A method of finding optimal weight factors for compound identification in gas chromatography–mass spectrometry

Seongho Kim1,*, Imhoi Koo1,2, Xiaoli Wei2 and Xiang Zhang2,*

1Department of Bioinformatics and Biostatistics and 2Department of Chemistry, University of Louisville, Louisville, KY 40292, USA

Associate Editor: Jonathan Wren

ABSTRACT

Motivation: The compound identification in gas chromatography–mass spectrometry (GC–MS) is achieved by matching the experimental mass spectrum to the mass spectra in a spectral library. It is known that the intensities with higher m/z value in the GC–MS mass spectrum are the most diagnostic. Therefore, to increase the relative significance of peak intensities of higher m/z value, the intensities and m/z values are usually transformed with a set of weight factors. A poor quality of weight factors can significantly decrease the accuracy of compound identification. With the significant enrichment of the mass spectral database and the broad application of GC–MS, it is important to revisit the methods of discovering the optimal weight factors for high confident compound identification.

Results: We developed a novel approach to finding the optimal weight factors only through a reference library for high accuracy compound identification. The developed approach first calculates the ratio of skewness to kurtosis of the mass spectral similarity scores among spectra (compounds) in a reference library and then considers a weight factor with the maximum ratio as the optimal weight factor. We examined our approach by comparing the accuracy of compound identification using the mass spectral library maintained by the National Institute of Standards and Technology. The results demonstrate that the optimal weight factors for fragment ion peak intensity and m/z value found by the developed approach outperform the current weight factors for compound identification.

Availability: The results and R package are available at http://stage.louisville.edu/faculty/x0zhan17/software/software-development.

Supplementary information: Supplementary data are available at Bioinformatics online.

Received on November 14, 2011; revised on February 3, 2012; accepted on February 9, 2012

1 INTRODUCTION

Gas chromatography–mass spectrometry (GC–MS) is one of the most widely used analytical techniques for unraveling a large number of compounds present in either chemical or biological samples. One of the most important analyses of GC–MS data is compound identification, which is currently achieved by matching the experimental mass spectra to the mass spectra recorded in a spectrum database. The mass spectrum of an unknown compound is assigned to a database compound based on their mass spectral similarity score. Various spectral similarity scores have been developed for the spectrum matching-based compound identification including composite similarity (Stein and Scott, 1994), probability-based matching system (Atwater et al., 1985), cosine correlation (Fabret et al., 2004; Beer et al., 2004; Zhang et al., 2006; Preven et al., 2004), Hertz similarity index (Ejeta et al., 1997), normalized Euclidean distance (L_2-norm) (Stein and Scott, 1994; Julian et al., 1998; Rasmussen et al., 1979), absolute value distance (L_1-norm) (Stein and Scott, 1994; Rasmussen et al., 1979), wavelet and Fourier transforms-based composite measure (Koo et al., 2001). The peak intensities of fragment ions with large mass-to-charge (m/z) values in a GC–MS mass spectrum tend to be smaller although they are the most informative ions for compound identification. The performance of compound identification can be improved by increasing the relative significance of the large fragment ions via weighing more on their peak intensities. Nearly 5% of improvement in identification accuracy has been observed if an appropriate set of weight factors is used (Stein and Scott, 1994). Studies have been performed to discover the optimal weight factors for fragment ion peak intensity as well as m/z value. Sokolow et al. (1978) suggested the squared root of an intensity times its m/z value, the ratio found by the developed approach outperform the current weight factors for compound identification. The main objective of this study is to develop a method to discover the optimal weight factors for high accuracy compound identification in GC–MS. It is noteworthy that the literature reported methods require a training data set, whereas the proposed method can discover optimal weight factors based on only a reference library. The proposed approach focuses on the statistical characteristics of the distribution of mass spectral similarity scores among compounds in a reference library. The ratio of skewness to kurtosis is used to search for an optimal weight factor, considering the optimal weight factor having the maximum of the average ratios of skewness to kurtosis.

