migration Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT29 (Duke’s C)</td>
<td>40 ± 3</td>
</tr>
<tr>
<td>SW480 (Duke’s B)</td>
<td>20 ± 2</td>
</tr>
<tr>
<td>Caco2 (Duke’s Unknown)</td>
<td>30 ± 4</td>
</tr>
</tbody>
</table>

Results (continued)

Conclusion

- Successful transfection was confirmed using quantitative real-time polymerase chain reaction (qRT-PCR).
- For the scratch migration assay, ZFAS1-knockdown samples displayed slower scratch closure compared to the control samples in all three cell lines.
- For the transwell migration assay, ZFAS1-knockdown samples displayed slower migration through the membrane compared to the control samples in all three cell lines.

Conclusions

- ZFAS1-knockdown leads to decreased cellular migration in colon cancer cell lines: HT29, SW480, and Caco2.
- Therefore, this further indicates that ZFAS1 may play an important role in the process of EMT.
- ZFAS1 should be further investigated as a potential therapeutic target in the treatment of colon cancer.

Acknowledgements

Research Supported by National Cancer Institute grant R25-CA134283 and the John Williamson and Barbara Thruston Atwood Price Trust

1Price Institute of Surgical Research, The Hiram C. Polk Jr. MD Department of Surgery
2University of Louisville School of Medicine