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ABSTRACT: A set of data preprocessing algorithms for peak detection
and peak list alignment are reported for analysis of liquid chromatography−
mass spectrometry (LC−MS)-based metabolomics data. For spectrum
deconvolution, peak picking is achieved at the selected ion chromatogram
(XIC) level. To estimate and remove the noise in XICs, each XIC is first
segmented into several peak groups based on the continuity of scan
number, and the noise level is estimated by all the XIC signals, except the
regions potentially with presence of metabolite ion peaks. After removing
noise, the peaks of molecular ions are detected using both the first and the
second derivatives, followed by an efficient exponentially modified
Gaussian-based peak deconvolution method for peak fitting. A two-stage
alignment algorithm is also developed, where the retention times of all
peaks are first transferred into the z-score domain and the peaks are aligned
based on the measure of their mixture scores after retention time correction using a partial linear regression. Analysis of a set of
spike-in LC−MS data from three groups of samples containing 16 metabolite standards mixed with metabolite extract from
mouse livers demonstrates that the developed data preprocessing method performs better than two of the existing popular data
analysis packages, MZmine2.6 and XCMS2, for peak picking, peak list alignment, and quantification.

Data preprocessing plays a critical role in metabolomics
and can greatly affect the outcome of the data analysis.1

In the past few years, several bioinformatics tools have been
developed for analysis of liquid chromatography−mass
spectrometry (LC−MS)-based metabolomics data. For in-
stance, XAlign software was developed to align the peak lists of
LC−MS data for both proteomics and metabolomics study.2

Lommen and Kools developed MetAlign 3.0 for noise
reduction, baseline correction, and peak picking.3 XCMS2

enables peak picking, alignment, statistical analysis, metabolite
identification, and structural characterization.4 An online
version of XCMS was also reported.5 MZmine2 is capable of
peak detection, peak list alignment, normalization, statistical
analysis, visualization, and peak identification for LC−MS data.6

MZedDB uses adducts and neutral loss fragments as predicted
ionization behavior “rules” to annotate LC−MS data. In
addition, the correlation analysis and the isotope enumerator
were presented to confirm the m/z versus signal relationships
and to verify the exact isotopic distribution, respectively.7 Sturm
et al. developed OpenMS for LC−MS data analysis, including
visualization, data reduction, alignment, and retention time
prediction by using a support vector machine (SVM) method.8

Hoekman et al. developed msCompare that allows the arbitrary
combination of different feature detection/quantification and

alignment/matching algorithms in conjunction with a scoring
method to evaluate the overall LC−MS data processing.9

We introduced MetSign for analysis of LC−MS and direct
infusion mass spectrometry (DI-MS) data.10 MetSign provides
solutions for peak detection, visualization, tentative metabolite
assignment, peak list alignment, normalization, clustering, and
time course analysis. A significant feature of MetSign is its
ability to analyze the stable isotope labeled data and time
course data. The MetSign has been applied to analysis of DI-
MS data of translational metabolomics projects.11,12 However,
there are some limitations in MetSign for analysis of LC−MS
data including limited accuracy in deconvoluting overlapping
chromatographic peaks and aligning metabolite peak lists.
The objective of this study was to develop more accurate

data preprocessing algorithms for peak detection and peak list
alignment for LC−MS-based metabolomics, where the accuracy
of peak detection is measured by the number of detected peaks,
peak location (retention time), peak area, and m/z value of
metabolite ion, while the accuracy of peak list alignment is
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measured by the number of aligned spiked-in compound
standards. The precision, recall, and F1 score in recognizing the
spiked-in compounds from different sample groups are used as
measures for quantitative analysis of the spiked-in compound
standards. We have developed a new method to deconvolute
the instrument spectra using an intensive peak-favored method
to construct selected ion chromatogram (XIC), using both the
first derivatives and the second derivatives for peak detection,
and exponentially modified Gaussian (EMG) mixture model for
peak fitting. For peak list alignment, a two-stage retention time
window-free alignment algorithm was developed to recognize
metabolite peaks generated by the same type of metabolite
from multiple peak lists, where the peak similarity is measured
by a mixture score. The developed methods have been
implemented in MetSign and used to analyze a set of spike-
in data acquired on an LC−MS system. The performance of
these methods was compared with two existing software
packages. MetSign software was implemented using MATLAB
2010b and is free for purpose of academic research.