All the statistical analysis and simulations were performed using the R statistical software version 2.13.1 (R Development Core Team).
Finding optimal weight factors for GC–MS

2 METHODS

2.1 The main EI MS library and replicate spectral library

Currently, two different mass spectral databases are commonly used as references: the NIST/EPA/NIH Mass Spectral (MS) Library and the Wiley/NBS MS Database. In this study, we used the NIST/EPA/NIH MS Library developed at the NIST. We first extracted the main electron ionization (EI) MS library from the NIST 11 MS Library and obtained 212 860 spectra (compounds) whose mz values range from 1 to 1760. The replicate spectral library was then extracted from the NIST 08 library. It contains 28 307 mass spectra generated by 18 569 compounds whose fragment ion mz values range from 1 to 1036.

We considered the main EI MS library as a reference library and the replicate spectral library as query data. Since we assume that the main EI MS library has the mass spectrum information for all query spectra, all spectra that are not present in the main EI MS library were removed from the replicate spectral library. After all, the reference library used in this work includes 212 860 spectra and the replicate spectral library has 28 307 query spectra. The mz values of both libraries range from 1 to 1036. The distributions of mz values for the two libraries are depicted in Figure 1.

2.2 Cosine correlation and peak intensity weighting

Cosine correlation, which is also known as the dot product (Stein and Scott, 1994), is a measure of correlation between two sequences of intensities, \(a_1, a_2, \ldots, a_n \) and \(b_1, b_2, \ldots, b_n \), using the cosine value of angle. It is defined as

\[
C = \frac{a \cdot b}{|a| |b|},
\]

where \(a \cdot b = \sum_{i=1}^{n} a_i b_i \) and \(|a| = \sqrt{\sum_{i=1}^{n} a_i^2} \).

The fragment ion peaks with large mz values in a GC–MS spectrum usually have small peak intensities, but carry the most important characteristics for compound identification. Therefore, weighting peak intensity based on its mz value can increase the contribution of small peaks to compound identification. Weighted peak intensity can be represented as [peak intensity] \(^w \) = [mass(mz)] \(^w \),

where \(x \) and \(y \) represent the weight factor of peak intensity and mz value, respectively. Stein and Scott (1994) suggested the cosine correlation with an optimal intensity scaling of 0.6 (i.e. \(x=0.6 \)) and mass weighting of 3 (i.e. \(y=3 \)), whereas Sokolow et al. (1978) recommended the squared root of an intensity times its mz value as an optimal scaling of the intensities (i.e. \(w=(x,y)=(0.5,1) \)). Recently, Horai et al. (2010) reported that optimal weight factors are the squared root of intensity and the square of its mz value (i.e. \(w=(x,y)=(0.5,2) \)).

Then cosine correlation with weighted intensities can be calculated by

\[
C(x,y) = \frac{a \cdot b}{|a| |b|},
\]

where \(w=(x,y) \) is a vector of weight factors of intensity and mz value, respectively. In Equation 3, \(a_i = (a_1^w, a_2^w, \ldots, a_n^w) \) and \(b_i = (b_1^w, b_2^w, \ldots, b_n^w) \) are weighted intensities based on 4 and 5.

\[
\begin{align*}
\alpha &= \sum_{i=1}^{n} a_i^w \\
\beta &= \sum_{i=1}^{n} b_i^w \\
\gamma &= \sum_{i=1}^{n} a_i b_i^w \\
\end{align*}
\]

where \(\gamma \) is the mz value of i-th intensity, \(i=1,2,\ldots,n \), and \(x \) and \(y \) are weight factors. Since cosine correlation is one of the most popular mass spectral similarity measures and was used in the NIST mass spectral library, we considered only cosine correlation in this work.

We used accuracy as the measure to evaluate the performance of compound identification of different weight factors. The accuracy is defined as the proportion of spectra identified correctly in query data. In other words, if a pair of unknown and reference spectra have the same CAS registry index, this spectrum pair is considered as a correct match. Otherwise, the match is incorrect. By counting all correct matches, the accuracy of compound identification can be calculated as

\[
\text{Accuracy} = \frac{\text{Number of spectra matched correctly}}{\text{Number of spectra queried}}.
\]

We denote accuracy for a weight factor \(w=(x,y) \) as \(A(x,y) \).

