Hepatorenal Syndrome

Major Criteria

HEPATOLOGY 1996;23:164-176

- Chronic or Acute Liver Disease + Hepatic Failure + Portal Hypertension.
- Low GFR (Cr>1.5 mg/dL or CrCl<40 ml/min)
- Absence of: shock, infection, nephrotoxin, volume depletion.
- No Response to: diuretic withdrawal + 1.5 L 0.9% NaCl infusion.
- Proteinuria <500 mg/dL & U/S without obstruction or parenchymal renal disease.
Hepatorenal Syndrome
Minor Criteria

Urine Volume < 500 mL/d.
Urine Na < 10 mEq/L.
Urine Osm > Plasma Osm
Urine RBC < 50/hpf
Serum Na < 130 mEq/L
Hepatorenal Syndrome
2007 Criteria
GUT 2007;56:1310-1318

- Cirrhosis with ascites
- Cr > 1.5 mg/dL (Classic but suboptimal criteria)*
- Absence of shock.
- No decrease of creatinine to < 1.5 mg/dL after 2 days of:
 - Diuretic withdrawal +
 - Volume expansion with albumin 1 g/kg per day (up to 100 g/day).
- No current or recent treatment with nephrotoxic drugs.
- Absence of parenchymal kidney disease:
 - Proteinuria < 500 mg/dL,
 - Urine sediment with < 50 RBC/hpf &
 - U/S without obstruction or parenchymal renal disease.

*Best Criteria: an increase, in < 48 hours, of serum creatinine >/= 0.3 mg/dL, or 1.5 times from baseline if CrCl was < 60 mL/min by MDRD-6 (Stage 1 AKI)

Granular and epithelial casts may be due to high bili; FENa may be < 1% in ATN + Cirrhosis
Hepatorenal Syndrome Subtypes

TYPE I
- Rapidly progressive decrease in GFR
- Doubling Cr to >2.5 (or 50% drop of Cr CI to < 20 ml/min) in < 2 weeks
- Pattern: AKI

TYPE II
- Slowly progressive renal failure
- Cr = 1.25-2.5 mg/dL or (Cr CI < 40 mL/min).
- Pattern: refractory ascites
Precipitating Factors

- Cirrhosis with:
 - Infection (SBP and others)
 - GI Bleed
 - Refractory ascites (NSAIDs may trigger refractory ascites)

- Alcoholic hepatitis

- Worsening chronic liver failure

- Fulminant liver failure (including massive metastasis)
Hepatorenal Syndrome
Predisposing Factors

- Ascites
- Diuretic resistance or intolerance.
- Extreme activity of renin-angiotensin & sympathetic system
- Infection

Risk of HRS in patients with ascites

- 1 year
- 5 year

%
Mortality of HRS-1

Gastroenterol 1993;105:229

Probability of Survival

Survival

weeks

0 2 4 6 8 10

0 0.2 0.4 0.6 0.8 1

Survival
Predicting Hepatorenal Syndrome

Can impending HRS be predicted?
Impending Hepatorenal Syndrome

Yes, when ascites turns “diuretic-resistant” or when infection (e.g.: SBP) occurs
Early detection of Diuretic-Resistant Ascites
Diuretic-Refractory Ascites

Furosemide-Natriuresis Test

Hepatology 2001;33:28-31

- **Definition:**
 - Not responsive to spironolactone 200 + furosemide 80 + metolazone 2.5

- **Protocol:**
 - No diuretics x 3 days
 - 80 mEq Na diet
 - Furosemide 80 mg IV
 - Eight hour urine study

- **RESULT:** Na < 50 mEq in 8 hours indicates refractory ascites.

Graph:

- **8-hour Natriuresis**
 - mEq Na
 - 250
 - 200
 - 150
 - 100
 - 50
 - 0
 - Non-Ref
 - Refract

- **Non-Ref:**
- **Refract:**
Identification of Diuretic-Resistant Ascites by Spot-Urine Na/K

Hepatology 2002; 36(4):222A

- **Background**: 95% of patients who respond to diuretics, while on 2 gm Na (88mEq) diet, will have a Na/K ratio >1 in a 24h urine collection
- **AIM**: can spot urine Na/K predict response to diuretics?
- **Population**: 28 patients with cirrhotic ascites on 2gm Na diet, receiving spironolactone + furosemide
- **Measurements**: Na & K in
 1) **24 h urine** and compared with
 2) **post-diuretic spot-urine @**
 - a)0-3h, b)3-6h, c)6-9h, or d)24h (just before next-day dose)
Spot-Urine vs 24 h Urine Na/K

Results

When Spot-Urine Na/K ratio is measured 24 hours post-diuretics:

- If Na/K ratio is > 1, then 87% of patients will be diuretic-responsive.
- If Na/K ratio is ratio < 1, then 94% of patients will be either:
 - A) In a sub-optimal dose of diuretics, or
 - B) Diuretic-resistant, if in maximal diuretic dose (Risk of HRS)
Diuretic-resistant Ascites (Impending HRS)

- Diuretic-resistant (Refractory) ascites can be identified while in a 2 gm Na diet, by either:
 - Spot-Urine Na/K ratio < 1, 24 h after last diuretic dose while on maximal diuretic dose.
 - Natriuresis of < 50 mEq, in 8-hours urine collection after 80 mg of IV furosemide

- Management as HRS should be considered for these patients.
Prevention of HRS-1 in

Cirrhotics with Infection (SBP)
and
Cirrhotics with ascites and Azotemia
SBP & HRS-I
(Sort et al NEJM 1999;341:403-409)

KNOWN POOR PROGNOSIS FACTORS FOR SBP

- Creatinine > 2.1 mg/dl
- HRS
- Albumin < 2.5 mg/dl
- Bilirubin > 8 mg/dl
- PSE
- UGI bleed

Study: ALBUMIN infusion in SBP

- Prosp.& Random
- SBP: > 250 PMN/mm3
- Creatinine < 3 mg/dl
- 63 Pts.: Cefotaxime
- 63 Pts.: Cefotaxime + Albumin 1.5gm/kg & 1 gm/kg 3 days later
SBP & HRS-I
(Sort et al. NEJM 1999;341:404-409)

OUTCOMES

Renal impairment:
- a) If base Cr > 1.5: > 50% increase of BUN or Cr
- b) If base Cr < 1.5: > 50% increase to Cr >1.5 or BUN>30

Death

![Bar chart showing Renal Imp and Mortality rates for Albumin and No-Albumin groups.](chart.png)
In patients with antibiotic-treated SBP, early volume expansion with IV albumin:
– decreases risk of HRS and
– improves survival.
Prevention of hepatorenal syndrome in patients with cirrhosis and ascites: a pilot randomized control trial between pentoxifylline and placebo.

Eur J Gastroenterol Hepatol. 2011 Mar;23(3):210-7

- 176 consecutive patients with cirrhosis and ascites were screened.
- Patients with creatinine clearance (CrCl) between 41 and 80 ml/min and serum creatinine of less than 1.5 mg/dl in absence of renal disease were randomized to receive either:
 - Pentoxifylline (group A) 1200 mg/day, or
 - Placebo (group B) for 6 months.
- Patients were followed monthly for 6 months; kidney function test were done at baseline, 1, 3, and 6 months.
- Primary endpoint was development of HRS within 6-months of follow-up.
Prevention of hepatorenal syndrome in patients with cirrhosis and ascites:
a pilot randomized control trial between pentoxifylline and placebo.
Eur J Gastroenterol Hepatol. 2011 Mar;23(3):210-7

In Group A (Pentoxifylline):
- Improvement occurred in CrCl at 1 month (61.7±16.0 vs. 82.0±30.0 ml/min, P = 0.001) and at 3 months (61.7±16.0 vs. 86.2±30.7 ml/min, P = 0.001)

In group B (Placebo):
- CrCl was stable at 1 month (63.1±14.5 vs. 66.8±28.2 ml/min, P = 0.37) but decreased at 3 months (63.1±14.5 vs. 54.4±18.3 ml/min, P = 0.008)

12 patients developed HRS:
- Group A (Pentoxifylline): 2 patients (type-1 HRS, n = 2) (P = 0.01)
- Group B (Placebo): 10 patients (type-1 HRS, n = 9 and type-2 HRS, n = 1)

CONCLUSION: Pentoxifylline is effective in preventing HRS in patients with cirrhosis and ascites at risk of HRS.
Primary Prophylaxis of SBP Prevents HRS and Improves Survival

Fernandez J et al. GASTROENTEROLOGY 2007;133:818–824

- Prospective Randomized
- Cirrhotics with low-protein ascites AND
 - Child-Pugh >/= 9 with TB >3 mg/dL, or
 - Cr >/= 1.2 mg/dL, or
 - Na </= 130 mEq/L.
- Group A (N:35): Norfloxacin 400 mg/d x 1 y
- Group B (N:33): Placebo x 1 y
- End-Points:
 - Survival at 3 & 12 months
 - 1-year probability of SBP & HRS
- RESULT: Norfloxacin decreased SBP, delayed HRS, & improved survival.
Primary Prophylaxis of SBP Prevents HRS and Improves Survival

Fernandez J et al. GASTROENTEROLOGY 2007;133:818–824

![Graphs showing the probability of HRS and survival](image)

Probability of HRS
- Placebo (n=33)
- Norfloxacin (n=35)

Probability of Survival
- Placebo (n=33)
- Norfloxacin (n=35)