■ EXPERIMENTAL SECTION
Spike-In Samples. About 60 mg of liver tissue from each

mouse was mixed with deionized water at a ratio of 100 mg/
mL. The mixture was then homogenized for 2 min and stored
at −80 °C until use. Amounts of 100 μL of homogenized liver
sample, 20 μL of butylated hydroxytoluene (BHT) mixture (50
mg BHT into 1 mL of methanol), and 800 μL of methanol
were mixed and vortexed for 1 min followed by centrifugation
at 4 °C for 10 min at 15 000 rpm. An amount of 700 μL of the
supernatant was aspirated into a plastic tube and dried by N2
flow. After dissolving the dried sample with 100 μL of
methanol, a stock solution was prepared by diluting the sample
10 times. Aliquots of 20 μL of each of 14 mouse liver exacts
were combined to make the pooled sample for this work.
A mixture of 16 compound standards was prepared at a

concentration of 100 μg/mL for each compound (Supporting
Information Table S-1). Amounts of 20, 50, and 80 μL of the
standard mixture were added to each of the 100 μL pool
samples. Dichloromethane/methanol (v/v = 2:1) was then
added to each of the three vials to make the total volume of 200
μL. This resulted in three sample groups with spiked-in
compound standards. The concentration of compound stand-
ards in each of the spike-in sample groups was 10, 25, and 40
μg/mL, respectively.
LC−MS Analysis. A Citius LC-HRT high-resolution mass

spectrometer equipped with an Agilent 1290 Infinity UHPLC
with a Waters Acquity UPLC BEH hydrophilic interaction
chromatography (HILIC) 1.7 μm, 2.1 mm × 150 mm column
was used in this work. The sample was loaded in H2O plus 5
mM NH4OAc plus 0.2% acetic acid (buffer A) and separated
using a binary gradient consisting of buffer A and buffer B (90/
10 acetonitrile/H2O plus 5 mM NH4OAc plus 0.2% acetic
acid). Flow rate was set at 250 μL/min on the column, with
100% B for 4 min, 45% B at 12 min holding to 20 min, 100% B
at 21 min and holding to 60 min for the gradient. The Citius
LC-HRT was operated with an electrospray ionization source
in positive ion mode with spray voltage set at 3.0 kV, nozzle
temperature at 125 °C, desolvation heater temperature at 900
°C, desolvation flow at 7.5 L/min, and nebulizer pressure at 50
psi. The system was optimized in high-resolution mode (R =
50 000 (fwhm)) with folded flight path (FFP) technology and
was mass calibrated externally using Agilent ESI tune mixture
(G2421A). The mass spectrometry was operated in a full mass

mode (low energy) followed by a tandem MS/MS mode (high
energy) with a mass range of m/z = 50−1000. The scan
frequency for acquiring the full mass spectra and MS/MS
spectra is five spectra/s, respectively.

■ THEORETICAL BASIS
Figure 1 depicts the workflow of this work. The components of
normalization and statistical significance tests have been

implemented in the previous version of MetSign software.
This work focused on developing new algorithms for mass
spectrum deconvolution and peak list alignment.

Mass Spectrum Deconvolution. The mass spectra can be
acquired in either profile mode or centroid mode in LC−MS.
MetSign provides two options to centralize the mass spectra
acquired under profile mode: second-order polynomial fitting-
based local maxima (SPF-LM) and one-dimensional discrete
wavelet-transform (1-DWT). The SPF-LM approach employs
the first-derivative operation to detect the local maxima in the
spectrum, followed by the second-order polynomial fitting
(SPF) to fit each local peak. After determining the peak
location in the m/z dimension, the m/z value and
corresponding peak intensity of each profile peak can be
obtained. In the 1-DWT approach, each mass spectrum is first
transformed using the one-dimensional discrete wavelet-
transform, followed by detecting all the local maximum values
in the wavelet domain, which is corresponding to the m/z and
intensity of each profile peak in the spectrum. The DWT is
defined as follows:
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where X = (x1, x2, ..., xn) denotes the input signal, g and h are
low-pass and high-pass filters, respectively, xk

va denotes the
approximations of the signal resulted by the low-pass filter, and
xk
vd denotes the details of the signal resulted by the high-pass
filter. The Daubechies wavelets are used to transform mass
spectra into wavelet domains in this study.13