2.3 Skewness and kurtosis

Skewness is a measure of the symmetry of data distribution, which is computed as the third moment about the mean, and is zero if a distribution is symmetric. It takes on negative values for left-skewed data and positive values for right-skewed data. Kurtosis is a measure that indicates whether a data distribution is flat or peaked. It is computed as the fourth moment about the mean. For a normal distribution, the normalized kurtosis is zero and the raw kurtosis is three. Since the kurtosis of the normal distribution is 3, the kurtosis is defined by subtracting 3 to express excess kurtosis. If the kurtosis is >3, the distribution is more peaked than normal near the mode of the distribution and has thicker tails.

The skewness and kurtosis are calculated for the mass spectral similarity scores. For \(M \) similarity scores, \(C_1, C_2, \ldots, C_M \), the formulas for skewness and kurtosis are

\[
\text{Skewness} = \frac{\sum_{i=1}^{M} (C_i - \overline{C})^3}{M \sigma^3}
\]

and

\[
\text{Kurtosis} = \frac{\sum_{i=1}^{M} (C_i - \overline{C})^4}{M \sigma^4}
\]

where \(\overline{C} = \frac{1}{M} \sum_{i=1}^{M} C_i \) and \(\sigma = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (C_i - \overline{C})^2} \). Using 4 and 5, skewness and kurtosis of the mass spectral similarity scores among compounds in the reference library can be calculated.

2.4 Finding an optimal weight factor

In order for weight factors to be optimal in terms of accuracy of compound identification, they should be able to emphasize the inborn characteristics of the compounds. Therefore, we considered only cosine correlation in this work.
Percentiles of accuracy of compound identification

Table 1.
The sky blue and blue solid circles indicate the optimal intensity and m/z factors of the solid red line. (a) The relationship between the conditional means of the ratio of skewness to kurtosis and the intensity weight factors. (b) The relationship between averages of the ratio of skewness to kurtosis (\(\bar{R}(y|x)\)) and of accuracy (\(\bar{A}(y|x)\)) with respect to the weight factors of m/z values (y). The fitted line is denoted by the dotted red line.

<table>
<thead>
<tr>
<th>Min</th>
<th>2.5th</th>
<th>25th</th>
<th>50th</th>
<th>75th</th>
<th>90th</th>
<th>95th</th>
<th>97.5th</th>
<th>99th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Set 1</td>
<td>1.52</td>
<td>17.65</td>
<td>34.56</td>
<td>60.30</td>
<td>76.40</td>
<td>80.06</td>
<td>81.30</td>
<td>81.78</td>
</tr>
<tr>
<td>Set 2</td>
<td>80.60</td>
<td>81.18</td>
<td>82.08</td>
<td>82.35</td>
<td>82.50</td>
<td>82.62</td>
<td>82.67</td>
<td>82.78</td>
</tr>
<tr>
<td>Random set</td>
<td>19.65</td>
<td>30.88</td>
<td>52.46</td>
<td>79.98</td>
<td>90.74</td>
<td>92.68</td>
<td>93.29</td>
<td>93.48</td>
</tr>
</tbody>
</table>

Set 1 and Set 2 use the entire data set with the first and second sets of weight factors, respectively. Random set uses the 100 data sets randomly generated from the entire data set. Min, minimum; Max, maximum.

of each spectrum while deemphasizing the common characteristics of the spectra in the reference library. In other words, the optimal weight factors should make the pairwise mass spectral similarity scores between different compounds smaller, while producing the larger similarity scores for the same compounds. Therefore, since the spectra recorded in the reference library are generated from different compounds, we can expect that the distribution of the similarity scores should be right-skewed. In this regard, we develop the skewness to kurtosis for finding the optimal weight factors. As described before, the skewness is a measure of symmetry, while the kurtosis is a measure of whether data are peaked relative to a normal distribution. Moreover, the more peaked the distribution, the bigger the kurtosis. The skewness will help find the weight factors to make the distribution right-skewed, while the kurtosis will prevent for the proposed algorithm to be ended up with the extreme case that the distribution is almost a point mass right-skewed.