<table>
<thead>
<tr>
<th>Days</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Norfloxacin 35</td>
</tr>
<tr>
<td>100</td>
<td>26 (1)</td>
</tr>
<tr>
<td>200</td>
<td>17 (3)</td>
</tr>
<tr>
<td>300</td>
<td>14 (4)</td>
</tr>
<tr>
<td>400</td>
<td>10 (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Placebo 33</td>
</tr>
<tr>
<td>100</td>
<td>13 (9)</td>
</tr>
<tr>
<td>200</td>
<td>7 (10)</td>
</tr>
<tr>
<td>300</td>
<td>2 (10)</td>
</tr>
<tr>
<td>400</td>
<td>1 (10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Norfloxacin 35</td>
</tr>
<tr>
<td>100</td>
<td>26 (2)</td>
</tr>
<tr>
<td>200</td>
<td>17 (7)</td>
</tr>
<tr>
<td>300</td>
<td>14 (9)</td>
</tr>
<tr>
<td>400</td>
<td>10 (10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Placebo 33</td>
</tr>
<tr>
<td>100</td>
<td>13 (11)</td>
</tr>
<tr>
<td>200</td>
<td>7 (13)</td>
</tr>
<tr>
<td>300</td>
<td>2 (13)</td>
</tr>
<tr>
<td>400</td>
<td>1 (13)</td>
</tr>
</tbody>
</table>
HRS-Type 1

MEDICAL THERAPY
HRS-type 1

Medical Therapy

- Ornipressin + Albumin (1998)
- N-Acetylcysteine (1999)
- Midodrine + Octreotide + Albumin (1999)
- Noradrenaline + Albumin (2002)
- Terlipressin + Albumin (2008)
- TIPS
Ornipressin & Albumin

ORNIPRESSIN
- Splanchnic vasoconst.
- Increases SVR
- Increases Blood Pressure
- Systemic vasoconstrict
- Coronary vasoconstrict
- Decrease Card. output

ALBUMIN
- Expands intravascular volume
- Decreases Plasma Renin Activity
Hepatorenal Syndrome-I & Ornipressin + Albumin

HEPATOLOGY 1998;27:35-41

Patients:
- 8 with all 5 major HRS-I criteria.
- Median age=53; M/F=6/2; ascites= 75%
- Median Cr= 3.2 mg/dL; Inulin Cl=10mL/m

Intervention:
- Ornipressin 2 IU/h x 15 d + Albumin (20%) 1g/Kg
- Goal: to normalize Plasma Renin Activity

MAP effect: raised from 69+/-3, to 84+/-4 mmHg

Complications:
- Four d/c therapy (day 4-9) due to ischemia
Hepatorenal Syndrome-I & Ornipressin + Albumin

Serum Creatinine (mg/dL)

day 0 day 4 day 7 day 15

Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8
N-Acetylcysteine

- Antioxidant
- Improves Renal Function in Experimental Cholestasis/Renal Failure
- Acetaminophen Induced Liver/Renal Failure: trend to improved renal function
Twelve pat. with all 5 major HRS-I criteria
ALD=9, HCV=2, AIH=1
NAC IV 150 mg/Kg in 2 h +
100 mg/Kg/d x 5 days

Base Cr= 2.5mg/dL & CrCl= 24 mL/min
EOT Cr=1.9mg/dL & CrCl= 43 mL/min

Survival: 1 month= 67%; 3 months=58%
Hepatorenal Syndrome-I & NAC

Relative change with NAC

- Creatinine: Baseline 0.76, Day 5
- Cr Clearance: Baseline, Day 5 1.79
- Urine Na: Baseline, Day 5 1.5
Midodrine & Octreotide

MIDODRINE
- Alpha-1-adrenergic agonist (arteriolar and venous constriction)
- Increases renal perfusion
- Increases blood pressure

OCTREOTIDE
- Splachnic arterial vasoconstriction
- Decreases Portal Pressure
- Decreases glucagon (vasodilator)
- Increases GFR
Midodrine + Octreotide vs. Dopamine in HRS-1

Hepatology 1999;29:1690-1697

Patients:
- 15 consecutive, Type 1 HRS by 5 major criteria
- Two excluded: Heart disease & DM

Treatment Groups:
- First 8: Dopamine + Albumin
- Next 5: Midodrine + Octreotide + Albumin
Hepatorenal Syndrome-I
Midodrine + Octreotide
Hepatology 1999;29:1690-1697

All Patients received:
- IV albumin to CVP of 12 mm Hg

Treatment Arms:
- Dopamine 2-4 mcg/kg/min IV infusion, or
- Midodrine 7.5-12.5 mg p.o. TID + Octreotide 100-200 mcg SQ TID