Figure 1. Flowchart of data analysis methods developed in this study.
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To detect metabolite peaks at the chromatographic
dimension, the XIC is first constructed for each m/z value of
metabolite ion with a variation window εm/z. MetSign
constructs the XICs in favor of abundant peaks. It combines
the information of the (m/z, peak area) pair in all scans to
generate two matrices. One is sorted by m/z values, while the
other is sorted by peak area values. The XICs are then
constructed sequentially based on the rank of peak area of each
ion in the peak area matrix, from the most abundant peak to the
least abundant one. To a selected ion, its corresponding m/z
value is used to search the entire m/z matrix to extract all ions
with m/z values within the predefined mass accuracy εm/z.
Another user-defined parameter, minimum chromatographic
peak width wc measured as the number of scans, is applied to
eliminate the XICs with a maximum number of continuous
scans less than wc.
To estimate and remove the noise in XICs, each XIC is first

segmented into several peak groups based on the continuity of
scan number. A segment refers to a range of scans in which the
molecular ion was detected in every scan. The first-derivative
approach is used to recognize the significant peaks in each peak
segment, with several predefined filtering criteria including
minimum chromatographic peak width, more than three data
points monotonously increasing and decreasing on each side of
a peak, and a minimum ratio of 0.3 between the peak area of
the original peak and the smoothed peak. All data points
belonging to the significant peaks are then removed from each
segment, and the remaining data points in all segments of the
same XIC are used as training data to assess the noise level. A
polynomial fitting is employed to estimate the noise level in the
regions of the significant peaks. The median filtering method is
further employed on the entire training data to get the noise
level at each point in the entire XIC.
An EMG-based peak deconvolution method was used in this

study for peak fitting. The EMG distribution is defined as
follows:14
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where λ = {y0, A, xc, w, t0}, y0 is the initial value, A is the
amplitude, xc is the center of the peak, w is the width of the
peak, t0 is the modification factor, and z = (x − xc/w) − (w/t0),
erf is the error function. The EMG mixture model with n
components is defined as follows:
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To improve the efficiency of peak fitting using the EMG
mixture model, the raw spectrum data of each XIC are first
smoothed using a moving average method after removing the
noise from each data point. The major peaks are then detected
using a first-derivative method on the smoothed data. The
second derivatives of the previously smoothed data are
calculated to detect small peaks overlapping with other major
peaks. After determining the total number of peaks, the EMG
mixture model is applied iteratively for peak fitting.
Peak List Alignment. To align the metabolite peaks

generated by the same type of metabolite in different samples,

the retention time value of each peak in a peak list is first
transformed into z-score as follows:
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where ti,j denotes the retention time of the jth peak in the ith
sample and μ and σ are the median values of the means and
standard deviations of the retention time values among peaks of
all sample set S, respectively. The z-score transforms the
retention time values into a normal distribution, which then
enables the alignment of heterogeneous data (i.e., the
experimental data acquired under different experimental
conditions).15

To align all the peak lists together, it is necessary to select a
peak list as a reference peak list (RPL) and align the rest of the
peak lists to it. It is better that the peak distribution of RPL be
similar to most of the peak lists. The two-dimensional
Kolmgorov−Smirnov (K−S) test is employed to study the
similarity of peak distributions between two peak lists in the z-
score transformed retention time and m/z plane, where each
given peak can be represented as a data point (ti, (m/z)i). Each
peak actually separates the plane into four quadrants [t > ti, m/z
> (m/z)i], [t < ti, m/z > (m/z)i], [t < ti, m/z < (m/z)i], and [t >
ti, m/z < (m/z)i]. An integrated probability in each of these
four natural quadrants around a given point can be calculated.
The statistic D of the K−S test is taken to be the maximum
difference (ranging both over data points and over quadrants)
of the corresponding integrated probabilities.16 The D statistics
of K−S test are calculated for all pairs of the peak lists. After
removing the large D values detected as outliers at a confidence
level of 95%, a peak list with the smallest average D value is
considered as the reference peak list RPL.
After selecting RPL, the peak alignment method is developed

as a two-stage algorithm without requiring retention time
variation (i.e., parameter-free for retention time): full alignment
and partial alignment. The goal of full alignment is to recognize
the landmark peaks, which are a set of metabolite peaks
generated by the same type of metabolite that are present in
every sample. In partial alignment, the peaks in a test sample
that are not recognized as the landmark peaks are aligned.
By using the D statistics of K−S test to select RPL, the rest of