Suppose that the reference library has N spectra \(\{x_i\}_{i=1}^{N}\) and there are M \=(-N(N-1)/2\) pairwise similarity scores \(C(x,y)\) among the N spectra with respect to a set of weight factors \(w=(x,y)\). Then, similar to \(\alpha\) and \(\beta\), the skewness \(S(x,y)\) and kurtosis \(K(x,y)\) of M pairwise similarity scores are defined, given \(w=(x,y)\), by

\[
S(x,y) = \frac{\sum_{i=1}^{M} (C(x,y)-\bar{C}(x,y))^3}{M \sigma(x,y)^3} \\
K(x,y) = \frac{\sum_{i=1}^{M} (C(x,y)-\bar{C}(x,y))^4}{M \sigma(x,y)^4}
\]

where \(\bar{C}(x,y) = \frac{\sum_{i=1}^{M} C(x,y)}{M}\) and \(\sigma(x,y)^2 = \frac{1}{M} \sum_{i=1}^{M} (C(x,y)-\bar{C}(x,y))^2\). Using \(\alpha\) and \(\beta\), the proposed algorithm finds the optimal weight factors based on the ratio of skewness to kurtosis,

\[
R(x,y) = \frac{S(x,y)}{K(x,y)}
\]

For further analysis, we denote the conditional expectation of the ratio \(R(x,y)\) given y as \(E_Y(R(x))\) and the conditional expectation of the ratio \(R(x,y)\) given x as \(E_X(R(y))\). Then the optimal weight factors \(\hat{x}\) and \(\hat{y}\) for intensity and m/z values are estimated by maximizing the conditional expectation of \(R(x,y)\) given x and y, respectively, such that

\[
\hat{x} = \text{argmax}_{x} E_Y(R(x)) \quad \text{and} \quad \hat{y} = \text{argmax}_{y} E_X(R(y))
\]

where x and y range from \(-\infty\) to \(\infty\).

Since the true distribution of the ratio \(R(x,y)\) is unknown, the conditional means are replaced with the conditional sample means when there are \(T_x\) and \(T_y\) weight factors for intensity and m/z value, respectively, as follows:

\[
\bar{R}(Y|x) = \frac{1}{T_x} \sum_{i=1}^{T_x} R(x,y) \quad \text{and} \quad \bar{R}(X|y) = \frac{1}{T_y} \sum_{i=1}^{T_y} R(x,y)
\]

By doing so, the optimal weight factors can be obtained through

\[
\hat{x} = \text{argmax}_{x} \bar{R}(Y|x) \quad \text{and} \quad \hat{y} = \text{argmax}_{y} \bar{R}(X|y).
\]

Likewise, the conditional sample means for accuracy are

\[
\bar{A}(Y|x) = \frac{1}{T_x} \sum_{i=1}^{T_x} A(x,y) \quad \text{and} \quad \bar{A}(X|y) = \frac{1}{T_y} \sum_{i=1}^{T_y} A(x,y)
\]

with respect to weight factors of intensity (x) and m/z value (y), respectively.
The reference library is the main EI MS library with a number of 212 860 spectra, as described in the previous section. Consequently, the total number of spectra pairs is \(\binom{212860}{2} \approx 2.27 \times 10^{10} \). Such a large number of spectra pairs require enormous amount of computer memory to calculate all pairwise similarity scores. We, therefore, created 100 sub-main libraries randomly selected from the main EI MS library. Each sub-main library contains 1% of the total spectra recorded in the reference library, resulting in 21 286 spectra. Then the skewness, kurtosis and ratio of skewness to kurtosis were computed for each set of weight factors \(w = (x, y) \), where \(0.01 \leq x \leq 10 \) and \(0 \leq y \leq 10 \), according to (5), (8)–(10). Their averages and standard errors were obtained and applied to the proposed approach to finding the optimal weight factors.

For the further calculation of accuracy in compound identification, we also constructed 100 sub-replicate libraries randomly chosen from the replicate spectral library corresponding to the 100 sub-main libraries, resulting in 100 pairs of the reference library and each query with smaller size. Since the size of the main EI MS library is \(\approx 10 \) times bigger than the replicate spectral library and the size of each sub-main library is 21 286, we randomly selected 2816 spectra from the replicate spectral library, ensuring that the chosen 2816 spectra were present in its corresponding sub-main library.

