Finding the sweet spot: Individualized targets for older adults with Type 2 DM

Samuel C. Durso, M.D., M.B.A.

Mason F. Lord Professor of Medicine
Director, Division of Geriatric Medicine and Gerontology
Johns Hopkins University

No relevant financial relationships

Objectives Prioritize major risks for older adults with Type 2 DM Evaluate health status and preferences Individualize glucose, blood pressure and lipid targets Diabetes mellitus risks Volume depletion and dehydration Poor wound healing • Fatigue and weight loss • MI and death; \geq 20 % over 10 years • Foot ulcer and amputation • Blindness; risk < 5% over 10 years • End stage renal failure < 2% over 10 years Diabetes mellitus risks Volume depletion and dehydration Poor wound healing Fatigue and weight loss • MI and death; \geq 20 % over 10 years • Foot ulcer and amputation • Blindness; risk < 5% over 10 years • End stage renal failure < 2% over 10 years

Diabetes mellitus risks • Volume depletion and dehydration Poor wound healing • Fatigue and weight loss • MI and death; > 20 % over 10 years • Foot ulcer and amputation • Blindness; risk < 5% over 10 years • End stage renal failure < 2% over 10 years **Geriatric conditions** • 50% older adults have ≥ 3 chronic diseases • Falls: 30% per year; 10% injurious • Dementia: 10% prevalence; 30% after age 85 • Urinary incontinence: 15 30% prevalence • Polypharmacy: 40% use ≥ 5 meds per week • Persistent pain: 25 50% • Depression: 15% in primary care setting Risks of therapy • Burden (e.g., insulin, diet restrictions)

- Hypoglycemia (e.g., insulin, sulfonylureas)
- Polypharmacy side effects and costs
- Muscle pain and myopathy with statins
- Orthostatic hypotension

Huang, et al Diabetes Care 2006 Budnitz, et al JAMA 2006 Skyler, et al. J Am Coll Cardiol 2009

Special considerations

- Erratic eating or dependency on being fed
- Care transitions increase medication error
- Inability to report symptoms
- BP goals adults age ≥ 85 are uncertain
- Benefits from statins and aspirin in those > 80 years of age are uncertain

Van Bemmel, et al: J Hypertension 2006 Cayea, Boyd, Durso: Drugs & Aging 2007 Cayea, Durso: Ann Long-term Care 2007

NNT to prevent one event (in person years/event)

	DM Endpoints	CVD Events	All cause Mortality
Glucose Control ^{1,2}	74 196		141 1000 (NS)
HTN Treatment ^{3 8}	11	12 38	19 31
Lipid Management ^{9 1}	12	7 47	57

UKPDS 33; UKPDS 34; UKPDS 38; Tuomilehto, 1999; Lievre, 2000; Estacio, 2000; microHOPE, 2000; Estacio, 2000; Sacks, 1996; Elkeles, 1998; Rubins, 1999; Heart Protection Study (CHF/AGS AGS Symposium, May 2003)

Time needed to benefit

Microvascular Complications (Median Years) Macrovascular Complications (Median Years)

Control of:

Glucose 8 Blood Pressure 2-3 Lipids

3 3 to 6

(CHF/AGS AGS Symposium, May 200

Comprehensive assessment

- Careful assessment of vascular risks and comorbid diseases
- Thorough review of medications
- Assess functional status
- Screen for geriatric syndromes

Blaum, GRS 8 in press

Blood pressure and lipid targets

- Blood pressure < 140/80
- LDL < 100 mg/dl or 70 with CVD
- HDL > 40 mg/dl
- Triglycerides < 150 mg/dl

ADA Standards 2011

Glycemic targets

- Hemoglobin A1C ≤ 7
 - Mean plasma glucose 154 mg/dl (2 3 months)
 Healthy adults with > 10 year life expectancy
- Hemoglobin A1C between 7 8.5
 - Mean plasma glucose 180 mg/dl (2 3 months)
 Adults with limited life expectancy, history of severe hypoglycemia, or advanced microvascular or macrovascular disease

ADA Standards 2011

Нур	Hypoglycemic Drugs			
Medication	Side effects/Properties	Other Considerations		
Metformin	20 – 30% GI; 5% required to stop	Lactic acidosis rare; no weight gain		
Sulfonylureas (glypizide, glyburide, glimepiride)	High risk of hypoglycemia	Glyburide highest risk; all cause weight gain		
Meglitinides (nateglinide, repaglinide)	Short acting; option for erratic eating	Hypoglycemia risk less severe; caution in liver or renal disease		
Thiazolidinediones	Contraindicated in CHF	Not associated with hypoglycemia; monito liver enzymes		
Alpha-glucosidase inhibitors	GI side effects limits use	Avoid with renal impairment		

Patient 1

• 80 year old woman with DM for 15 years admitted to skilled unit after ORIF of hip fracture

Difficulty managing finances and walking 2 blocks 40% mortality in 4 years; average life expectancy < 10 years

Erratic eating and activity during rehab

Lee, et al: JAMA 2006 Walters, et al. JAMA 2001

Patients 1 (continued)

- Short term during rehabilitation

 Lower or eliminate insulin or oral hypoglycemic
- Long term after recovery

Resume moderate control consistent with patient's goals (target A1C between 7 – 8.5) Review and reduce medications that might increase serum glucose

Skyler, et al. J Am Coll Cardiol 2009 Brown, et al. J Am Geriatr Soc 2003

Patients 2

• 70 year old man with Type 2 DM with newly diagnosed diabetes, no known CAD

Robust health, enjoys vigorous physical activities

Average life expectancy > 20 years; 15% mortality in 4 years

Understands risks of recommended targets for BP, lipids, and blood glucose

Lee, et al: JAMA 2006 Walters, et al. JAMA 2001

Patients 2 (continued)

• Options for long term risk reduction of micro and macrovascular disease

Considerations: relative longevity; high function; engaged in health maintenance

- BP to target
- CV risk reduction and lipids to target
- Target A1C < 7 depending on patient's preference and ability to manage and monitor glucose

_		
-		
_		
_		
_		
_		
_		
_		
_		
_		
-		
_		
-		
_		
-		
_		
_		
_		
_		

Patients 3

• 69 year old female with Type 2 DM, CAD and CHF with ejection fraction 25%

Dependent in bathing, difficulty with executive functions and cognition; 42% mortality in 4 years, average life expectancy < 10 years
Occasional episodes of hypoglycemia

Lee, et al: JAMA 2006 Walters, et al. JAMA 2001

Patients 3 (continued)

Options

Thiazolidinediones contraindicated
Metformin relatively contraindicated
Shorter half life sulfonylureas as single agent preferable

- If insulin needed, glargine insulin to minimize injections and avoid peaks
- Target A1C between 7 8.5

Summary

- Tailor goals in keeping with preferences, longevity, and function
- Relative impact of control: BP > Lipids > Glucose
- Screen and treat common geriatrics syndromes
- For most, moderate glycemic control may reduce fatigue, symptoms of polyuria, improve wound healing and cognition (target hemoglobin A1C ≈ 8)
- For a motivated few, target hemoglobin A1C ≈ 7 may reduce microvascular disease, though increases risk of hypoglycemia and cardiovascular mortality

-		
-		