the peak lists are considered as test samples. Then the sample
set can be written as S = {RPL, T1, T2, ..., Ti, ..., Tn}, where Ti is
the peak list of sample i. Each of the test samples is aligned to
RPL, respectively. The content of RPL is updated after the
alignment of RPL with a test sample.
Considering two samples, {RPL, Ti}, all m/z value-matched

peak pairs between these two samples are selected using a user-
defined m/z variation window εm/z. If a peak can be matched to
multiple peaks in the other peak list, the peak pair with the
minimum z-score transformed retention time difference is
selected. Therefore, the m/z matched peak pairs can be
recorded as {(r1, s1), (r2, s2), ..., (rp, sp)}, where rj is a peak in
RPL, sj is the corresponding m/z matched peak in Ti, and p is
the total number of m/z matched peak pairs. The m/z matched
peak pairs are further filtered based on Euclidean distance of
retention time between rj and sj, i.e., dj = |rj − sj|, by setting a
confidence interval of 95%. The retention time filtered peak
pairs are represented as {(r1, s1), (r2, s2), ..., (rm, sm)} and m ≤ p.
This process is iteratively operated on all the test samples,
respectively.
A mixture score, Sm, is then used to measure the matching

quality between two m/z matched peaks as follows:
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where di is the Euclidean distance of retention time between the
ith matched peak pair, dmin and dmed are the minimum and
median retention time distance among all m/z matched peaks
in the two peak lists, respectively, Δi is the absolute value of m/
z difference between the ith matched peak pair, and w is a
weight factor and 0 ≤ w ≤ 1. The peaks that are present in
every test peak list and matched to the same peak in RPL are
then used to optimize the value of weight factor w for the
alignment of a test peak list Ti and RPL by maximizing the value
of ∑i=1

k Sm(di, Δi|w); k is the number of matched peaks between
the test peak list Ti and RPL, and w is set as 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95, respectively.
After optimizing the weight factor, w, the value of Sm can be

calculated for each matched peak pair between the test peak list
Ti and RPL, followed by an outlier detection in Sm

j , j = 1 ... k. By
iteratively considering pair set {RPL, Ti|i = 1, ..., n}, the optimal
weight factor set {ω1, ..., ωn} can be obtained for each peak list.
The landmark peaks, which are represented as {(r1, t11, ..., tn1),
..., (rm, t1m, ..., tnm)}, are then obtained after outlier removal on
Sm. The minimum mixture score Sm

min among all the test peak

lists is then used as a threshold value on the mixture score in
the partial alignment.
To perform the partial alignment, the retention time value of

each landmark peak in the test peak list Ti is assigned to the
retention time value of the corresponding landmark peak in
RPL. A local polynomial fitting method is employed to correct
the retention time of peaks present between two adjacent
landmark peaks as follows:
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where i = 1, 2, ..., m − 1, tr,i and tr,i+1 are the retention time
values of two adjacent landmark peaks in RPL, and tt,s′ is the
corrected retention time of a peak eluted between the two
adjacent landmark peaks in the test sample Ti.
Because multiple landmark peaks are detected in a set of

experimental data, adjusting retention time shifts by using two
adjacent landmark peaks can correct nonlinear retention time
shifts of metabolite eluted between these two adjacent
landmark peaks. An iterative optimization method is applied
to the group of peaks eluted earlier than the first-eluted
landmark peak and the group of peaks eluted later than the last-
eluted landmark peak, respectively. In each optimization
process, 30% of landmark peaks are randomly selected from
the pool of landmark peaks {(r1, t11), ..., (rm, t1m)} and a
polynomial model fitting error is computed as follows:

Figure 2. Example of spectrum deconvolution by MetSign. (A) XIC and background noise level estimation. The entire XIC is segmented into four
peak groups because of the discontinuity of signals in the chromatographic dimension (scan). It was detected that the first segment contains at least
one peak and leaving the rest retention time range of XIC as noise area for polynomial fitting and median filtering. The estimated noise level is
shown in the red line. (B) Detection of significant peaks. The dominant peaks are determined by the first-derivative cross zero position from positive
to negative values and meeting the criteria of minimum data points in the two sides of each peak. (C) Detection of nonsignificant peaks (hidden
peaks). The hidden peaks are recognized as the second-derivative cross zero position with changing from positive to negative values and the first-
derivative value is negative, or changing from negative to positive values and the first-derivative value is positive. There is one hidden peak that is
detected in the example. (D) Two peaks deconvoluted by mixture EMG models.