2.5 Estimation of distribution of mass spectrum similarity scores

Due to a large number of spectra pairs, it is almost impossible to plot the distribution of the similarity scores among the spectra recorded in the reference library. Therefore, the distribution of mass spectrum similarity scores was estimated using a \(\beta \) distribution. Since the similarity score has the domain between 0 and 1 and a \(\beta \) distribution is versatile in terms of the shape, we employed a \(\beta \) distribution for this analysis. Furthermore, a \(\beta \) distribution has closed-form solutions for skewness and excess kurtosis

\[
\text{Skewness} = \frac{2(b - a)\sqrt{a + b + 1}}{(a + b + 2)^{3/2}} \tag{15}
\]

\[
\text{Kurtosis} = \frac{6[(a-b)^2(a+b+1) - ab(a+b+2)]}{ab(a+b+2)(a+b+3)} \tag{16}
\]

where \(a \) and \(b \) are the parameters of a \(\beta \) distribution \(\beta(a, b) \). Therefore, the parameters of a \(\beta \) distribution can be estimated using (15) and (16), if skewness and kurtosis are known.

2.6 Software

All statistical analyses were performed using the R statistical software version 2.13.1 (R Development Core Team) with the NIST mass spectral library. The developed R package and its examples are available at https://stage.louisville.edu/faculty/t0zhan17/software/software-development. The R package and examples are also available as Supplementary Material I.

3 RESULTS AND DISCUSSION

The NIST main EI MS library was used as the reference library to discover the optimal weight factors using the proposed method. The replicate spectra library was later employed as query data to evaluate the performance of the optimal weight factors in terms of the accuracy of compound identification. Due to the very large size of the reference library, the calculation of skewness and kurtosis using the entire spectra of the reference library is not tractable. Therefore, the skewness, kurtosis and ratio of skewness to kurtosis were calculated using an alternative approach based on 100 data sets randomly selected from the reference library as described in the Methods section.

The optimal weight factors were explored using Equations (15) and (16). The relationships among the skewness, kurtosis and ratio of skewness to kurtosis are displayed in Supplementary Figure S1 of the Supplementary Material III. The skewness of similarity scores ranges from \(-0.2691\) to 14.27, and the kurtosis has the values between 2.529 and 221.3. In general, skewness is linearly and positively correlated to kurtosis, while the skewness and kurtosis have a non-linear relationship with the ratio of skewness to kurtosis. Using the proposed method, the weight factors \(w = (x, y) \) for fragment ion intensity and \(m/z \) value are optimized at 0.53 and 1.3, respectively, as shown in Figure 3. Interestingly, the optimal weight factors discovered in this work are different from the literature reported weight factors (Iram et al. 2010; Sokolow et al. 2008). In particular, the newly discovered optimal weight factors are similar to these of Sokolow et al. (\(w = (0.5, 1.3) \)) rather than these of Stein and Scott (\(w = (0.6, 3) \)) although the current work also used the NIST mass spectral library.

To demonstrate the effectiveness of the new weight factors for high accuracy compound identification, two data sets were employed as the reference library: the entire NIST main EI MS library and
Table 2. The weight factors in the top 10% of accuracy using the first set of weight factors W1.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Weight factor</th>
<th>Accuracy</th>
<th>Rank</th>
<th>Weight factor</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.8237</td>
<td>11</td>
<td>0.7</td>
<td>0.8128</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.8227</td>
<td>12</td>
<td>0.7</td>
<td>0.8112</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.8205</td>
<td>13</td>
<td>0.5</td>
<td>0.8105</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>0.8202</td>
<td>14</td>
<td>0.5</td>
<td>0.8090</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>0.8178</td>
<td>15</td>
<td>0.6</td>
<td>0.8085</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>0.8178</td>
<td>16</td>
<td>0.7</td>
<td>0.8042</td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
<td>0.8153</td>
<td>17</td>
<td>0.5</td>
<td>0.8033</td>
</tr>
<tr>
<td>8</td>
<td>0.6</td>
<td>0.8135</td>
<td>18</td>
<td>0.6</td>
<td>0.8028</td>
</tr>
<tr>
<td>9</td>
<td>0.5</td>
<td>0.8133</td>
<td>19</td>
<td>0.4</td>
<td>0.8007</td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>0.8130</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The intensity weight factor.
†The m/c weight factor.