Goal:
- Plasma Renin Activity reduced > 50% after 3 days of therapy, and/or
- Raise MAP > 15 mmHg
Hepatorenal Syndrome-I

Midodrine + Octreotide

Hepatology 1999;29:1690-1697

- Ascites + Cr >2mg/dl
- Off diuretics 5 days
- IV albumin .8-1.5 L/d x4
- Urine Na <10 mEq/L
- Normal sediment & Renal U/S
- No infection or shock
- MAP effect: M/O/A group increased from 75.9+/--3 to:
 - 90.9+/--5.2 @ 5d, and
 - 96.9+/--6.5 @ day 10

30 day survival in HRS
HRS-I + Low Dose Dopamine
Serum Creatinine (mg/dL)

Hepatology 1999;29:1690-1697
Dopamine 2-4 mcg/kg/min
HRS-I + Midodrine & Octreotide
Serum Creatinine (mg/dL)

Hepatology 1999;29:1690-1697
Mortality & Sustained Response
Octreotide + Midodrine in HRS

Mortality

Sustained improved GFR

Oct + Mid
Control

Oct + Mid
Control

30-day 90-day

30-day 90-day
HRS-I & Noradrenaline + Albumin
(Duvoux et al. Hepatology 2002;36:374-380)

- Prospective study
- Patients:
 - 12 consecutive cirrhotic patients
 - Type-I HRS
- Exclusion criteria:
 - Child-Pugh score > 13,
 - CAD,
 - obstructive cardiomyopathy,
 - ventricular arrhythmia,
 - obliterative arterial disease of lower limbs,
 - infection within last week.
HRS-I & Noradrenaline + Albumin
(Duvoux et al. Hepatology 2002;36:374-380)

- Age: 54+/-11
- Child-Pugh: 11.3+/-1.7
- Bili: 16.6+/-10.3
- Creatinine: 2.7+/-1.1
- Cr Clearance: 16.1+/-14
- Serum Na: 123+/-6
- Urine Na: 10+/-16
- Urine volume: 697+/-555
HRS-I & Noradrenaline + Albumin
(Duvoux et al. Hepatology 2002;36:374-380)

- Volume Expansion x 48 h
 -20% albumin infusion to goal CVP > 4
 -Lasix 120mg IV Q4 to goal U/O 25cc/h

- If creatinine not improved and U/O < 600cc/d:
 -Noradrenaline 0.5 mg/h and increased by 0.5mg/h q4h (max 3 mg/h) until MAP increases by > 10 mmHg and U/O to > 50cc/h

- End point:
 - resolution of HRS (Cr < 1.5, or CrCl > 40cc/min), or
 - 15 days of therapy.

- MAP effect: raised from 65+/-7, to 74+/-7 mmHg
HRS-I & Noradrenaline + Albumin
Serum Creatinine (mg/dl)
HRS-I & Noradrenaline + Albumin
Two-month Survival

Survival w/o TX
Survival w TX
Patients with Type I or II HRS (74 & 78% were type I)

Randomized, prospective.

All patients:
- D/C diuretics and received
- Albumin (20%) 1 g/kg day 1; then 40 g/d.
- Goal CVP: 10-15
- Lasix IV if CVP > 18

Terlipressin 1 mg IV bolus q4h x 3 days; if creat has not decrease by 25%, increased to 2 mg q4h
RESULTS

- Complete response:
 - Creatinine ≤ 1.5 mg/dL

- Partial response:
 - creatinine drop > 50%, but with final creat > 1.5 mg/dL.

- Response rate:
 - HRS-I: 35%
 - HRS-II: 67%
 - Overall: 43.5%

- MAP effect: in responders increased from 75+/-13 to 84+/-18

Inverse Kaplan–Meier: cumulative incidence of improvement of renal function.
Median time to improvement of renal function with terlipressin and albumin was 11 days
Probability of survival at 3 months
By improvement of renal function (left), and
By base-line MELD score (right graph).
(MELD score could not be calculated in 2 patients).
CONCLUSION:
- Terlipressin + Albumin is effective in reversing HRS
- There was no effect on overall survival
- Responders had improved survival at 3 months: 58% vs 15%.

<table>
<thead>
<tr>
<th>Side Effect</th>
<th>Terlip + Alb (23)</th>
<th>Alb (23)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encephalopathy</td>
<td>70</td>
<td>70</td>
<td>.538</td>
</tr>
<tr>
<td>Bact. Infection</td>
<td>39</td>
<td>55</td>
<td>.23</td>
</tr>
<tr>
<td>GI Bleed</td>
<td>17</td>
<td>26</td>
<td>.722</td>
</tr>
<tr>
<td>Myocardial Infarct</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Intest. Ischemia</td>
<td>13</td>
<td>0</td>
<td>.233</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>9</td>
<td>0</td>
<td>.489</td>
</tr>
<tr>
<td>Volume overload</td>
<td>30</td>
<td>17</td>
<td>.187</td>
</tr>
<tr>
<td>Arterial HTN</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>30</td>
<td>9</td>
<td>.135</td>
</tr>
</tbody>
</table>
Terlipressin in Type-I HRS: Effect on MAP in Responders vs Non-Responders

Sanyal et al. AASLD 2008

- Population: 111 pts with Type-I HRS;
 - Terlipressin = 56; Placebo = 55.

