You are here: Home Bios David S. K. Magnuson, Ph.D.

David S. K. Magnuson, Ph.D.

Magnuson bio 2012





David S. K. Magnuson, Ph.D.
Friends for Michael Endowed Professor, Departments of Neurological Surgery, Anatomical Sciences & Neurobiology, and Biomedical Engineering

 

Biography

Recent Publications

Contact

Research Description

The research in my laboratory is focused on the neurons and pathways in the spinal cord that are responsible for locomotion, and on applying what we learn about locomotor systems to spinal cord injury and repair.

One of our primary investigations is focused on the long propriospinal neurons and pathways in the spinal cord that link the lumbar and cervical enlargements. These circuits are well-suited to participate in locomotion and are thought to mediate forelimb/hindlimb coordination in animals and upper-body/arm movement during walking and running in humans. We use a combination of approaches including electrophysiology and tract-tracing and both the in vitro neonatal rat brainstem/spinal cord preparation,  and adult rats, in vivo. We are seeking to determine the roles played by specific descending and ascending pathways in locomotor activity in normal and spinal cord injured rats. The most recent results from this project suggest that white matter in the lateral and ventrolateral funiculus of the spinal cord may carry ascending and descending propriospinal axons that terminate in the cervical and lumbar enlargement, respectively. Many of these axons are located in the outermost rim of white matter and are spared following contusion spinal cord injuries, making them excellent potential targets for therapeutic approaches following spinal cord injury.

A second major project in my laboratory is aimed at gaining a better understanding of activity-based rehabilitation, one of the primary rehabilitation strategies used clinically, that usually takes the form of body-weight supported treadmill training. We are currently using four different approaches in animal models including swimming, shallow water walking, treadmill step training with body-weight support and a rat wheel-chair to reduce hindlimb movement after injury. Over the next several years we will be investigating the mechanisms underlying functional recovery following activity-based rehabilitation including the role(s) that cutaneous feedback, limb-loading, step-cycle number and frequency and timing and duration of training play in a successful rehabilitation program. We are working with Dr. Susie Harkema, the director of the NeuroRehabilitation Program at the Frazier Rehabilitation Institute to answer specific questions in the animal model that will assist with the development of novel clinical rehabilitation strategies.

In addition, we are working with the laboratories of Drs. Scott Whittemore, Susan Harkema, Jeffrey Petruska, and Richard Benton within KSCIRC, Dr. Michael Voor in Orthopedic Surgery and Dr. Radhika Vaishnav of the Department of Neurology at UofL,  and Dr. Victor Song at Washington University.

Current Laboratory Personnel:

Krista Caudle (PhD student)

Matthew Hamilton (PhD student)

Katie Harman (PhD student)

Erik Seibt (BE Masters student)

Nicole Knapp (BE Co-op student)

Greg States (Be Co-op student)

Alice Shum-Siu (Lab Manager)

Personnel of the Electrophysiology and Behavior Core:

Darlene Burke (Research Coordinator) Behavioral assessment and statistics.

Kim Fentress (Research Technician) Electrophysiological assessment.

Johnny Morehouse (Research Technologist) Kinematics

 

 

Document Actions
December 2012 »
December
MoTuWeThFrSaSu
12
3456789
10111213141516
17181920212223
24252627282930
31
 
Personal tools