Core Lecture: Esophageal Motility Disorders

John M. Wo, M.D.
Division of Gastroenterology/Hepatology
August 30, 2007
Core Lecture:
Esophageal Motility Disorders

• Normal esophageal anatomy and physiology
• Evaluation of esophageal function
• Classification of esophageal motility disorders
 – Hypercontracting and hypocontracting esophagus
• Specific esophageal motility disorders
Symptoms Suggesting Esophageal Origin

• Esophageal
 – Heartburn
 – Regurgitation
 – Dysphagia
 – Odynophagia
• Other
 – Atypical GERD (shortness of breath, cough, hoarseness, throat clearing, sore throat, globus, etc.)
 – Chest pain
 – Aspiration
 – Weight loss
• Any vagal or myenteric neuropathy may result in esophageal motility disturbance
 – Hypercontracting or Hypocontracting esophagus
Evaluation of the Esophagus

- Barium swallow (with barium tablet)
- Timed barium swallow (achalasia protocol)
- Upper endoscopy
- **Esophageal manometry**
- Ambulatory pH monitoring
 - Bravo and transnasal
- Esophageal provocation testing
 - Acid, tensilon, balloon distension
- Esophageal impedance
Clinical Utility of Esophageal Manometry

1. To accurately define esophageal motor function
2. To define abnormal motor function
3. To delineate a treatment plan based on motor abnormalities

Indications for Esophageal Manometry

- Diagnose achalasia
- Suspect impaired esophageal motility
- Dysphagia of unclear etiology
- Pre-op evaluation for fundoplication
- Post-fundoplication evaluation
- Suspect diffuse UGI dysmotility
Esophageal Manometry Methods

- Water perfusion manometry
- Solid state manometry
 - Standard (every 5 cm)
 - High resolution (every 1 cm)
Esophageal Manometry: LES Station Pull-Through

Deep inspiration

Pressure
- LES resting pressure
- LES relaxation
- Proximal margin of LES

(RIP) respiratory inversion point
Esophageal Manometry:
Esophageal Body Measurements

3 cm
• Mean distal esophageal P
• % peristalsis
Normal Esophageal Manometry

<table>
<thead>
<tr>
<th>Pressure</th>
<th>mmHg (SD)</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>LES</td>
<td>15.2 (10.1)</td>
<td>15 - 45</td>
</tr>
<tr>
<td>Mean distal P</td>
<td>99 (40)</td>
<td>40 – 180</td>
</tr>
<tr>
<td>% of peristalsis</td>
<td>----</td>
<td>> 60%</td>
</tr>
</tbody>
</table>

High-Resolution Esophageal Manometry

Each sensor has 12 pressure sensitive segments that add to the signal at that location.
Normal Peristalsis and Sphincter Relaxation
Classifications of Esophageal Motility Disorders

Hypercontracting esophagus (Esophageal spastic disorders)
- Diffuse esophageal spasm
- “Nutcracker”
- Hypertensive LES

Hypocontracting esophagus
- Primary achalasia
- Secondary achalasia or impaired esophageal motility
 - Connective tissue diseases
 - Systemic sclerosis
 - Mixed connective tissue disease
 - Idiopathic inflammatory myopathy
 - Endocrine diseases
 - Diabetes
 - Neuromuscular diseases
 - Chagas disease
 - Amyloidosis
 - Paraneoplastic syndrome
Results of Esophageal Manometry at UofL

Lower esophageal sphincter

- Hypertensive LES: 4%
- Hypotensive LES: 44%
- Normotensive LES: 52%

Esophageal body

- Impaired peristalsis: 22%
- Normal peristalsis
- Nutcracker: 2%

Kindig at el. Presented at DDW 2007 (n=2,796 manometries, achalasia excluded).
Scatter Plots Comparing Esophagus Body and LES

Kindig at el. Presented at DDW 2007 (n=2,796 manometries, achalasia excluded).
Hypercontracting Esophagus
(Esophageal Spastic Disorders)
Hypercontracting Esophagus

- Diffuse esophageal spasm
- Hypertensive LES
- Hypertensive esophagus ("Nutcracker")
Diffuse Esophageal Spasm

>20 % simultaneous contraction
Hypertensive LES

LESP >45 mmHg
Hypertensive Esophagus
(“Nutcracker” Esophagus)