- Intervention:
 - **Terlipressin** 1 mg q 4-6 h iv +
 Albumin 100 g on day 1, then 25 g/day
 - **Placebo** q 4-6 h iv +
 Albumin 100 g on day 1, then 25 g/day
 - Terlipressin or placebo were increased to double-dose if creat has not decreased 30% by day 3.

- Result:
 - Responders: MAP changed from 72.8 +/- 11.6 to 80.7 +/- 7.9
 - Non-Respon: MAP changed from 76.9 +/- 11.3 to 76.5 +/- 12.4
Noradrenaline vs Terlipressin in Type-I HRS

Singh V et al Volume 56, Issue 6, June 2012, Pages 1293–1298

- Design: Prospective, randomized.
- Population: 46 cirrhotics with type-I HRS (60 evaluated)
- Causes for exclusion (14 of 60): severe coronary artery disease (3), sepsis (9), hepatocellular carcinoma (1), diabetic nephropathy (1).
- Arms:
 - A) Terlipressin 0.5 mg IV q 6h increasing q 3d by 0.5 mg up to 2 mg + IV Albumin 20 g/d (hold if CVP ≥ 18 cm of saline)
 - B) Noradrenaline 0.5 mg/h to reach MAP increase of 10 mmHg and U.O > 50 mL/h, increasing dose by 0.5 mg/h q 4h until both are reached, up to 3 mg/h + IV Albumin 20 g/d (hold if CVP ≥ 18 cm of saline)
- Outcomes:
 - Primary: Creat < 1.5 mg/dL;
 - Secondary: 15 days of therapy or death.
Noradrenaline vs Terlipressin in Type-I HRS

Cumulative Probability of Survival; Kaplan-Meier

![Cumulative Probability of Survival Graph]

\[p = 0.591 \]

<table>
<thead>
<tr>
<th>Patients at risk</th>
<th>Day 5</th>
<th>Day 10</th>
<th>Day 15</th>
<th>Day 20</th>
<th>Day 25</th>
<th>Day 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terlipressin group (n = 23)</td>
<td>20</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Noradrenaline group (n = 23)</td>
<td>21</td>
<td>13</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Noradrenaline vs Terlipressin in Type-I HRS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Terlipressin group (A)</th>
<th></th>
<th>Noradrenaline group (B)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Day 15</td>
<td>Baseline</td>
<td>Day 15</td>
</tr>
<tr>
<td></td>
<td>p value (baseline vs. day 15)</td>
<td></td>
<td>p value (baseline vs. day 15)</td>
<td></td>
</tr>
<tr>
<td>Serum creatinine (mg/dl)</td>
<td>3.263 ± 0.81</td>
<td>1.67 ± 0.92</td>
<td>2.82 ± 0.3</td>
<td>1.55 ± 0.5</td>
</tr>
<tr>
<td>Urinary sodium (mEq/L)</td>
<td>60.6 ± 22.3</td>
<td>72.4 ± 22.6</td>
<td>46.9 ± 23.5</td>
<td>73.4 ± 33.2</td>
</tr>
<tr>
<td>Urine output (ml/d)</td>
<td>672 ± 194</td>
<td>1084 ± 417</td>
<td>738 ± 323</td>
<td>1393 ± 529</td>
</tr>
<tr>
<td>Mean arterial pressure (mmHg)</td>
<td>63.2 ± 9.4</td>
<td>70.6 ± 11.2</td>
<td>70.4 ± 12.5</td>
<td>80.3 ± 5.9</td>
</tr>
<tr>
<td>Plasma renin activity (ng/ml/h)</td>
<td>38.68 ± 15.21</td>
<td>10.21 ± 3.60</td>
<td>35.23 ± 10.32</td>
<td>8.96 ± 2.21</td>
</tr>
<tr>
<td>Plasma aldosterone concentration (pg/ml)</td>
<td>1755.67 ± 873.44</td>
<td>668.89 ± 310.82</td>
<td>1757.27 ± 706.14</td>
<td>543.64 ± 269.34</td>
</tr>
<tr>
<td>Number of responders (%)</td>
<td>0</td>
<td>9 (39.1)</td>
<td>0</td>
<td>10 (43.4)*</td>
</tr>
<tr>
<td>Cost of treatment for 15 days (€)</td>
<td>945</td>
<td></td>
<td>275b</td>
<td></td>
</tr>
</tbody>
</table>

Noradrenaline is as safe and effective as terlipressin, but less expensive in the treatment of HRS-I and baseline CTP score \(\leq 10\) is predictive of response.
TIPS in HRS Type I and II

and

TIPS After HRS
TIPS for HRS Type I and II

- Guevara et al. reported on seven patients with type-1 HRS showing:
 - TIPS significantly improved serum creatinine, blood urea nitrogen, glomerular filtration rate and renal plasma flow.
 - Three patients survived by more than 3 months.