Analytical Chemistry Article

dx.doi.org/10.1021/ac3016856 | Anal. Chem. 2012, 84, 7963−79717966



∑ε = | − |
=

t t
i

q

i i
1

R,
o

R,
f

(8)

where tR,i
o is the original z-score transformed retention time of

the ith peak, tR,i
f is the fitted retention time of the ith peak, and

q is the number of peaks in the test peak list at the region of
interest. This process is repeated 1000 times, and the model
with minimum fitting error is selected and used for retention
time correction.
After the retention time correction, partial alignment is

applied to all the nonlandmark peaks present in each of the test
peak lists and then aligned to the peaks present in the RPL,
where a mixture score Sm is calculated using eq 6 for each peak
pair. A peak pair is considered as a match if its mixture score is
larger than Sm

min. It is possible that one peak in the test sample
can be matched to multiple peaks in RPL and vice versa. In these
cases, the peak pair with the maximum mixture score is kept
while the remaining matches are discarded. If there is a peak in
the test peak list that cannot be matched to any peaks in RPL,
this peak is considered as a new peak to RPL and is added to
RPL. The updated RPL is then used to align the peaks in the next
test peak list. This process is repeated until all the test peak lists
are aligned.
Normalization and Statistical Significance Tests. Three

literature-reported normalization algorithms were implemented
into MetSign for the user to select from, including quantile
normalization, cyclic loss normalization, and contrast-based
normalization.17,18 The purpose of statistical analysis is to find
metabolites that have significantly different expression levels in
different sample groups. MetSign first employs the Fisher’s
exact test to study the presence and absence of each metabolite
between sample groups. It then employs the Grubbs’ test19 for
outlier detection to find the responses of a metabolite that are
not consistent with the responses of the same metabolite in the
remaining samples of the same sample group. After removing
the outliers, an abundance test such as the pairwise two-tail t
test is performed on the log-transformed peak areas to detect
the abundance changes of each metabolite between two sample
groups, and the false discovery rate (FDR) is used to correct for
multiple comparisons.20

■ RESULTS AND DISCUSSION

The raw instrument data were converted into mzML format by
instrument control software ChromaTOF, and the mzML files
were used as input files of MetSign and MZmine2. All
instrument data were also exported into netCDF for analysis
using XCMS2.
Peak Detection. The peak detection was performed at XIC

level in MetSign. To construct XICs for all molecular ions, the
mass accuracy and minimum chromatographic peak width of a
molecular ion were set as εm/z ≤ 6 ppm and wc ≥ 15 scans,
respectively. In addition to these two user-defined parameters,
MetSign also employs two more default values to filter low-
quality peaks detected in each XIC segment: more than three
data points monotonously increasing and decreasing on each
side of a peak, and a minimum ratio of 0.3 between the peak
area of the original chromatographic peak and the smoothed
one. Figure 2A is an example of XIC, in which the entire XIC
was separated into four segments (or peak groups) based on
the continuity of scan number. The first-derivative method
detected one peak in the first peak group (PG-1) with an m/z
value of 809.5863 and a span of retention time from 5.25 to

6.68 min (Figure 2B), while no peak was detected in the other
three XIC segments. All data points in the entire XIC, except
those belonging to the detected peak in PG-1, were used for
polynomial fitting followed by median filtering to estimate the
noise level (red dotted line in Figure 2A).
MetSign constructs the XICs in favor of intensive peaks, by

constructing XICs in descending order of the maximum peak
height of metabolite ions in full mass spectra. By doing so, if the
m/z value of a signal s = (m/z, peak height) overlaps with the
m/z values of two types of metabolite ions, s is assigned to the
XIC of the metabolite ion with a larger value of maximum peak
height in its full mass spectra. The hypothesis of such an
intensive peak-favored XIC construction approach is that a
metabolite ion with a large value of maximum peak height in its
full mass spectra is more likely to be measured than the one
with a small value of maximum peak height. Compared to the
conventional approach of constructing XICs in sequential based
on m/z value, this method gives the priority of having an m/z
signal to the large peak, and most likely such a large peak is
generated by a true metabolite.
The user-defined values of m/z variation window εm/z and