The 100 sub-main libraries randomly selected from the NIST main library. The replicate spectra library were used as query data in both cases. We first investigated the accuracy of compound identification using the 100 sub-main libraries. Figure 4(A) is the scatter plot between the conditional sample means of the ratio (\(R(Y)\)) and the conditional sample means of accuracy (\(A(Y)\)) with respect to the intensity weight factor, \(x\). The two averages are highly correlated to each other with a correlation coefficient of 0.8882 (\(P\)-value = 0), and the point of \(R(Y)\) and \(A(Y)\) corresponding to \(x = 0.53\) is located in the upper-right-most corner. Similarly, the scatter plot between \(R(X)\) and \(A(X)\) with respect to the m/c weight factor, \(y\), is depicted in Figure 4(B). As expected, their correlation is significant with a correlation coefficient of 0.6052 (\(P\)-value = 0.0101). The maximum of \(R(X)\) is corresponding to the maximum of \(A(X)\) and occurred at \(\hat{Y} = 1.3\). Overall, Figures 4(A) and 4(B) demonstrate that the larger the ratio of skewness to kurtosis, the higher the accuracy. All conditional sample means can be found in Supplementary Table S1 of the Supplementary Material II.

Note that the boxplots between the weight factors and the accuracy in compound identification are depicted in Supplementary Figures S1 and S3 of the Supplementary Material II. Therefore, the skewness and kurtosis of the maximum accuracy of the 100 sets are located near to \(y = 1\). These show that the weight factor can cause large variations in compound identification as described in the Methods section. Indeed, for both cases, the heat map visualization was also examined using percentile-levels. Figure 4(A) and Supplementary Figure S4 of the Supplementary Material II. Heat map visualization was also examined using percentile-levels in Figure 4(A), to investigate where accuracy is likely to be higher. The weight factors providing the top 10% accuracy range from 0.4 to 0.7 for \(x\) and from 0.4 to 2 for \(y\), respectively, as depicted in Tables 1 and 2. Indeed, the 90th percentile of its accuracies is 80.06% and 82.37% is the maximum accuracy for the first set in Table 1 and 2. The weight factors of m/c value of the top 10% accuracy are \(\leq 2\), while the accuracies with the m/c weight factors \(> 2\) including \(w = 0.5, 1\) and \(0.6, 3\) fall outside the top 10%.

In the second evaluation step, the identification accuracies were further examined in the range near to the maximum accuracy resulted from W1, using a second set of weight factors W2, where the weight factors \(x\) and \(y\) of W2 range from 0.45 to 0.55 and from 0.95 to 1.5, respectively. It was found that the accuracy was maximized at \(\hat{Y} = 0.53, 1.3\), which is the same as the optimal weight factors found by the proposed method, as depicted in Figure 4(B) and Supplementary Figure S5 of the Supplementary Material II. The accuracy of compound identification at \(\hat{Y} = 0.53, 1.3\) is 82.83% in Table 3, while accuracies at \(w = 0.5, 1, 0.5, 2\) and \(0.6, 3\) are 82.37%, 80.90% and 78.90%, respectively. These results demonstrate that the newly discovered weight factors outperform the literature reported weight factors for high accuracy compound identification. Several factors may contribute to these differences in the accuracy of compound identification, including the accuracy of each method for the discovery of the optimal weight factors and the reference mass spectral database used. Figure 4(B) displays a case that only the discovered weight factors \(w = 0.5, 1, 3\) can find the correct compound. Although the non-weighted intensities of the query and its correct compound are very similar to each other in Figure 4(B), all the matched compounds are different from the correct compound except for the newly discovered weight factors as shown in Figure 4(B). This is because \(w = 0.5, 1\) and others weighted on the m/c value either less than or more than \(w = 0.5, 1, 3\) did, respectively, as depicted in Figure 4(B). More detailed results can be found in the Supplementary Material II.