- Brensing et al. treated 31 nontransplantable patients (14 type-1 and 17 type-2) and found that:
 - Renal function improved following TIPS.
 - Survival rates: a) HRS-1: @1y = 20%, and @2y = 20%;
 b) HRS-2: @1y = 70%, and @2y = 45%,
 - Due to a bilirubin cut-off of 10 mg/dl, nine patients had to be excluded from TIPS.
 - Liver failure was one of the most frequent causes of death following TIPS.

- Testino et al reported the effects of TIPS in 18 patients with type-2 HRS and a Child-Pugh score of 10-12 awaiting transplantation:
 - All patients improved with respect to ascites and renal function.
TIPS after Reversal of HRS

- Wong et al showed that TIPS may have a role in maintaining patients who initially respond to vasoconstrictor treatment.
 - Fourteen patients with type-1 HRS were treated using a combination of midodrine, octreotide and albumin.
 Medical therapy for 14 days improved renal function in 10/14 patients with mean serum creatinine significantly decreasing from 233 mmol/l (2.6 mg/dL) to 112 mmol/l (1.26 mg/dL).
 - Five responders were then treated with TIPS and showed further improvement in renal function (mean glomerular filtration rate: 96+/-20 ml/min at 12 months).
Effect of TIPS in Natriuresis and Azotemia
Effect of TIPS on Plasma Renin, Aldosterone & Noradrenaline levels
Effect of TIPS on Cardiac Output & Peripheral Vascular Resistance

Effect of TIPS in Nutrition after 6 month Follow-up
TIPS in HRS

- TIPS can improve renal function in type-1 and type-2 HRS and eliminate ascites.
- Data are limited and survival may not be improved in patients with poor liver function.
- TIPS is indicated in selected patients after rescue from HRS and/or in candidates for liver transplantation.
- If MELD > 15-18, or bili > 4 mg/dL patients should be informed of higher 30 d TIPS mortality and TIPS performed only in the absence of other options.
- TIPS cannot be recommended in patients with:
 - severe liver failure (serum bilirubin >5 mg/dl, INR >2 or Child-Pugh score >11),
 - current hepatic encephalopathy (grade 2 or chronic hepatic encephalopathy),
 - concomitant active infection,
 - progressive renal failure, or
 - severe cardiopulmonary diseases
Monitoring:
- Patients with type 1 HRS should be monitored carefully.
- Parameters to be monitored include urine output, fluid balance, and arterial pressure, as well as standard vital signs.
- Ideally central venous pressure should be monitored to help with the management of fluid balance and prevent volume overload.

Location:
- Patients are generally better managed in an intensive care or semi-intensive care unit (Level A1).

Screening for sepsis:
- Bacterial infection should be identified early, by blood, urine and ascitic fluid cultures, and treated with antibiotics.
- Patients who do not have signs of infection should continue taking prophylactic antibiotics, if previously prescribed.
- There are no data on the use of antibiotics as empirical treatment for unproven infection in patients presenting with type 1 HRS (Level C1).
Management of type 1 hepatorenal syndrome

Drug therapy of type 1 hepatorenal syndrome:
- Terlipressin (1 mg/4–6 h intravenous bolus) in combination with albumin should be considered the first line therapeutic agent for type 1 HRS.
- The aim of therapy is to improve renal function sufficiently to decrease serum creatinine to less than 133 mcmol/L (1.5 mg/dl) (complete response).
- If serum creatinine does not decrease at least 25% after 3 days, the dose of terlipressin should be increased in a stepwise manner up to a maximum of 2 mg/4 h.
- For patients with partial response (serum creatinine does not decrease <133 mcmol/L or 1.5 mg/dL) or in those patients without reduction of serum creatinine treatment should be discontinued within 14 days (Level A1).
Potential alternative therapies to terlipressin:
- Include norepinephrine or midodrine plus octreotide, both in association with albumin, but there is very limited information with respect to the use of these drugs in patients with type 1 HRS (Level B1).

Non-pharmacological therapy of type 1 hepatorenal syndrome:
- Although the insertion of TIPS may improve renal function in some patients, there are insufficient data to support the use of TIPS as a treatment of patients with type 1 HRS.