the minimum chromatographic peak width wc play significant
role in constructing XICs and filtering the detected peaks. A
large value of εm/z introduces a high rate of assigning peaks to a
wrong XIC while a small value of εm/z can exclude some peaks
to be assigned a correct XIC. These two cases reduce the
accuracy of peak detection and quantification. A large value of
peak width wc increases the chance of removing small true
peaks while a small value causes detection of a large number of
small false peaks. In practice, the values of εm/z and wc should
be determined by analysis of a number of authentic standards.
A significant challenge in peak deconvolution is to determine

the number of peaks, especially the detection of small peaks
that overlap with a dominant peak. A two-layer peak detection
method was implemented in this study, in which the first
derivative on the smoothed data was applied to detect the
dominant peaks (Figure 2B) and the second derivative was
used to detect the overlapping nonsignificant peaks (Figure
2C), with the constraints of the minimum number of data
points in each side of a peak (more than three data points
monotonously increasing and decreasing on each side of a
peak) and a minimum chromatographic peak width (a user-
defined span of scans, 15 scans in this study). After determining
that there were two peaks in PG-1, all data in PG-1 were
subjected to EMG mixture model for peak fitting. Each EMG
component corresponds to one peak, as shown in Figure 2D.
The overall fitting results are displayed in Supporting
Information Figure S-1.
Peak overlapping is common LC−MS data due to the

complexity of metabolites present in a metabolome and the
limited peak capacity in LC−MS. MetSign employs the first
derivatives to find the significant peaks while it uses the second
derivatives to find the hidden peaks. Compared to other
literature-reported methods, such a peak detection method
maximizes the chance of detecting all peaks from each XIC.
Furthermore, the chromatographic peaks may not always have a
normal peak shape if the chromatographic conditions are not
optimized, which most likely results in right-tailing chromato-
graphic peaks. For this reason, MetSign used the EMG mixture
model for peak fitting to address the asymmetric nature of
chromatographic peaks. However, the EMG mixture model
requires accurate determination of the number of peaks to be
fitted. The proposed peak detection method using both the first
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and the second derivatives provides high precision in
determining the peak number and the position of each peak
present in an XIC and, therefore, increases the fitting accuracy
of EMG mixture model and also aids the model converge. The
EMG mixture model not only provides the accurate peak
location (i.e., retention time) for peak list alignment but also
provides accurate peak area for downstream peak quantifica-
tion.
Peak List Alignment. Of the 16 spiked-in metabolites, 14

metabolites were fully aligned in all 18 samples while
compounds lysoPC(10:0) and heptadecanoic acid were aligned
in 17 and 15 samples, respectively. The mixture score of
compound lysoPC(10:0) in one sample is smaller than the

threshold Sm
min. The compound, heptadecanoic acid, was

detected in two samples with a large m/z variation compared
to the theoretical value, and therefore, the peak information of
this compound was removed during the initial peak assignment.
Supporting Information Figure S-2 shows the distribution of
relative standard deviation (RSD) of the aligned peaks by
MetSign.
The significant features of the two-stage alignment algorithm

developed in this work include that the developed algorithm
does not need a user-defined retention time variation window
for peak alignment across samples and it can align data acquired
under difference experimental conditions. These are achieved
by first transforming the retention time values to z-score

Figure 3. Example of peak picking by MetSign and MZmine2.6. (A) Peak fitting results by MetSign using the mixture EMG model. (B) Five peak
components deconvoluted by peak detection and EMG fitting algorithm by MetSign. Panels C−E are the peak deconvolution results on the same
data by MZmine2.6. MetSign detected five peaks including four dominant peaks and one hidden peak, whereas MZmine2.6 correctly detected the
two abundant peaks on the right and incorrectly considered the three peaks on the left as one peak.
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domain to ensure the normal distribution of all peaks in the z-
score transformed chromatogram. Using the mixture score
enables the simultaneous evaluation of the deviations of
Euclidian distance and m/z values between the metabolite
peaks of interest. This not only significantly increases the
quality of the aligned peak pairs but also increases the chance of
aligning peaks with large deviation in either retention time or
m/z values caused by the inaccuracy of peak picking algorithms.
For example, assuming a metabolite ion has a poor quality of
chromatographic peak shape, the retention time value assigned
to this peak by the peak picking algorithm may, therefore, have
a large deviation from the true value after smoothing. If the m/z
value of this peak is correctly assigned, it is possible that this
peak may still have a large mixture score with peaks generated
by the same metabolite in the other samples, and therefore,
they all can be aligned.
Comparison with Existing Software Packages. To

compare the performance of peak picking, an m/z variation of
εm/z ≤ 6 ppm was used in all three software packages. XCMS2

