

Background & Innovation

Exosomes are cell-derived nanovesicles (1). They relay information between tissue microenvironments. Exosomes are ideally suited for use as therapeutic nanocarriers given their unique biocompatibility and transportation properties (2).

Macrophages ($M\phi$), within the monophagocytic system capture and remove foreign nanomedicines, greatly impeding treatment efficacy (3). Mos also participate in pro- and antitumor processes within non-small cell lung cancer (NSCLC) microenvironments (4). We have been developing formalinfixed (FF) and electroporated (EP) NSCLC exosome-based immunotherapeutic nanocarriers to antagonize M\u00f6 pro-tumor functions in vivo. However, it is unknown whether the nanocarriers themselves, devoid of immunotherapeutics, influence M¢ function.

Objective

response to FF, EP, or FF EP NSCLC exosomes, depend on the pre-existing Mo polarization state.

Methods

- converted to Mos using phorbol myristate acetate.
- THP-1 M\u00f3s (M0) were polarized to anti-tumor (M1) and protumor (M2) Mφs using typical IFN-γ and M-CSF treatment regimens.
- Post polarization, Mos were treated with equivalent amounts of formalin-fixed (FF), electroporated (EP), or FF EP modified human A549 NSCLC exosomal nanocarriers for 24 hours.

• Subsequently, qRT-PCR was used to assess shifts in Mo polarization. Induction of key M1 (TNF- α , NOS2), and M2 (IL-10, ARG1) markers were evaluated.

Macrophage Polarization Status Influences Macrophage Responsiveness to Lung Cancer Exosome-derived Nanocarriers

Jeremy B. Jones, Gina T. Bardi, and Joshua L. Hood M.D., Ph.D. University of Louisville, Department of Pharmacology and Toxicology & the James Graham Brown Cancer Center, Louisville, KY

Results

120

100

100

FF EP Exo FF Exo EP Exo Exo M1, % change in ARG1 <u>o</u> 160 FF Exo FF EP Exo EP Exo Figure 2. Formalin-fixed (FF) and/or electroporated (EP) NSCLC exosomes (Exo) influence M1 M¢ polarization status. Error bars = SD (n = 3), * = p value < 0.05 (2-tailed)Student's t-test) versus non-treated control (normalized to 100%)

exosomes (Exo) influence M0 Mø polarization status. Error bars = SD (n = 3), * = p value < 0.05 (2-tailed)Student's t-test) versus non-treated control (normalized to 100%)

Figure 3. Formalin-fixed (FF) and/or electroporated (EP) NSCLC exosomes (Exo) influence M2 M¢ polarization status. Error bars = SD (n = 3), * = p value < 0.05 (2-tailed)Student's t-test) versus non-treated control (normalized to 100%)

Macrophage Ratio NOS2

A novel implication to the findings presented herein is that processes used to convert exosomes into nanocarriers could impart unforeseen functional properties to the nanocarriers. This in turn could influence the efficacy of therapeutic cargo. Development of protocols to screen the functional effects of such conversion processes might be incorporated into good manufacturing practices for exosome-based nanomedicines. Future investigations will explore the mechanism(s) driving EP and FF-modified exosome influences on Mo polarity using additional markers, and determine whether other tumor exosome and M
\$\phi\$ types produce similar results.

Summary & Conclusions

pre-polarization status:	M0	M0	M0	M0	M1	M1	M1	M1	M2	M2	M2	M2
osome treatment>	Exo	FF Exo	EP Exo	FF EP Exo	Ехо	FF Exo	EP Exo	FF EP Exo	Ехо	FF Exo	EP Exo	FF EP Exo
rtokine)	1	1	1	$\mathbf{\uparrow}$	$\mathbf{+}$		1	$\mathbf{\uparrow}$	1	1	^	1
zyme)	\checkmark	\checkmark	\checkmark	\checkmark	$\mathbf{+}$	\checkmark	$\mathbf{\downarrow}$	\checkmark	$\mathbf{\downarrow}$	\checkmark	\checkmark	\checkmark
okine)	1	1	1	1	$\mathbf{+}$	1	1	1	1	1	★	1
zyme)	\checkmark	↓	↓	↓	$\mathbf{+}$	\checkmark	1	\checkmark	$\mathbf{\downarrow}$	\checkmark	\checkmark	\checkmark
′ IL-10:	= 1.0	= 1.0	< 1	< 1	= 1.0	< 1	> 1	< 1	< 1	< 1	< 1	< 1
>	None	None	M2	M2	None	M2	M1	M2	M2	M2	M2	M2
ARG1:	= 1.0	> 1	< 1	>1	= 1.0	= 1.0	< 1	>1	> 1	> 1	> 1	>1
>	None	M1	M2	M1	None	None	M2	M1	M1	M1	M1	M1
nbined Polarity Shift>	None	M1	M2	Mix	None	M2	Mix	Mix	Mix	Mix	Mix	Mix

The results demonstrate no shift in M0 Mo polarization status following exposure to natural A549 NSCLC exosomes (Exo). However, treatment with FF Exo skewed M0 polarization toward

M1. In contrast, treatment with EP Exo shifted M0 status toward M2. Treatment with FF EP Exo shifted M0 status toward a mixed (M1/M2) phenotype.

An overall different pattern was observed for M1 M ϕ s. Treatment of M1M\u00f6s with natural A549 NSCLC Exo, similar to M0 M\u00f6s, resulted in no shift in M1 polarization status. Yet, unlike M0 M
 results, all M1 and M2 cytokine and enzyme markers were reduced. In further contrast to M0 Møs, exposure of M1M\u00f6s to FF Exo resulted in M2 polarization, and exposure to EP Exo or FF EP Exo resulted in a mixed (M1/M2) phenotype. Finally, treatment of M2 Mqs with Exo, FF Exo, EP Exo, or FF EP Exo resulted in mixed (M1/M2) polarization. Collectively, the results demonstrate that Mo polarization status, influences Mo responsiveness to natural, FF and/or EP modified NSCLC exosomes.

Significance and Impact

References

.. and S.A. Wickline, A systematic approach to exosome-based translational nanomedicine. Wiley Interdiscip Rev Nanomed hnol. 2012. 4(4); p. 458-67. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine (Lond), 2016. 11(13): p. 1745-56.

amboni, W.C., et al., Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res, 2012 **18**(12): p. 3229-41

Ohri, C.M., et al., Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J, 2009. 33(1): p. 118-26

Acknowledgements

Research was supported by the University of Louisville Cancer Education Program NIH/NCI (R25-CA134283), The Elsa U. Pardee Foundation, and University of Louisville faculty start-up funds to J. L. Hood.