Renal replacement therapy:
- May be useful in patients who do not respond to vasoconstrictor therapy, and who fulfill criteria for renal support.
- There are very limited data on artificial liver support systems, and further studies are needed before its use in clinical practice can be recommended (Level B1).
EASL Practice Guidelines
May 2010

Management of type 2 hepatorenal syndrome

- Terlipressin plus albumin is effective in 60–70% of patients with type 2 HRS.
- There are insufficient data on the impact of this treatment on clinical outcomes (Level B1).
Liver transplantation

Liver transplantation is the best treatment for both type 1 and type 2 HRS.

- HRS should be treated before liver transplantation, since this may improve post-liver transplant outcome (Level A1).
- Patients with HRS who respond to vasopressor therapy should be treated by liver transplantation alone.
- Patients with HRS who do not respond to vasopressor therapy, and who require renal support should generally be treated by liver transplantation alone, since the majority will achieve a recovery of renal function post-liver transplantation.
- There is a subgroup of patients who require prolonged renal support (>12 weeks), and it is this group that should be considered for combined liver and kidney transplantation (Level B2).
Prevention of hepatorenal syndrome

Patients who present with SBP should be treated with intravenous albumin since this has been shown to decrease the incidence of HRS and improve survival (Level A1).

- The same is likely true for other infections (Guevara M et al. *J Hepatol.* 2012 Jun 23) but study too small for survival evaluation.

There are some data to suggest that:

- Treatment with pentoxifylline decreases the incidence of HRS in patients with severe alcoholic hepatitis and advanced cirrhosis.

- Treatment with norfloxacin 400 mg/d decreases the incidence of HRS in advanced cirrhosis (ascites and C-P >/=9 + [Cr >/=1.2, or Na</= 130, or TB > 3 mg/dL]).

- Treatment with pentoxifylline in patients with cirrhosis and ascites, with creatinine clearance of 41-80 ml/min, decreases the incidence of HRS.

- Further studies are needed (Level B2).
Cautions to terlipressin therapy:

- Contraindications include ischemic cardiovascular diseases.
- Patients on terlipressin should be carefully monitored for:
 - development of cardiac arrhythmias or
 - signs of splanchnic or digital ischemia, and
 - fluid overload;
- treatment should be modified or stopped accordingly.

Recurrence of type 1 HRS after discontinuation of terlipressin therapy:

- Is relatively uncommon.
- Treatment with terlipressin should be repeated and is frequently successful (Level A1).
- **Use of beta-blockers:**
 - There are no data on whether it is better to stop or continue with beta-blockers in patients with type 1 HRS who are taking these drugs for prophylaxis against variceal bleeding (Level C1).

- **Use of paracentesis:**
 - There are few data on the use of paracentesis in patients with type 1 HRS.
 - If patients have tense ascites, large-volume paracentesis with albumin is useful in relieving patients’ discomfort (Level B1).

- **Use of diuretics:**
 - All diuretics should be stopped in patients at the initial evaluation and diagnosis of HRS.
 - There are no data to support the use of furosemide in patients with ongoing type 1 HRS. Nevertheless furosemide may be useful to maintain urine output and treat central volume overload if present.
 - Spironolactone is contraindicated because of high risk of life-threatening hyperkalemia (Level A1).
Practical Approach to HRS-I

AVOID HRS:
- Strict Na restriction
- Minimize Diuretics
- Avoid intravascular depletion: albumin/LVP.
- Check for and treat hypothyroidism and adrenal dysfunction.
- No NSAIDs or aminoglicosides
- NAC + Na Bicarbonate for IV contrast
- Albumin in SBP (and other infections)
- Norfloxacine for cirrhosis + ascites & creat >= 1.2 or Na <=130, or TB >3
- Pentoxifylline for AH,
- Add NAC to Prednisolone in AH.
- Pentoxifylline for cirrhosis + ascites & CrCl 41-80 mL/min

EARLY THERAPY:
- Hold diuretics & give IV albumin/0.9%NaCl until CVP 10-15, then
- Raise MAP by 15, or to 85 mmHg* with either Octreotide/Midodrine, or Noradrenaline, or Terlipressin (Phenylephrine also works well), until Cr is < 1.3 mg/dL.
- Check for and treat hypothyroidism and adrenal dysfunction when MAP is difficult to elevate or HRS recurs.
- Consider TIPS if MELD falls to <= 15
- NAC + TIPS
- Liver Transplant
- Pentoxifylline or Misoprostol (?)