- Esophageal body P > 180 mmHg
- Normal peristalsis
Overlap is Uncommon between Hypertensive LES and Hypercontracting Esophageal Body (“Nutcracker”) (Kindig et al. Presented at DDW 2007 (n=132 patients with hypercontracting esophagus)).
Underlying Causes of Esophageal Spastic Disorders

- GERD
- Esophageal obstruction
 - Stricture
 - Fundoplication
 - Food impaction
- Distension
 - Aerophagia
- Mucosal injury
 - Esophagitis
 - Bravo probe
- Idiopathic
- Secondary esophageal motility disorders
 - Diabetes
 - Pseudoobstruction
 - Amyloidosis
 - Paraneoplastic
Manifestation of Hypercontracting Esophagus

- Noncardiac chest pain
- Intermittent dysphagia
- Heartburn & regurgitation
Non-Cardiac Chest Pain

- Difficult to differentiate non-cardiac from cardiac chest pain.
- Patients may present with squeezing chest pain radiating to the back, left shoulder or jaw, mimicking myocardial ischemia.
- Chest pain can interrupt daily activity and increase work absenteeism.¹

Brain-Gut Axis for Esophageal Chest Pain

Esophageal Origin for Noncardiac Chest Pain

- Acid/Bile
- Obstruction
- Distension
- Temperature of bolus
- Mucosal injury

CNS (Chest Pain)

Sensory Component

Effector Component

Esophagus (Esophageal Spasm)

Abnormal sensation
Psychological factors
Esophageal Spastic Disorders

• Lack of neuromuscular pathology
 – No loss of ganglion cells
 – Inconsistent changes by EM
 – No correlation with disease severity
Evaluation of Non-Cardiac Chest Pain

• Look for underlying cause
• Diagnostic testing
 – PPI test
 – Esophageal manometry
 – Upper endoscopy
 – Ambulatory pH monitoring
 – Ambulatory pH/impedance monitoring
Upper Endoscopy in Non-Cardiac Chest Pain

• Erosive esophagitis and Barrett’s esophagus are found in only 10-25% of patients with non-cardiac chest pain. ¹

• Given its low yield, upper endoscopy is not recommended as part of the initial workup.

PPI Test for Non-Cardiac Chest Pain

- Sensitivity 78%
- Specificity 86%

Omeprazole 40 mg in the morning and 20 mg at night.

PPI Test for Non-Cardiac Chest Pain

• Computer decision analysis models find that starting with the PPI test reduces the need for diagnostic procedures by 43% - 59%. 1-2

• Diagnostic testing should be reserved for non-responders to empiric PPI therapy.

Results of Ambulatory pH Testing in Patients With Non-Cardiac Chest Pain

104 patients

48% Normal pH test
52% Abnormal pH test

Esophageal Motility Abnormalities in Patients with Non-Cardiac Chest Pain

Esophageal Spastic Disorder is Intermittent

- Normal (12%)
- Nutcracker (38%)
- Other motility pattern (50%)

Achem et al. Am J Gastroenterol 1993;847-851
Smooth Muscle Relaxant is Ineffective for Esophageal Spastic Disorders

<table>
<thead>
<tr>
<th>Study*</th>
<th>Therapy</th>
<th>Motility</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattau '91 (n=14)</td>
<td>Diltiazem</td>
<td>↓ Pressures</td>
<td>Improved</td>
</tr>
<tr>
<td>Drenth '90 (n=8)</td>
<td>Diltiazem</td>
<td></td>
<td>No benefit</td>
</tr>
<tr>
<td>Richter '87 (n=20)</td>
<td>Nifedipine</td>
<td>↓ Pressures</td>
<td>No benefit</td>
</tr>
<tr>
<td>Davies '87 (n=8)</td>
<td>Nifedipine</td>
<td></td>
<td>No benefit</td>
</tr>
<tr>
<td>Nasarallah '85 (n=20)</td>
<td>Nifedipine</td>
<td>No benefit</td>
<td>Benefit</td>
</tr>
<tr>
<td>Davies '82 (n=10)</td>
<td>Nifedipine</td>
<td></td>
<td>No benefit</td>
</tr>
</tbody>
</table>

*Placebo-controlled cross-over studies
Esophageal Motility Abnormalities are Mostly Non-Specific Phenomena from External Stimuli

- Stress can alter esophageal pressures. ¹
- Many patients with hypercontracting esophagus have GERD. ²
- Look for secondary causes

PPI Treatment for Non-Cardiac Chest Pain

Individual pain score

Overall symptom improvement

- Omeprazole 20 mg bid (n=17) x 8 wks
- Placebo (n=19)

Patients with chest pain and +pH test
PPI Treatment for Non-Cardiac Chest Pain

• Empiric treatment with a twice daily PPI for 2 to 3 months is a reasonable approach.
• PPI may also be effective in patients with hypercontracting dysmotility associated with GERD.