Since the reference library includes only heterogeneous spectra, it is expected that similarity scores are near to zero, and their distribution should be apart from that of similarity scores among the homogeneous spectra for high accuracy compound identification. Namely, the distribution should be right-skewed without a thick right tail and not flattened. In fact, the corresponding skewness and kurtosis at \(\hat{x} = 0.53\) are 2.30 and 15.77, respectively, while 3.92 and 35.27 are the corresponding skewness and kurtosis to \(\hat{y} = 1.3\), meaning that both distributions are located near to zero with right-skewed, peaked shapes. This can be confirmed using a \(\beta\) distribution as described in the Methods section. Indeed, for both cases, the distributions are located near to zero with right-skewed, peaked shapes, as shown in Supplementary Figure S6 of the Supplementary Material II. Therefore, the skewness and kurtosis of the maximum ratio, which are found in this study, are reasonable, but further research is needed to better understand and fully answer how much right-skewed and peaked the distribution is to be optimal.
The accuracy of compound identification using the optimal weight factors for intensities and \(m/z \) values is optimized at 0.53 and 1.3, respectively. The optimal weight factor discovered in this work is different from the literature-reported weight factors, such as \(w_1 = (0.5, 1) \) (reimann et al. 1979), \(w_2 = (0.6, 1) \) (stein and scott 1978), and \(w_3 = (0.5, 2) \) (choen et al. 2010), although these discovered weight factors also were optimized for a mass spectral library in terms of compound identification accuracy. It suggests that the optimal weight factors highly depend on a mass spectral library.

All literature-reported optimal weight factors were found based on supervised learning, in the sense that a training data set (query library) is required during the discovery phase. The proposed approach can, however, find optimal weight factors only using a reference library without any query library, meaning that the approach can, however, find optimal weight factors only using a known spectra.

The accuracy of compound identification using the optimal weight factors discovered in this work reaches 82.83%, demonstrating that the newly discovered weight factors outperform the literature-reported weight factors for high accuracy compound identification.

ACKNOWLEDGEMENTS

The anonymous reviewers are thanked for their constructive comments.

Table 3. The weight factors in the top 10% of accuracy using the second set of weight factors \(W_z \)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Weight factor</th>
<th>Accuracy</th>
<th>Rank</th>
<th>Weight factor</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.53 1.3</td>
<td>0.8283</td>
<td>8</td>
<td>0.52 1.1</td>
<td>0.8265</td>
</tr>
<tr>
<td>2</td>
<td>0.52 1.2</td>
<td>0.8282</td>
<td>9</td>
<td>0.5 1.2</td>
<td>0.8265</td>
</tr>
<tr>
<td>3</td>
<td>0.53 1.2</td>
<td>0.8278</td>
<td>10</td>
<td>0.51 1.3</td>
<td>0.8263</td>
</tr>
<tr>
<td>4</td>
<td>0.52 1.3</td>
<td>0.8278</td>
<td>11</td>
<td>0.51 1.4</td>
<td>0.8263</td>
</tr>
<tr>
<td>5</td>
<td>0.54 1.3</td>
<td>0.8273</td>
<td>12</td>
<td>0.55 1.4</td>
<td>0.8263</td>
</tr>
<tr>
<td>6</td>
<td>0.53 1.4</td>
<td>0.8273</td>
<td>13</td>
<td>0.5 1.1</td>
<td>0.8262</td>
</tr>
<tr>
<td>7</td>
<td>0.54 1.4</td>
<td>0.8267</td>
<td>14</td>
<td>0.5 1.2</td>
<td>0.8262</td>
</tr>
</tbody>
</table>

\(^a\)The intensity weight factor.
\(^b\)The \(m/z \) weight factor.

4 CONCLUSION

Finding optimal weight factors for GC–MS

Fig. 4. A case that only \(w=(0.53, 1.3) \) can find the correct compound. The red spectrum in the upper column is for a compound in the replicate spectral library and a compound from the main EI MS library is the blue spectrum in the bottom column. The number in each plot is the CAS registry number. The true matching is in (a). The compound pairs found by each weight factor are represented with non-weighted intensity (b) and with weighted intensity (c).

REFERENCES