*An optimal MAP of 90 mmHg or increase of 15 mm Hg has been suggested (Velez JC et al. *American Journal of Kidney Diseases* - Volume 58, Issue 6 (December 2011)*
Simultaneous Liver Kidney Transplant (SLK Tx) in HRS

Am J. Transplant 2008;8:2243-2251

- In 98 pts receiving SLK Tx: post-Tx dialysis & 3 year survival was the same in those who had HRS (n=22) vs CKD (n=76)

- In pts with HRS:
 - 1-y patient survival was the same with Liver Transplant Alone (LTA) (n=80) & SLK Tx (n=22);
 - Post-Tx dialysis was needed in 89% of LTA, but only 10% needed it for > 30 d.

RECOMMENDATION: In HRS,

- if pre-Tx dialysis is < 8 weeks, give only LTA;
- if dialysis > 8 weeks, give SLK Tx.
Questions ?
Beta-blockers to Prevent Enlargement of Small (F1) Esophageal Varices (127)

Hepatology 2003;38(4):217A

- Multicenter, prospective, randomized, placebo-controlled.
- 161 cirrhotics with F1 varices (N/P=83/78)
- Matched by age, sex, etiology, severity, time since dx. of cirrhosis and varices.
- EGD q 12 mo. up to 60 months F/U or until development of F2 or F3 varices.
- Nadolol to decrease HR by 25% vs Placebo. After F2/F3 all received Nadolol.
CONCLUSION

Nadolol prevents enlargement of small esophageal varices
Propranolol vs Banding as Primary Prevention of Variceal Bleed (128)

- Prospective, randomized, controlled, multicenter.
- 152 cirrhotics with esoph. varices F2/F3 (67/85); Child A/B/C = 71/62/19.
- End-point: bleeding or death (ITT) for up to 2 years.
- Propranolol vs EBL = 77 vs 75
CONCLUSION:

EBL is an effective alternative to Propranolol in the prevention of first variceal bleed, in patients with medium or large esophageal varices.
Effect of Antibiotic Prophylaxis on Rebleeding rate after Endoscopic treatment of Variceal bleed (283)

- Prospective, randomized.
- 91 cirrhotic patients with variceal bleed receiving endoscopic treatment
- Outcome: rate of rebleeding and infection
- Intervention: Ofloxacin 200mg BIDx 7d vs antibiotic for infection (46 vs 45)
- No difference on: age, sex, etiology, endoscopic finding, time to EGD, hepatoma, severity of bleed.
Results (%)

CONCLUSION

Prophylactic antibiotics in variceal bleed decrease rebleeding rate and transfusion needs (0.7 vs 2.7 Units)
Long-term (96 wk) Adefovir in HBeAg(-) HBV (241)

- Sub-group analysis of 80 patients enrolled in a prospective, randomized study of Adefovir vs Placebo who received Adefovir for 96 wks.
- All were HBeAg(-) with mean HBV-DNA 10^7 copies/ml and mean ALT 2.3xULN
Results (%)

CONCLUSION

Adefovir 10mg/d x 96 weeks reduces HBV-DNA and ALT, and improves histology, with infrequent emergence of resistance.
Pegasys +/- Lamuvidine vs Lamuvidine in HBeAg(-)/anti-HBe(+) Chronic HBV (1181)

- Multinational, Phase III, Prospective, Partially Double-Blinded.
- 546 patients, HBeAg(-) & anti-HBe(+), HBV-DNA > 10^5 copies/ml, ALT > ULN, necro-inflammation in Bx., compensated liver disease, randomized 1:1:1
- Treatment x 48 wks + 24 wks F/U.
- A) Pegasys 180 mcg/wk, vs
 B) Pegasys 180mcg/wk + Lamuvidine 100mg/d, vs
 C) Lamivudine 100mg/d
- End-Points: HBV-DNA< 20000 copies/ml & Normal ALT
 @ end-of-follow-up
Patient’s Characteristics

- Gender M/F=85/15
- Race Or/Ca=60/39
- Age 40 +/-11
- Weight 70.5 +/- 12
- Mean ALT 96.9
- Advanced fibrosis 27.5%
- HBV-DNA 7.2+/-1.9 lg
- Genotype A/B/C=5/24/34
- Mutations: pre-core 82%, core-promoter 74%, both 58%
HBeAg-Negative/Anti-HBe-Positive Chronic Hepatitis B

Pegasys, or in Combination with Lamivudine vs. Lamivudine

HBeAg-Negative/Anti-HBe-Positive Chronic Hepatitis B

Pegasys, or in Combination with Lamivudine vs. Lamivudine

HBeAg-Negative/Anti-HBe-Positive Chronic Hepatitis B

Pegasys, or in Combination with Lamivudine vs. Lamivudine

Conclusions

- Pegasys monotherapy shows significantly higher response rates at 24 weeks post-treatment for both ALT and HBV DNA than Lamivudine alone.
- **Pegasys + Lamivudine did not improve response rates.**
- No unexpected AEs were reported, and the addition of Lamivudine did not alter the safety profile.