software does not output the results of peak picking. Therefore,
the results of peak detection generated by MetSign were
compared with these by MZmine2.6. The Savitzky−Golay
method in MZmine2.6 gave the best deconvolution results and,
therefore, was used for comparison. The other parameters used
in MZmine2.6 are the following: minimum time span, 0.2 min;
minimum peak height, 10; peak duration range, 0.2−10 min;
derivative threshold level, 0.5. Figure 3 depicts an example of
peak deconvolution result using MetSign and MZmine2.6.
Figure 3A shows the EMG model fitted peak results. MetSign
deconvoluted the instrument data into five overlapping peaks
(Figure 3B) with peak location in the chromatographic
dimension and peak height of (7.4, 2.3 × 103), (7.6, 1.2 ×
103), (7.8, 337), (8.1, 1.1 × 104), and (8.4, 3.6 × 103),
respectively. MZmine2.6 only recognized three peaks with
corresponding peak information of (7.4, 2.3 × 103), (8.1, 1.1 ×
104), and (8.4, 3.7 × 103), respectively. The peaks located in
the range of retention time of 7.3−8.0 min were considered as
one peak with a peak area of 5.1 × 104, even though three peaks
were actually present in this region with peak areas detected by
MetSign as 4.6 × 104, 5.3 × 103, and 1.0 × 104, respectively.
The areas of peaks located at retention time 8.1 and 8.4 min
detected by MetSign and MZmine2.6 were very similar, 8.7 ×
105 and 2.9 × 104 by MetSign and 8.5 × 105 and 3.3 × 104 by
MZmine2.6. Supporting Information Figure S-3 is another
example of deconvoluting instrument data by MetSign and
MZmine2.6. These two examples demonstrate that MZmine2.6
has limited capability of deconvoluting overlapping peaks,
especially in cases where small peaks overlap with large peaks.
The details of deconvoluted peak information of the data
displayed in Figure 3 and Supporting Information Figure S-3
are listed in Supporting Information Table S-2.
To compare the performance of peak alignment methods

among the three software packages, the peak lists generated by
the three software packages were aligned, respectively. Pluskal
et al. demonstrated that the RANSAC aligner is better than Join
aligner in MZmine.21 XCMS2 can align all samples with or
without retention time correction. Therefore, we chose the
RANSAC alignment in MZmine2.6, XCMS2 with retention
time correction, and XCMS2 without retention time correction
for comparison. In MZmine2.6, 1.0 and 0.2 min were set as the
retention time tolerance before and after retention time
correction, respectively, and RANSAC iteration number was
set to 1000 times. The retention time tolerance in XCMS2 was

also set to 0.2 min. MetSign does not need the retention time
tolerance for alignment. The m/z variation was set to εm/z ≤ 6
ppm in MetSign and MZmine2.6, while the default value of εm/z
≤ 0.025 m/z was used in XCMS2. Figure 4 depicts the

alignment results of the 16 spiked-in metabolites by MetSign,
MZmine2.6, and XCMS2. On the basis of the experimental
design, all of the spiked-in metabolite standards should be
correctly aligned. In Figure 4A, the m/z variation was set as εm/z
≤ 6 ppm for MetSign and MZmine2.6. In MetSign, a total of 13
peaks of the spiked-in standards were fully aligned in all 18
samples. In XCMS2 with retention time correction, 12
metabolite standards were fully aligned, while 11 were fully
aligned without retention time correction. However, there was
only one metabolite that was fully aligned by MZmine2.6.
Figure 4B depicts the alignment results of the 16 spiked-in

metabolites by increasing the m/z variation to εm/z ≤ 10 ppm in
MetSign and MZmine2.6 and keeping the default m/z variation
in XCMS2. In MetSign, a total 14 peaks of the spiked-in
metabolite standards were fully aligned in all 18 samples, while
12 were fully aligned by MZmine2.6. It should be noted that