Difficult Cases
A Patient with Intermittent Dysphagia
A Patient with Intermittent Dysphagia (Cont.)
A Patient with Hypertensive LES
Hypocontracting Esophagus: Aperistalsis and Impaired Esophageal Peristalsis
Esophageal Aperistalsis

- Primary aperistalsis (achalasia)
- Secondary aperistalsis
 - Connective tissue diseases
 - Chagas disease
 - Paraneoplastic syndrome
 - Post-fundoplication
 - Vagal trauma
 - Severe GERD
A. NORMAL PATIENT

pre-ganglionic vagal fiber

post-ganglionic fiber

CCK-OP

LES muscle

B. ACHALASIA PATIENT

CCK-OP

LES muscle

Primary Achalasia

• Decrease # of inhibiting neurons in the LES
• Patients can be young or old
• Etiology is still unclear
 – Inflammatory response and infection likely
• Chronic progression of symptoms
• Presentation can be subtle in early achalasia
Symptoms of Achalasia Can be Diverse

- Chronic dysphagia to liquids and solids
- Nocturnal regurgitation
- Chest pain
- Heartburn
- Weight loss
- Aspiration/choking
Achalasia
Timed Barium Esophagram

Swallow 100-250cc of 45% barium over 30-45 seconds. Take pictures at 1, 2 and 5 minutes.
- Elevated LES pressure
- Poor LES relaxation
• Absent esophageal peristalsis (required to diagnose achalasia)
Achalasia
Treatment Should be Individualized in Primary Achalasia

- Nitrates and calcium channel blockers
 - Benefit is short term
- Endoscopic botox injection
 - Symptoms always recur
 - Useful for elderly patients or poor surgical candidates
- Endoscopic pneumatic dilation
- Laparoscopic Heller myotomy
Achalasia: Pneumatic Balloon Dilation
Achalasia:
Pneumatic Balloon Dilation

Obliterate the “waist” created by the LES
Pneumatic Dilation in Achalasia

- Goal: rupture the LES
 - Gastrograffin & barium swallow after dilation
- Success
 - 65-80%
- Perforation
 - 2 to 15% (depends on balloon size)
Impaired Esophageal Peristalsis

Mean distal peristaltic P < 30 mmHg
or
Peristaltic waves < 60%

Underlying Causes of Secondary Achalasia and Hypocontracting Esophagus

- GERD
- Connective tissue diseases
 - Systemic sclerosis
 - Mixed connective tissue disease
 - Idiopathic inflammatory myopathy, lupus, Sjogren’s
- Endocrine diseases
 - Diabetes
- Neuromuscular diseases
 - Chagas disease
 - Amyloidosis
 - Paraneoplastic syndrome
 - Autonomic neuropathy
Systemic Sclerosis

• Early stage
 – Neural dysfunction, ?Vascular insufficiency
 – Esophagus response to edrophonium
• Late stage
 – Neural and muscular dysfunction
 – Smooth muscle fibrosis
 – Poor response to methacholine
• Acid reflux is associated with impaired esophageal motility
Systemic Sclerosis
Paraneoplastic GI Motility Syndrome: Anti-Hu Antibody* Against Enteric Neurons

*Antinuclear neuronal antibodies (ANNA)
Paraneoplastic GI Motility Syndrome

- Cancer antigens mimicking neuronal tissues.
- Myenteric plexus infiltrated by lymphocytes and plasma cells.
- Cancers
 - Small cell lung cancer (80%), breast, ovarian, multiple myeloma, Hodgkin’s lymphoma.
- GI symptoms can precede diagnosis of cancer.
Summary: Esophageal Motility Disorders

• Hyper vs. Hypocontracting esophagus
• Hypercontracting (esophageal spastic) disorders represent a dysfunction rather than the cause
• Look for underlying cause
 – GERD, systemic diseases, diffuse motility disorder, paraneoplastic, etc.