Figure 4. Comparison of alignment results among MetSign,
MZmine2.6, XCMS2 with retention time correction, and XCMS2

without retention time correction. (A) εm/z ≤ 6 ppm. (B) εm/z ≤ 10
ppm. The εm/z was set as 0.025 for XCMS2 as specified by the
software.
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the same m/z variation εm/z ≤ 6 ppm was used in both MetSign
and MZmine2.6 for peak picking. Compared with the
performance of MetSign, a large m/z variation was required
by MZmine2.6 for alignment, indicating that a relatively large
m/z variation was introduced during peak picking by
MZmine2.6. Even though the alignment performance of
MZmine2.6 is significantly increased by setting a large value
of m/z variation εm/z ≤ 10 ppm, the overall alignment
performance of MZmine2.6 is slightly better than XCMS2

without retention time correction, but still worse than MetSign
and XCMS2 with retention time correction. Therefore, the
alignment accuracy of the three comparing software packages in
decreasing order is MetSign > XCMS2 > MZmine2.6.
Three sample groups with different concentrations of the

spiked-in metabolites were used to construct three data sets for
comparative analysis of quantification accuracy between the
three software packages. Details of three measures, the true-
positive rate (TPR), positive predictive value (PPV), and their
harmonic mean F1 score, are introduced in the Supporting
Information. The analysis results are listed in Supporting
Information as Table S-3. On the basis of the experimental
design, all the 16 spiked-in metabolites detected from the
experimental data are the true-positive metabolites that have
significant concentration changes between two testing sample
groups, while any other metabolites detected with significant
concentration differences are false-positives.
Supporting Information Table S-1 shows that MetSign

outperforms both XCMS2 and MZmine2.6 in the analysis of
these three data sets in all three measures, TPR, PPV, and F1,
regardless of the p-value threshold. MZmine2.6 has a better
performance than XCMS2 in both PPV and F1 values even
though XCMS2 performed better than MZmine2.6 in TPR for
all p-value thresholds. There is no significant difference in the
TPR between XCMS2 and MetSign in the analysis of the three
data sets, even though MetSign performed slightly better than
XCMS2. It should be noted, however, that the PPV of MetSign
and MZmine2.6 is more than 2 times better than XCMS2, and
the resulting F1 scores of the three software packages in the
analysis of the spike-in data is in a descending order as follows:
MetSign > MZmine2.6 > XCMS2. This analysis shows that
MetSign outperforms the existing software packages
MZmine2.6 and XCMS2 in metabolite quantification.
Many data analysis steps are involved in analyzing LC−MS-

based metabolomics profiling data. Data preprocessing can
significantly affect the outcome of data analysis. The accurate
spectrum deconvolution and peak alignment algorithms
developed in this work can provide precise metabolite
information for the downstream quantification and network
analysis. The developed MetSign software can be used for
analysis of any high-resolution LC−MS-based metabolomics
data, where multiple samples are analyzed to assess the
metabolic difference between sample groups for the purpose of
biomarker discovery, drug development, or any other
comparative analysis.

■ CONCLUSIONS
To further enhance the accuracy of MetSign software in
analysis of LC−MS data, a set of data preprocessing algorithms
were developed for spectrum deconvolution and peak list
alignment. For spectrum deconvolution, peak picking was
achieved at the XIC level. The XIC is constructed using an
intensive peak-favored approach. To estimate and remove the
noise in XICs, each XIC is first segmented into several peak

groups based on the continuity of scan number. After removing
noise, the peaks of molecular ions are detected using both the
first and the second derivatives followed by an efficient EMG
mixture model for peak fitting. For peak list alignment, the
retention time values in each peak list are first transformed into
z-scores to ensure the normal distribution of peaks in the z-
score domain. Another innovation of this work is using a
mixture score to simultaneous evaluate the similarity of
Euclidian distance and m/z values between the metabolite
peaks of interest. The two-stage design of alignment ensures to
first align the peaks with highest quality and then use these
peaks to calibrate (adjust) the retention time of the remaining
peaks by partial linear regression.
Comparative analysis of spike-in data demonstrates that

MZmine2.6 has limited capability of deconvoluting overlapping
peaks and introduces a relatively large m/z variation during
peak picking. The overall performance of spectral deconvolu-
tion and peak list alignment of XCMS2 is slightly worse than
that of MetSign. For quantitative analysis, MetSign outperforms
both CMS2 and MZmine2.6 in analysis of the spike-in data in
all three measures, TPR, PPV, and F1, regardless of the p-value
threshold. Overall, the developed data preprocessing methods
perform better than the existing software MZmine2.6 and
XCMS2 for peak picking, alignment, and quantification. The
accurate spectrum deconvolution and peak alignment algo-
rithms developed in this study provide precise metabolite
information for the downstream quantification and network
analysis and, therefore, can reduce the data analysis variation
and improve the quality of metabolic profiling data.
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